1
|
Manen-Freixa L, Antolin AA. Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery. Expert Opin Drug Discov 2024; 19:1043-1069. [PMID: 39004919 DOI: 10.1080/17460441.2024.2376643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology. AREAS COVERED This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples. EXPERT OPINION Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.
Collapse
Affiliation(s)
- Leticia Manen-Freixa
- Oncobell Division, Bellvitge Biomedical Research Institute (IDIBELL) and ProCURE Department, Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Albert A Antolin
- Oncobell Division, Bellvitge Biomedical Research Institute (IDIBELL) and ProCURE Department, Catalan Institute of Oncology (ICO), Barcelona, Spain
- Center for Cancer Drug Discovery, The Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
2
|
Zhao H, Ni P, Zhao Q, Liang X, Ai D, Erhardt S, Wang J, Li Y, Wang J. Identifying the serious clinical outcomes of adverse reactions to drugs by a multi-task deep learning framework. Commun Biol 2023; 6:870. [PMID: 37620651 PMCID: PMC10449791 DOI: 10.1038/s42003-023-05243-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Adverse Drug Reactions (ADRs) have a direct impact on human health. As continuous pharmacovigilance and drug monitoring prove to be costly and time-consuming, computational methods have emerged as promising alternatives. However, most existing computational methods primarily focus on predicting whether or not the drug is associated with an adverse reaction and do not consider the core issue of drug benefit-risk assessment-whether the treatment outcome is serious when adverse drug reactions occur. To this end, we categorize serious clinical outcomes caused by adverse reactions to drugs into seven distinct classes and present a deep learning framework, so-called GCAP, for predicting the seriousness of clinical outcomes of adverse reactions to drugs. GCAP has two tasks: one is to predict whether adverse reactions to drugs cause serious clinical outcomes, and the other is to infer the corresponding classes of serious clinical outcomes. Experimental results demonstrate that our method is a powerful and robust framework with high extendibility. GCAP can serve as a useful tool to successfully address the challenge of predicting the seriousness of clinical outcomes stemming from adverse reactions to drugs.
Collapse
Affiliation(s)
- Haochen Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
- Xiangjiang Laboratory, Changsha, 410205, China
| | - Peng Ni
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Qichang Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Xiao Liang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China
| | - Di Ai
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA, 23529-0001, USA
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, 410083, China.
- Xiangjiang Laboratory, Changsha, 410205, China.
| |
Collapse
|
3
|
Tian Z, Peng X, Fang H, Zhang W, Dai Q, Ye Y. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms. Brief Bioinform 2022; 23:6761042. [PMID: 36242566 DOI: 10.1093/bib/bbac434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION Discovering the drug-target interactions (DTIs) is a crucial step in drug development such as the identification of drug side effects and drug repositioning. Since identifying DTIs by web-biological experiments is time-consuming and costly, many computational-based approaches have been proposed and have become an efficient manner to infer the potential interactions. Although extensive effort is invested to solve this task, the prediction accuracy still needs to be improved. More especially, heterogeneous network-based approaches do not fully consider the complex structure and rich semantic information in these heterogeneous networks. Therefore, it is still a challenge to predict DTIs efficiently. RESULTS In this study, we develop a novel method via Multiview heterogeneous information network embedding with Hierarchical Attention mechanisms to discover potential Drug-Target Interactions (MHADTI). Firstly, MHADTI constructs different similarity networks for drugs and targets by utilizing their multisource information. Combined with the known DTI network, three drug-target heterogeneous information networks (HINs) with different views are established. Secondly, MHADTI learns embeddings of drugs and targets from multiview HINs with hierarchical attention mechanisms, which include the node-level, semantic-level and graph-level attentions. Lastly, MHADTI employs the multilayer perceptron to predict DTIs with the learned deep feature representations. The hierarchical attention mechanisms could fully consider the importance of nodes, meta-paths and graphs in learning the feature representations of drugs and targets, which makes their embeddings more comprehensively. Extensive experimental results demonstrate that MHADTI performs better than other SOTA prediction models. Moreover, analysis of prediction results for some interested drugs and targets further indicates that MHADTI has advantages in discovering DTIs. AVAILABILITY AND IMPLEMENTATION https://github.com/pxystudy/MHADTI.
