1
|
Jang H, Kim H, Cho A, Yu HJ, Huh SM, Kim HJ, Kim DK, Jung J, Kim JH, Mun JH. Structure and evolution of the Forsythieae genome elucidated by chromosome-level genome comparison of Abeliophyllum distichum and Forsythia ovata (Oleaceae). Commun Biol 2025; 8:254. [PMID: 39966682 PMCID: PMC11836285 DOI: 10.1038/s42003-025-07683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Abeliophyllum distichum and Forsythia ovata are two closely related ornamental species of the tribe Forsythieae (Oleaceae) native to Korea. Here we report their genomic characteristics, highlighting genetic differences contributing to variations in corolla coloration, genomic variations associated with heterostyly, and the reconstruction of their ancestral karyotypes. Genome comparison revealed that A. distichum had a more compact organization of gene space than F. ovata. Centromeres of both species were enriched in Forsythieae-specific satellite repeats, hAT-Ac and MuLE-MuDR DNA transposons, and OTA-Athila Ty3/Gypsy retrotransposons. Transcriptome analysis revealed spatially differential expression of carotenoid biosynthesis-related genes in A. distichum, with downregulation in the white lobe and upregulation in the yellow base. Genome-wide analysis of structural variation in A. distichum identified retrotransposon insertions in the promoter region of an AGAMOUS homolog in the thrum plant, which showed significant downregulation of the gene compared to the pin plant. Evolutionary analyses suggested that the Oleaceae genomes evolved from 13 ancestral karyotypes via lineage-specific genomic events, including chromosome recombination, rearrangement, and whole-genome duplication followed by diploidization. The divergence of A. distichum and F. ovata was estimated to have occurred 13.87 million years ago during the Miocene epoch.
Collapse
Affiliation(s)
- Hoyeol Jang
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Haneul Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
| | - Ara Cho
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, 11186, Korea
| | - Hee-Ju Yu
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Sun Mi Huh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, 14662, Korea
| | - Hyuk-Jin Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, 11186, Korea
| | - Dong-Kab Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, 11186, Korea
| | - Joonhyung Jung
- Department of Life Science, Gachon University, Seongnam, 13120, Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, 13120, Korea
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 17058, Korea.
| |
Collapse
|
2
|
Ribeca P. Bioinformatics for the Structural Genomics of Poxviruses. Methods Mol Biol 2025; 2860:65-82. [PMID: 39621261 DOI: 10.1007/978-1-0716-4160-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Poxviruses are large, complex viruses, and their host species are widespread across the tree of life. As a result, the bioinformatics analysis of their genomes can be complex. Here we show how a few helpful tools and strategies can be used to inform the analysis, leading to a better understanding of the structural properties of poxvirus genomes and to a more accurate quality control of, or comparison between, assembled sequences.
Collapse
Affiliation(s)
- Paolo Ribeca
- UK Health Security Agency, London, UK
- Biomathematics and Statistics Scotland, Edinburgh, UK
| |
Collapse
|
3
|
Alves SIA, Dantas CWD, Macedo DB, Ramos RTJ. What are microsatellites and how to choose the best tool: a user-friendly review of SSR and 74 SSR mining tools. Front Genet 2024; 15:1474611. [PMID: 39606018 PMCID: PMC11599195 DOI: 10.3389/fgene.2024.1474611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Microsatellites, also known as SSR or STR, are essential molecular markers in genomic research, playing crucial roles in genetic mapping, population genetics, and evolutionary studies. Their applications range from plant breeding to forensics, highlighting their diverse utility across disciplines. Despite their widespread use, traditional methods for SSR analysis are often laborious and time-consuming, requiring significant resources and expertise. To address these challenges, a variety of computational tools for SSR analysis have been developed, offering faster and more efficient alternatives to traditional methods. However, selecting the most appropriate tool can be daunting due to rapid technological advancements and the sheer number of options available. This study presents a comprehensive review and analysis of 74 SSR tools, aiming to provide researchers with a valuable resource for SSR analysis tool selection. The methodology employed includes thorough literature reviews, detailed tool comparisons, and in-depth analyses of tool functionality. By compiling and analyzing these tools, this study not only advances the field of genomic research but also contributes to the broader scientific community by facilitating informed decision-making in the selection of SSR analysis tools. Researchers seeking to understand SSRs and select the most appropriate tools for their projects will benefit from this comprehensive guide. Overall, this study enhances our understanding of SSR analysis tools, paving the way for more efficient and effective SSR research in various fields of study.