Collapse
Affiliation(s)
- Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Xiangyu Peng
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Haichuan Fang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Wenjie Zhang
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| | - Qiguo Dai
- School of Computer Science and Engineering, Dalian Minzu University, Dalian,116600, China
| | - Yangdong Ye
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
4
|
Gao Z, Ding P, Xu R. KG-Predict: A knowledge graph computational framework for drug repurposing. J Biomed Inform 2022; 132:104133. [PMID: 35840060 PMCID: PMC9595135 DOI: 10.1016/j.jbi.2022.104133] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/18/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
Abstract
The emergence of large-scale phenotypic, genetic, and other multi-model biochemical data has offered unprecedented opportunities for drug discovery including drug repurposing. Various knowledge graph-based methods have been developed to integrate and analyze complex and heterogeneous data sources to find new therapeutic applications for existing drugs. However, existing methods have limitations in modeling and capturing context-sensitive inter-relationships among tens of thousands of biomedical entities. In this paper, we developed KG-Predict: a knowledge graph computational framework for drug repurposing. We first integrated multiple types of entities and relations from various genotypic and phenotypic databases to construct a knowledge graph termed GP-KG. GP-KG was composed of 1,246,726 associations between 61,146 entities. KG-Predict then aggregated the heterogeneous topological and semantic information from GP-KG to learn low-dimensional representations of entities and relations, and further utilized these representations to infer new drug-disease interactions. In cross-validation experiments, KG-Predict achieved high performances [AUROC (the area under receiver operating characteristic) = 0.981, AUPR (the area under precision-recall) = 0.409 and MRR (the mean reciprocal rank) = 0.261], outperforming other state-of-art graph embedding methods. We applied KG-Predict in identifying novel repositioned candidate drugs for Alzheimer's disease (AD) and showed that KG-Predict prioritized both FDA-approved and active clinical trial anti-AD drugs among the top (AUROC = 0.868 and AUPR = 0.364).
Collapse
Affiliation(s)
- Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA.
| | - Pingjian Ding
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA.
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA.
| |
Collapse
|
5
|
Xu X, Xuan P, Zhang T, Chen B, Sheng N. Inferring Drug-Target Interactions Based on Random Walk and Convolutional Neural Network. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2294-2304. [PMID: 33729947 DOI: 10.1109/tcbb.2021.3066813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Computational strategies for identifying new drug-target interactions (DTIs) can guide the process of drug discovery, reduce the cost and time of drug development, and thus promote drug development. Most recently proposed methods predict DTIs via integration of heterogeneous data related to drugs and proteins. However, previous methods have failed to deeply integrate these heterogeneous data and learn deep feature representations of multiple original similarities and interactions related to drugs and proteins. We therefore constructed a heterogeneous network by integrating a variety of connection relationships about drugs and proteins, including drugs, proteins, and drug side effects, as well as their similarities, interactions, and associations. A DTI prediction method based on random walk and convolutional neural network was proposed and referred to as DTIPred. DTIPred not only takes advantage of various original features related to drugs and proteins, but also integrates the topological information of heterogeneous networks. The prediction model is composed of two sides and learns the deep feature representation of a drug-protein pair. On the left side, random walk with restart is applied to learn the topological vectors of drug and protein nodes. The topological representation is further learned by the constructed deep learning frame based on convolutional neural network. The right side of the model focuses on integrating multiple original similarities and interactions of drugs and proteins to learn the original representation of the drug-protein pair. The results of cross-validation experiments demonstrate that DTIPred achieves better prediction performance than several state-of-the-art methods. During the validation process, DTIPred can retrieve more actual drug-protein interactions within the top part of the predicted results, which may be more helpful to biologists. In addition, case studies on five drugs further demonstrate the ability of DTIPred to discover potential drug-protein interactions.