Collapse
Affiliation(s)
- Sandy Ingrid Aguiar Alves
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Simulation and Computational Biology — SIMBIC, High Performance Computing Center — CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Carlos Willian Dias Dantas
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory of Simulation and Computational Biology — SIMBIC, High Performance Computing Center — CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Daralyns Borges Macedo
- Laboratory of Simulation and Computational Biology — SIMBIC, High Performance Computing Center — CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rommel Thiago Jucá Ramos
- Laboratory of Simulation and Computational Biology — SIMBIC, High Performance Computing Center — CCAD, Federal University of Pará, Belém, Pará, Brazil
- Laboratory of Bioinformatics and Genomics of Microorganisms, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
4
|
Behboudi R, Nouri-Baygi M, Naghibzadeh M. RPTRF: A rapid perfect tandem repeat finder tool for DNA sequences. Biosystems 2023; 226:104869. [PMID: 36858110 DOI: 10.1016/j.biosystems.2023.104869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
The sequencing of eukaryotic genomes has shown that tandem repeats are abundant in their sequences. In addition to affecting some cellular processes, tandem repeats in the genome may be associated with specific diseases and have been the key to resolving criminal cases. Any tool developed for detecting tandem repeats must be accurate, fast, and useable in thousands of laboratories worldwide, including those with not very advanced computing capabilities. The proposed method, the Rapid Perfect Tandem Repeat Finder (RPTRF), minimizes the need for excess character comparison processing by indexing the input file and significantly helps to accelerate and prepare the output without artifacts by using an interval tree in the filtering section. The experiments demonstrated that the RPTRF is very fast in discovering all perfect tandem repeats of all categories of any genomic sequences. Although the detection of imperfect TRs is not the focus of the RPTRF, comparisons show that it even outperforms some other tools (in five selected gold standards) designed explicitly for this purpose. The implemented tool and how to use it are available on GitHub.
Collapse
Affiliation(s)
- Reza Behboudi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mostafa Nouri-Baygi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahmoud Naghibzadeh
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Wang X, Budowle B, Ge J. USAT: a bioinformatic toolkit to facilitate interpretation and comparative visualization of tandem repeat sequences. BMC Bioinformatics 2022; 23:497. [PMID: 36402991 PMCID: PMC9675219 DOI: 10.1186/s12859-022-05021-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/29/2022] [Indexed: 11/21/2022] Open
Abstract
Background Tandem repeats (TR), highly variable genomic variants, are widely used in individual identification, disease diagnostics, and evolutionary studies. The recent advances in sequencing technologies and bioinformatic tools facilitate calling TR haplotypes genome widely. Both length-based and sequence-based TR alleles are used in different applications. However, sequence-based TR alleles could provide the highest precision in characterizing TR haplotypes. The need to identify the differences at the single nucleotide level between or among TR haplotypes with an easy-use bioinformatic tool is essential. Results In this study, we developed a Universal STR Allele Toolkit (USAT) for TR haplotype analysis, which takes TR haplotype output from existing tools to perform allele size conversion, sequence comparison of haplotypes, figure plotting, comparison for allele distribution, and interactive visualization. An exemplary application of USAT for analysis of the CODIS core STR loci for DNA forensics with benchmarking human individuals demonstrated the capabilities of USAT. USAT has user-friendly graphic interfaces and runs fast in major computing operating systems with parallel computing enabled. Conclusion USAT is a user-friendly bioinformatics software for interpretation, visualization, and comparisons of TRs. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-05021-1.
Collapse
Affiliation(s)
- Xuewen Wang
- grid.266869.50000 0001 1008 957XCenter for Human Identification, Health Science Center, University of North Texas, Fort Worth, TX USA
| | - Bruce Budowle
- grid.266869.50000 0001 1008 957XCenter for Human Identification, Health Science Center, University of North Texas, Fort Worth, TX USA ,grid.266871.c0000 0000 9765 6057Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX USA
| | - Jianye Ge
- grid.266869.50000 0001 1008 957XCenter for Human Identification, Health Science Center, University of North Texas, Fort Worth, TX USA ,grid.266871.c0000 0000 9765 6057Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX USA
| |
Collapse
|
6
|
Chen J, Li F, Wang M, Li J, Marquez-Lago TT, Leier A, Revote J, Li S, Liu Q, Song J. BigFiRSt: A Software Program Using Big Data Technique for Mining Simple Sequence Repeats From Large-Scale Sequencing Data. Front Big Data 2022; 4:727216. [PMID: 35118375 PMCID: PMC8805145 DOI: 10.3389/fdata.2021.727216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
Background Simple Sequence Repeats (SSRs) are short tandem repeats of nucleotide sequences. It has been shown that SSRs are associated with human diseases and are of medical relevance. Accordingly, a variety of computational methods have been proposed to mine SSRs from genomes. Conventional methods rely on a high-quality complete genome to identify SSRs. However, the sequenced genome often misses several highly repetitive regions. Moreover, many non-model species have no entire genomes. With the recent advances of next-generation sequencing (NGS) techniques, large-scale sequence reads for any species can be rapidly generated using NGS. In this context, a number of methods have been proposed to identify thousands of SSR loci within large amounts of reads for non-model species. While the most commonly used NGS platforms (e.g., Illumina platform) on the market generally provide short paired-end reads, merging overlapping paired-end reads has become a common way prior to the identification of SSR loci. This has posed a big data analysis challenge for traditional stand-alone tools to merge short read pairs and identify SSRs from large-scale data. Results In this study, we present a new Hadoop-based software program, termed BigFiRSt, to address this problem using cutting-edge big data technology. BigFiRSt consists of two major modules, BigFLASH and BigPERF, implemented based on two state-of-the-art stand-alone tools, FLASH and PERF, respectively. BigFLASH and BigPERF address the problem of merging short read pairs and mining SSRs in the big data manner, respectively. Comprehensive benchmarking experiments show that BigFiRSt can dramatically reduce the execution times of fast read pairs merging and SSRs mining from very large-scale DNA sequence data. Conclusions The excellent performance of BigFiRSt mainly resorts to the Big Data Hadoop technology to merge read pairs and mine SSRs in parallel and distributed computing on clusters. We anticipate BigFiRSt will be a valuable tool in the coming biological Big Data era.
Collapse
Affiliation(s)
- Jinxiang Chen
- Department of Software Engineering, College of Information Engineering, Northwest A&F University, Yangling, China
| | - Fuyi Li
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Monash Centre for Data Science, Monash University, Melbourne, VIC, Australia
- Department of Microbiology and Immunity, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Miao Wang
- Department of Software Engineering, College of Information Engineering, Northwest A&F University, Yangling, China
| | - Junlong Li
- Department of Software Engineering, College of Information Engineering, Northwest A&F University, Yangling, China
| | - Tatiana T. Marquez-Lago
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - André Leier
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jerico Revote
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Shuqin Li
- Department of Software Engineering, College of Information Engineering, Northwest A&F University, Yangling, China
| | - Quanzhong Liu
- Department of Software Engineering, College of Information Engineering, Northwest A&F University, Yangling, China
- Quanzhong Liu
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Monash Centre for Data Science, Monash University, Melbourne, VIC, Australia
- *Correspondence: Jiangning Song
| |
Collapse
|
7
|
Xiao X, Zhang CY, Zhang Z, Hu Z, Li M, Li T. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry 2022; 27:466-475. [PMID: 34650204 DOI: 10.1038/s41380-021-01329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/28/2023]
Abstract
Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the "missing heritability" of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
8
|
Singh NV, Patil PG, Sowjanya RP, Parashuram S, Natarajan P, Babu KD, Pal RK, Sharma J, Reddy UK. Chloroplast Genome Sequencing, Comparative Analysis, and Discovery of Unique Cytoplasmic Variants in Pomegranate ( Punica granatum L.). Front Genet 2021; 12:704075. [PMID: 34394192 PMCID: PMC8356083 DOI: 10.3389/fgene.2021.704075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022] Open
Abstract