Collapse
|
6
|
Ruan D, Ji S, Yan C, Zhu J, Zhao X, Yang Y, Gao Y, Zou C, Dai Q. Exploring complex and heterogeneous correlations on hypergraph for the prediction of drug-target interactions. PATTERNS 2021; 2:100390. [PMID: 34950907 PMCID: PMC8672193 DOI: 10.1016/j.patter.2021.100390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
The continuous emergence of drug-target interaction data provides an opportunity to construct a biological network for systematically discovering unknown interactions. However, this is challenging due to complex and heterogeneous correlations between drug and target. Here, we describe a heterogeneous hypergraph-based framework for drug-target interaction (HHDTI) predictions by modeling biological networks through a hypergraph, where each vertex represents a drug or a target and a hyperedge indicates existing similar interactions or associations between the connected vertices. The hypergraph is then trained to generate suitably structured embeddings for discovering unknown interactions. Comprehensive experiments performed on four public datasets demonstrate that HHDTI achieves significant and consistently improved predictions compared with state-of-the-art methods. Our analysis indicates that this superior performance is due to the ability to integrate heterogeneous high-order information from the hypergraph learning. These results suggest that HHDTI is a scalable and practical tool for uncovering novel drug-target interactions. A hypergraph framework to model high-order correlations in heterogenous biological network An embedding learning method for drugs and targets using hypergraphs High-order correlation between drugs and targets can contribute to DTI predictions
The prediction of drug-target interactions (DTIs) plays a crucial role in drug discovery. In this work, we discover that the high-order correlations in heterogeneous biological networks are essential for DTI predictions. The hypergraph structure is ultilized to model the high-order correlations in the biological networks, then the embeddings are generated for the drugs and targets, respectively. Finally, the interaction between them can be predicted according to the similarity of the embeddings. Our proposed method has been evaluated on multiple public datasets and the improved performance demonstrates that the high-order correlations among drugs and targets contribute significantly on DTI predictions, and other associations besides DTIs are also useful in this task. Our method can also be used in other scenarios containing complex correlations.
Collapse
Affiliation(s)
- Ding Ruan
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Shuyi Ji
- School of Software, KLISS, BNRist, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Chenggang Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Junjie Zhu
- School of Software, KLISS, BNRist, Tsinghua University, Beijing, China
| | - Xibin Zhao
- School of Software, KLISS, BNRist, Tsinghua University, Beijing, China
| | - Yuedong Yang
- School of Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yue Gao
- School of Software, KLISS, BNRist, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- Corresponding author
| | - Changqing Zou
- Huawei Vancouver Research Center, Huawei Canada Technologies, Vancouver, Canada
- Corresponding author
| | - Qionghai Dai
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
- Department of Automation, Tsinghua University, Beijing, China
- Corresponding author
| |
Collapse
|
7
|
Wu X, Zeng W, Lin F, Zhou X. NeuRank: learning to rank with neural networks for drug-target interaction prediction. BMC Bioinformatics 2021; 22:567. [PMID: 34836495 PMCID: PMC8620576 DOI: 10.1186/s12859-021-04476-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Experimental verification of a drug discovery process is expensive and time-consuming. Therefore, recently, the demand to more efficiently and effectively identify drug-target interactions (DTIs) has intensified. RESULTS We treat the prediction of DTIs as a ranking problem and propose a neural network architecture, NeuRank, to address it. Also, we assume that similar drug compounds are likely to interact with similar target proteins. Thus, in our model, we add drug and target similarities, which are very effective at improving the prediction of DTIs. Then, we develop NeuRank from a point-wise to a pair-wise, and further to list-wise model. CONCLUSION Finally, results from extensive experiments on five public data sets (DrugBank, Enzymes, Ion Channels, G-Protein-Coupled Receptors, and Nuclear Receptors) show that, in identifying DTIs, our models achieve better performance than other state-of-the-art methods.