Here we report on comprehensive chloroplast (cp) genome analysis of 16 pomegranate (Punica granatum L.) genotypes representing commercial cultivars, ornamental and wild types, through large-scale sequencing and assembling using next-generation sequencing (NGS) technology. Comparative genome analysis revealed that the size of cp genomes varied from 158,593 bp (in wild, “1201” and “1181”) to 158,662 bp (cultivar, “Gul-e-Shah Red”) among the genotypes, with characteristic quadripartite structures separated by a pair of inverted repeats (IRs). The higher conservation for the total number of coding and non-coding genes (rRNA and tRNA) and their sizes, and IRs (IR-A and IR-B) were observed across all the cp genomes. Interestingly, high variations were observed in sizes of large single copy (LSC, 88,976 to 89,044 bp) and small single copy (SSC, 18,682 to 18,684 bp) regions. Although, the structural organization of newly assembled cp genomes were comparable to that of previously reported cp genomes of pomegranate (“Helow,” “Tunisia,” and “Bhagawa”), the striking differences were observed with the Lagerstroemia lines, viz., Lagerstroemia intermedia (NC_0346620) and Lagerstroemia speciosa (NC_031414), which clearly confirmed previous findings. Furthermore, phylogenetic analysis also revealed that members outside the genus Punica were clubbed into a separate clade. The contraction and expansion analysis revealed that the structural variations in IRs, LSC, and SSC have significantly accounted for the evolution of cp genomes of Punica and L. intermedia over the periods. Microsatellite survey across cp genomes resulted in the identification of a total of 233 to 234 SSRs, with majority of them being mono- (A/T or C/G, 164–165 numbers), followed by di- (AT/AT or AG/CT, 54), tri- (6), tetra- (8), and pentanucleotides (1). Furthermore, the comparative structural variant analyses across cp genomes resulted in the identification of many varietal specific SNP/indel markers. In summary, our study has offered a successful development of large-scale cp genomics resources to leverage future genetic, taxonomical, and phylogenetic studies in pomegranate.
Collapse
Affiliation(s)
| | | | - Roopa P Sowjanya
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | | | - Purushothaman Natarajan
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, West Virginia, WV, United States
| | | | - Ram Krishna Pal
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Jyotsana Sharma
- ICAR-National Research Centre on Pomegranate (NRCP), Solapur, India
| | - Umesh K Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, West Virginia, WV, United States
| |
Collapse
|
9
|
Morishita S, Ichikawa K, Myers EW. Finding long tandem repeats in long noisy reads. Bioinformatics 2021; 37:612-621. [PMID: 33031558 PMCID: PMC8097686 DOI: 10.1093/bioinformatics/btaa865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Motivation Long tandem repeat expansions of more than 1000 nt have been suggested to be associated with diseases, but remain largely unexplored in individual human genomes because read lengths have been too short. However, new long-read sequencing technologies can produce single reads of 10 000 nt or more that can span such repeat expansions, although these long reads have high error rates, of 10–20%, which complicates the detection of repetitive elements. Moreover, most traditional algorithms for finding tandem repeats are designed to find short tandem repeats (<1000 nt) and cannot effectively handle the high error rate of long reads in a reasonable amount of time. Results Here, we report an efficient algorithm for solving this problem that takes advantage of the length of the repeat. Namely, a long tandem repeat has hundreds or thousands of approximate copies of the repeated unit, so despite the error rate, many short k-mers will be error-free in many copies of the unit. We exploited this characteristic to develop a method for first estimating regions that could contain a tandem repeat, by analyzing the k-mer frequency distributions of fixed-size windows across the target read, followed by an algorithm that assembles the k-mers of a putative region into the consensus repeat unit by greedily traversing a de Bruijn graph. Experimental results indicated that the proposed algorithm largely outperformed Tandem Repeats Finder, a widely used program for finding tandem repeats, in terms of sensitivity. Availability and implementation https://github.com/morisUtokyo/mTR.
Collapse
Affiliation(s)
- Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Kazuki Ichikawa
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Saxony 01307, Germany.,Center for Systems Biology Dresden, Dresden, Saxony 01307, Germany
| |
Collapse
|
10
|
Lallemand T, Leduc M, Landès C, Rizzon C, Lerat E. An Overview of Duplicated Gene Detection Methods: Why the Duplication Mechanism Has to Be Accounted for in Their Choice. Genes (Basel) 2020; 11:E1046. [PMID: 32899740 PMCID: PMC7565063 DOI: 10.3390/genes11091046] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Gene duplication is an important evolutionary mechanism allowing to provide new genetic material and thus opportunities to acquire new gene functions for an organism, with major implications such as speciation events. Various processes are known to allow a gene to be duplicated and different models explain how duplicated genes can be maintained in genomes. Due to their particular importance, the identification of duplicated genes is essential when studying genome evolution but it can still be a challenge due to the various fates duplicated genes can encounter. In this review, we first describe the evolutionary processes allowing the formation of duplicated genes but also describe the various bioinformatic approaches that can be used to identify them in genome sequences. Indeed, these bioinformatic approaches differ according to the underlying duplication mechanism. Hence, understanding the specificity of the duplicated genes of interest is a great asset for tool selection and should be taken into account when exploring a biological question.
Collapse
Affiliation(s)
- Tanguy Lallemand
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Martin Leduc
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Claudine Landès
- IRHS, Agrocampus-Ouest, INRAE, Université d’Angers, SFR 4207 QuaSaV, 49071 Beaucouzé, France; (T.L.); (M.L.); (C.L.)
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d’Evry (LaMME), Université d’Evry Val d’Essonne, Université Paris-Saclay, UMR CNRS 8071, ENSIIE, USC INRAE, 23 bvd de France, CEDEX, 91037 Evry Paris, France;
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
11
|
Li Z, Li M, Xu S, Liu L, Chen Z, Zou K. Complete Mitogenomes of Three Carangidae (Perciformes) Fishes: Genome Description and Phylogenetic Considerations. Int J Mol Sci 2020; 21:E4685. [PMID: 32630142 PMCID: PMC7370159 DOI: 10.3390/ijms21134685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/31/2022] Open
Abstract
Carangidae are ecologically and economically important marine fish. The complete mitogenomes of three Carangidae species (Alectis indicus, Decapterus tabl, and Alepes djedaba) were sequenced, characterized, and compared with 29 other species of the family Carangidae in this study. The length of the three mitogenomes ranged from 16,530 to 16,610 bp, and the structures included 2 rRNA genes (12S rRNA and 16S rRNA), 1 control region (a non-coding region), 13 protein-coding genes, and 22 tRNA genes. Among the 22 tRNA genes, only tRNA-Ser (GCT) was not folded into a typical cloverleaf secondary structure and had no recognizable DHU stem. The full-length sequences and protein-coding genes (PCGs) of the mitogenomes of the three species all had obvious AT biases. The majority of the AT-skew and GC-skew values of the PCGs among the three species were negative, demonstrating bases T and C were more plentiful than A and G. Analyses of Ka/Ks and overall p-genetic distance demonstrated that ATP8 showed the highest evolutionary rate and COXI/COXII were the most conserved genes in the three species. The phylogenetic tree based on PCGs sequences of mitogenomes using maximum likelihood and Bayesian inference analyses showed that three clades were divided corresponding to the subfamilies Caranginae, Naucratinae, and Trachinotinae. The monophyly of each superfamily was generally well supported. The divergence time analyses showed that Carangidae evolved during three geological periods, the Cretaceous, Paleogene, and Neogene. A. indicus began to differentiate from other species about 27.20 million years ago (Mya) in the early Miocene, while D. tabl (21.25 Mya) and A. djedaba (14.67 Mya) differentiated in the middle Oligocene.
Collapse
Affiliation(s)
- Zhenhai Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Science, South China Agriculture University, Guangzhou 510642, China; (Z.L.); (L.L.)
| | - Min Li
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (M.L.); (S.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shannan Xu
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (M.L.); (S.X.)
| | - Li Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Science, South China Agriculture University, Guangzhou 510642, China; (Z.L.); (L.L.)