Collapse
Affiliation(s)
- Xiujin Wu
- School of Informatics, Xiamen University, Xiamen, China
| | - Wenhua Zeng
- School of Informatics, Xiamen University, Xiamen, China
| | - Fan Lin
- School of Informatics, Xiamen University, Xiamen, China
| | - Xiuze Zhou
- Shuye Technology Co., Ltd., Hangzhou, China
| |
Collapse
|
8
|
Wang Q, Davis PB, Qi X, Chen SG, Gurney ME, Perry G, Doraiswamy PM, Xu R. Gut-microbiota-microglia-brain interactions in Alzheimer's disease: knowledge-based, multi-dimensional characterization. Alzheimers Res Ther 2021; 13:177. [PMID: 34670619 PMCID: PMC8529734 DOI: 10.1186/s13195-021-00917-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/10/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Interactions between the gut microbiota, microglia, and aging may modulate Alzheimer's disease (AD) pathogenesis but the precise nature of such interactions is not known. METHODS We developed an integrated multi-dimensional, knowledge-driven, systems approach to identify interactions among microbial metabolites, microglia, and AD. Publicly available datasets were repurposed to create a multi-dimensional knowledge-driven pipeline consisting of an integrated network of microbial metabolite-gene-pathway-phenotype (MGPPN) consisting of 34,509 nodes (216 microbial metabolites, 22,982 genes, 1329 pathways, 9982 mouse phenotypes) and 1,032,942 edges. RESULTS We evaluated the network-based ranking algorithm by showing that abnormal microglia function and physiology are significantly associated with AD pathology at both genetic and phenotypic levels: AD risk genes were ranked at the top 6.4% among 22,982 genes, P < 0.001. AD phenotypes were ranked at the top 11.5% among 9982 phenotypes, P < 0.001. A total of 8094 microglia-microbial metabolite-gene-pathway-phenotype-AD interactions were identified for top-ranked AD-associated microbial metabolites. Short-chain fatty acids (SCFAs) were ranked at the top among prioritized AD-associated microbial metabolites. Through data-driven analyses, we provided evidence that SCFAs are involved in microglia-mediated gut-microbiota-brain interactions in AD at both genetic, functional, and phenotypic levels. CONCLUSION Our analysis produces a novel framework to offer insights into the mechanistic links between gut microbial metabolites, microglia, and AD, with the overall goal to facilitate disease mechanism understanding, therapeutic target identification, and designing confirmatory experimental studies.
Collapse
Affiliation(s)
- QuanQiu Wang
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH, 44106, USA
| | - Pamela B Davis
- Center for Community Health Integration, Division of General Medical Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Shu G Chen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - George Perry
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, USA
| | - P Murali Doraiswamy
- Duke University School of Medicine and the Duke Institute for Brain Sciences, Durham, NC, 27710, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Wang XR, Cao TT, Jia CM, Tian XM, Wang Y. Quantitative prediction model for affinity of drug-target interactions based on molecular vibrations and overall system of ligand-receptor. BMC Bioinformatics 2021; 22:497. [PMID: 34649499 PMCID: PMC8515642 DOI: 10.1186/s12859-021-04389-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022] Open
Abstract
Background The study of drug–target interactions (DTIs) affinity plays an important role in safety assessment and pharmacology. Currently, quantitative structure–activity relationship (QSAR) and molecular docking (MD) are most common methods in research of DTIs affinity. However, they often built for a specific target or several targets, and most QSAR and MD methods were based either on structure of drug molecules or on structure of receptors with low accuracy and small scope of application. How to construct quantitative prediction models with high accuracy and wide applicability remains a challenge. To this end, this paper screened molecular descriptors based on molecular vibrations and took molecule-target as a whole system to construct prediction models with high accuracy-wide applicability based on dissociation constant (Kd) and concentration for 50% of maximal effect (EC50), and to provide reference for quantifying affinity of DTIs. Results After comprehensive comparison, the results showed that RF models are optimal models to analyze and predict DTIs affinity with coefficients of determination (R2) are all greater than 0.94. Compared to the quantitative models reported in literatures, the RF models developed in this paper have higher accuracy and wide applicability. In addition, E-state molecular descriptors associated with molecular vibrations and normalized Moreau-Broto autocorrelation (G3), Moran autocorrelation (G4), transition-distribution (G7) protein descriptors are of higher importance in the quantification of DTIs. Conclusion Through screening molecular descriptors based on molecular vibrations and taking molecule-target as whole system, we obtained optimal models based on RF with more accurate-widely applicable, which indicated that selection of molecular descriptors associated with molecular vibrations and the use of molecular-target as whole system are reliable methods for improving performance of models. It can provide reference for quantifying affinity of DTIs. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04389-w.