| | - Zuozhi Chen
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (M.L.); (S.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Keshu Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Science, South China Agriculture University, Guangzhou 510642, China; (Z.L.); (L.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agriculture University, Guangzhou 510642, China
| |
Collapse
|
12
|
Kinkar L, Korhonen PK, Cai H, Gauci CG, Lightowlers MW, Saarma U, Jenkins DJ, Li J, Li J, Young ND, Gasser RB. Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1. Parasit Vectors 2019; 12:238. [PMID: 31097022 PMCID: PMC6521400 DOI: 10.1186/s13071-019-3492-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Background Echinococcus tapeworms cause a severe helminthic zoonosis called echinococcosis. The genus comprises various species and genotypes, of which E. granulosus (sensu stricto) represents a significant global public health and socioeconomic burden. Mitochondrial (mt) genomes have provided useful genetic markers to explore the nature and extent of genetic diversity within Echinococcus and have underpinned phylogenetic and population structure analyses of this genus. Our recent work indicated a sequence gap (> 1 kb) in the mt genomes of E. granulosus genotype G1, which could not be determined by PCR-based Sanger sequencing. The aim of the present study was to define the complete mt genome, irrespective of structural complexities, using a long-read sequencing method. Methods We extracted high molecular weight genomic DNA from protoscoleces from a single cyst of E. granulosus genotype G1 from a sheep from Australia using a conventional method and sequenced it using PacBio Sequel (long-read) technology, complemented by BGISEQ-500 short-read sequencing. Sequence data obtained were assembled using a recently-developed workflow. Results We assembled a complete mt genome sequence of 17,675 bp, which is > 4 kb larger than the complete mt genomes known for E. granulosus genotype G1. This assembly includes a previously-elusive tandem repeat region, which is 4417 bp long and consists of ten near-identical 441–445 bp repeat units, each harbouring a 184 bp non-coding region and adjacent regions. We also identified a short non-coding region of 183 bp, which includes an inverted repeat. Conclusions We report what we consider to be the first complete mt genome of E. granulosus genotype G1 and characterise all repeat regions in this genome. The numbers, sizes, sequences and functions of tandem repeat regions remain to be studied in different isolates of genotype G1 and in other genotypes and species. The discovery of such ‘new’ repeat elements in the mt genome of genotype G1 by PacBio sequencing raises a question about the completeness of some published genomes of taeniid cestodes assembled from conventional or short-read sequence datasets. This study shows that long-read sequencing readily overcomes the challenges of assembling repeat elements to achieve improved genomes.
Collapse
Affiliation(s)
- Liina Kinkar
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Huimin Cai
- BGI Research, Shenzhen, Guangdong, China
| | - Charles G Gauci
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Marshall W Lightowlers
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - David J Jenkins
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga, Wagga, NSW, Australia
| | | | - Junhua Li
- BGI Research, Shenzhen, Guangdong, China
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Shamanskiy VA, Timonina VN, Popadin KY, Gunbin KV. ImtRDB: a database and software for mitochondrial imperfect interspersed repeats annotation. BMC Genomics 2019; 20:295. [PMID: 31284879 PMCID: PMC6614062 DOI: 10.1186/s12864-019-5536-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mitochondria is a powerhouse of all eukaryotic cells that have its own circular DNA (mtDNA) encoding various RNAs and proteins. Somatic perturbations of mtDNA are accumulating with age thus it is of great importance to uncover the main sources of mtDNA instability. Recent analyses demonstrated that somatic mtDNA deletions depend on imperfect repeats of various nature between distant mtDNA segments. However, till now there are no comprehensive databases annotating all types of imperfect repeats in numerous species with sequenced complete mitochondrial genome as well as there are no algorithms capable to call all types of imperfect repeats in circular mtDNA. RESULTS We implemented naïve algorithm of pattern recognition by analogy to standard dot-plot construction procedures allowing us to find both perfect and imperfect repeats of four main types: direct, inverted, mirror and complementary. Our algorithm is adapted to specific characteristics of mtDNA such as circularity and an excess of short repeats - it calls imperfect repeats starting from the length of 10 b.p. We constructed interactive web available database ImtRDB depositing perfect and imperfect repeats positions in mtDNAs of more than 3500 Vertebrate species. Additional tools, such as visualization of repeats within a genome, comparison of repeat densities among different genomes and a possibility to download all results make this database useful for many biologists. Our first analyses of the database demonstrated that mtDNA imperfect repeats (i) are usually short; (ii) associated with unfolded DNA structures; (iii) four types of repeats positively correlate with each other forming two equivalent pairs: direct and mirror versus inverted and complementary, with identical nucleotide content and similar distribution between species; (iv) abundance of repeats is negatively associated with GC content; (v) dinucleotides GC versus CG are overrepresented on light chain of mtDNA covered by repeats. CONCLUSIONS ImtRDB is available at http://bioinfodbs.kantiana.ru/ImtRDB/ . It is accompanied by the software calling all types of interspersed repeats with different level of degeneracy in circular DNA. This database and software can become a very useful tool in various areas of mitochondrial and chloroplast DNA research.
Collapse
Affiliation(s)
- Viktor A Shamanskiy
- Center for Mitochondrial Functional Genomics, School of Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Valeria N Timonina
- Center for Mitochondrial Functional Genomics, School of Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Konstantin Yu Popadin
- Center for Mitochondrial Functional Genomics, School of Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Konstantin V Gunbin
- Center for Mitochondrial Functional Genomics, School of Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia. .,Center of Brain Neurobiology and Neurogenetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|