Collapse
Affiliation(s)
- Xian-Rui Wang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Ting-Ting Cao
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Cong Min Jia
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xue-Mei Tian
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yun Wang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
10
|
Zhou M, Wang Q, Zheng C, John Rush A, Volkow ND, Xu R. Drug repurposing for opioid use disorders: integration of computational prediction, clinical corroboration, and mechanism of action analyses. Mol Psychiatry 2021; 26:5286-5296. [PMID: 33432189 PMCID: PMC7797705 DOI: 10.1038/s41380-020-01011-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Morbidity and mortality from opioid use disorders (OUD) and other substance use disorders (SUD) is a major public health crisis, yet there are few medications to treat them. There is an urgency to accelerate SUD medication development. We present an integrated drug repurposing strategy that combines computational prediction, clinical corroboration using electronic health records (EHRs) of over 72.9 million patients and mechanisms of action analysis. Among top-ranked repurposed candidate drugs, tramadol, olanzapine, mirtazapine, bupropion, and atomoxetine were associated with increased odds of OUD remission (adjusted odds ratio: 1.51 [1.38-1.66], 1.90 [1.66-2.18], 1.38 [1.31-1.46], 1.37 [1.29-1.46], 1.48 [1.25-1.76], p value < 0.001, respectively). Genetic and functional analyses showed these five candidate drugs directly target multiple OUD-associated genes including BDNF, CYP2D6, OPRD1, OPRK1, OPRM1, HTR1B, POMC, SLC6A4 and OUD-associated pathways, including opioid signaling, G-protein activation, serotonin receptors, and GPCR signaling. In summary, we developed an integrated drug repurposing approach and identified five repurposed candidate drugs that might be of value for treating OUD patients, including those suffering from comorbid conditions.
Collapse
Affiliation(s)
- Mengshi Zhou
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, Cleveland, OH, USA
- Department of Mathematics & Statistics, Saint Cloud State University, Saint Cloud, MN, USA
| | - QuanQiu Wang
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, Cleveland, OH, USA
| | - Chunlei Zheng
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, Cleveland, OH, USA
| | - A John Rush
- Duke University School of Medicine, Durham, NC, USA
- Duke-National University of Singapore, Singapore, Singapore
- Texas-Tech Health Sciences Center, Permian Basin, Odessa, TX, USA
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Lopez C, Holgado JL, Cortes R, Sauri I, Fernandez A, Calderon JM, Nuñez J, Redon J. Supervised Analysis for Phenotype Identification: The Case of Heart Failure Ejection Fraction Class. Bioengineering (Basel) 2021; 8:bioengineering8060085. [PMID: 34205745 PMCID: PMC8233943 DOI: 10.3390/bioengineering8060085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Artificial Intelligence is creating a paradigm shift in health care, with phenotyping patients through clustering techniques being one of the areas of interest. OBJECTIVE To develop a predictive model to classify heart failure (HF) patients according to their left ventricular ejection fraction (LVEF), by using available data from Electronic Health Records (EHR). SUBJECTS AND METHODS 2854 subjects over 25 years old with a diagnosis of HF and LVEF, measured by echocardiography, were selected to develop an algorithm to predict patients with reduced EF using supervised analysis. The performance of the developed algorithm was tested in heart failure patients from Primary Care. To select the most influentual variables, the LASSO algorithm setting was used, and to tackle the issue of one class exceeding the other one by a large amount, we used the Synthetic Minority Oversampling Technique (SMOTE). Finally, Random Forest (RF) and XGBoost models were constructed. RESULTS The full XGBoost model obtained the maximum accuracy, a high negative predictive value, and the highest positive predictive value. Gender, age, unstable angina, atrial fibrillation and acute myocardial infarct are the variables that most influence EF value. Applied in the EHR dataset, with a total of 25,594 patients with an ICD-code of HF and no regular follow-up in cardiology clinics, 6170 (21.1%) were identified as pertaining to the reduced EF group. CONCLUSION The obtained algorithm was able to identify a number of HF patients with reduced ejection fraction, who could benefit from a protocol with a strong possibility of success. Furthermore, the methodology can be used for studies using data extracted from the Electronic Health Records.
Collapse
Affiliation(s)
- Cristina Lopez
- Cardiovascular and Renal Research Group, INCLIVA Research Institute, University of Valencia, 46010 Valencia, Spain; (C.L.); (J.L.H.); (R.C.); (I.S.); (A.F.); (J.M.C.)
| | - Jose Luis Holgado
- Cardiovascular and Renal Research Group, INCLIVA Research Institute, University of Valencia, 46010 Valencia, Spain; (C.L.); (J.L.H.); (R.C.); (I.S.); (A.F.); (J.M.C.)
| | - Raquel Cortes
- Cardiovascular and Renal Research Group, INCLIVA Research Institute, University of Valencia, 46010 Valencia, Spain; (C.L.); (J.L.H.); (R.C.); (I.S.); (A.F.); (J.M.C.)
| | - Inma Sauri
- Cardiovascular and Renal Research Group, INCLIVA Research Institute, University of Valencia, 46010 Valencia, Spain; (C.L.); (J.L.H.); (R.C.); (I.S.); (A.F.); (J.M.C.)
| | - Antonio Fernandez
- Cardiovascular and Renal Research Group, INCLIVA Research Institute, University of Valencia, 46010 Valencia, Spain; (C.L.); (J.L.H.); (R.C.); (I.S.); (A.F.); (J.M.C.)
| | - Jose Miguel Calderon
- Cardiovascular and Renal Research Group, INCLIVA Research Institute, University of Valencia, 46010 Valencia, Spain; (C.L.); (J.L.H.); (R.C.); (I.S.); (A.F.); (J.M.C.)
| | - Julio Nuñez
- Cardiology Hospital Clínico of Valencia, 46010 Valencia, Spain;
| | - Josep Redon
- Cardiovascular and Renal Research Group, INCLIVA Research Institute, University of Valencia, 46010 Valencia, Spain; (C.L.); (J.L.H.); (R.C.); (I.S.); (A.F.); (J.M.C.)
- Internal Medicine Hospital Clínico of Valencia, 46010 Valencia, Spain
- CIBERObn, Carlos III Health Institute, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
12
|
Zhou M, Zheng C, Xu R. Combining phenome-driven drug-target interaction prediction with patients' electronic health records-based clinical corroboration toward drug discovery. Bioinformatics 2021; 36:i436-i444. [PMID: 32657406 PMCID: PMC7355254 DOI: 10.1093/bioinformatics/btaa451] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Motivation Predicting drug–target interactions (DTIs) using human phenotypic data have the potential in eliminating the translational gap between animal experiments and clinical outcomes in humans. One challenge in human phenome-driven DTI predictions is integrating and modeling diverse drug and disease phenotypic relationships. Leveraging large amounts of clinical observed phenotypes of drugs and diseases and electronic health records (EHRs) of 72 million patients, we developed a novel integrated computational drug discovery approach by seamlessly combining DTI prediction and clinical corroboration. Results We developed a network-based DTI prediction system (TargetPredict) by modeling 855 904 phenotypic and genetic relationships among 1430 drugs, 4251 side effects, 1059 diseases and 17 860 genes. We systematically evaluated TargetPredict in de novo cross-validation and compared it to a state-of-the-art phenome-driven DTI prediction approach. We applied TargetPredict in identifying novel repositioned candidate drugs for Alzheimer’s disease (AD), a disease affecting over 5.8 million people in the United States. We evaluated the clinical efficiency of top repositioned drug candidates using EHRs of over 72 million patients. The area under the receiver operating characteristic (ROC) curve was 0.97 in the de novo cross-validation when evaluated using 910 drugs. TargetPredict outperformed a state-of-the-art phenome-driven DTI prediction system as measured by precision–recall curves [measured by average precision (MAP): 0.28 versus 0.23, P-value < 0.0001]. The EHR-based case–control studies identified that the prescriptions top-ranked repositioned drugs are significantly associated with lower odds of AD diagnosis. For example, we showed that the prescription of liraglutide, a type 2 diabetes drug, is significantly associated with decreased risk of AD diagnosis [adjusted odds ratios (AORs): 0.76; 95% confidence intervals (CI) (0.70, 0.82), P-value < 0.0001]. In summary, our integrated approach that seamlessly combines computational DTI prediction and large-scale patients’ EHRs-based clinical corroboration has high potential in rapidly identifying novel drug targets and drug candidates for complex diseases. Availability and implementation nlp.case.edu/public/data/TargetPredict.
Collapse
Affiliation(s)
- Mengshi Zhou
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chunlei Zheng
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Gao D, Chen Q, Zeng Y, Jiang M, Zhang Y. Applications of Machine Learning in Drug Target Discovery. Curr Drug Metab 2020; 21:790-803. [PMID: 32723266 DOI: 10.2174/1567201817999200728142023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/12/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
Drug target discovery is a critical step in drug development. It is the basis of modern drug development because it determines the target molecules related to specific diseases in advance. Predicting drug targets by computational methods saves a great deal of financial and material resources compared to in vitro experiments. Therefore, several computational methods for drug target discovery have been designed. Recently, machine learning (ML) methods in biomedicine have developed rapidly. In this paper, we present an overview of drug target discovery methods based on machine learning. Considering that some machine learning methods integrate network analysis to predict drug targets, network-based methods are also introduced in this article. Finally, the challenges and future outlook of drug target discovery are discussed.
Collapse
Affiliation(s)
- Dongrui Gao
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qingyuan Chen
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yuanqi Zeng
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Meng Jiang
- School of Mechanical Automotive Engineering, Nanyang Institute of Technology, Nanyang 473000, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| |
Collapse
|
14
|
Shen C, Luo J, Ouyang W, Ding P, Wu H. Identification of Small Molecule–miRNA Associations with Graph Regularization Techniques in Heterogeneous Networks. J Chem Inf Model 2020; 60:6709-6721. [DOI: 10.1021/acs.jcim.0c00975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cong Shen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Wenjue Ouyang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang 421001, China
| | - Hao Wu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
| |
Collapse
|
15
|
Wang Q, Xu R. CoMNRank: An integrated approach to extract and prioritize human microbial metabolites from MEDLINE records. J Biomed Inform 2020; 109:103524. [PMID: 32791237 DOI: 10.1016/j.jbi.2020.103524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
MOTIVATION Trillions of bacteria in human body (human microbiota) affect human health and diseases by controlling host functions through small molecule metabolites.An accurate and comprehensive catalog of the metabolic output from human microbiota is critical for our deep understanding of how microbial metabolism contributes to human health.The large number of published biomedical research articles is a rich resource of microbiome studies.However, automatically extracting microbial metabolites from free-text documents and differentiating them from other human metabolites is a challenging task.Here we developed an integrated approach called Co-occurrence Metabolite Network Ranking (CoMNRank) by combining named entity extraction, network construction and topic sensitive network-based prioritization to extract and prioritize microbial metabolites from biomedical articles. METHODS The text data included 28,851,232 MEDLINE records.CoMNRank consists of three steps: (1) extraction of human metabolites from MEDLINE records; (2) construction of a weighted co-occurrence metabolite network (CoMN); (3) prioritization and differentiation of microbial metabolites from other human metabolites. RESULTS For the first step of CoMNRank, we extracted 11,846 human metabolites from MEDLINE articles, with a baseline performance of precision of 0.014, recall of 0.959 and F1 of 0.028.We then constructed a weighted CoMN of 6,996 nodes and 986,186 edges.CoMNRank effectively prioritized microbial metabolites: the precision of top ranked metabolites is 0.45, a 31-fold enrichment as compared to the overall precision of 0.014.Manual curation of top 100 metabolites showed a true precision of 0.67, among which 48% true positives are not captured by existing databases. CONCLUSION Our study sets the foundation for future tasks of microbial entity and relationship extractions as well as data-driven studies of how microbial metabolism contributes to human health and diseases.
Collapse
Affiliation(s)
- QuanQiu Wang
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|