1
|
Dasgupta P, Vinil K, Kanaujia SP. Evolutionary trends indicate a coherent organization of sap operons. Res Microbiol 2024; 175:104228. [PMID: 38972435 DOI: 10.1016/j.resmic.2024.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Human hosts possess a complex network of immune responses against microbial pathogens. The production of antimicrobial peptides (AMPs), which target the pathogen cell membranes and inhibit them from inhabiting the hosts, is one such mechanism. However, pathogens have evolved systems that encounter these host-produced AMPs. The Sap (sensitivity to antimicrobial peptides) transporter uptakes AMPs inside the microbial cell and proteolytically degrades them. The Sap transporters comprise five subunits encoded by genes in an operon. Despite its ubiquitous nature, its subunits are not found to be in tandem with many organisms. In this study, a total of 421 Sap transporters were analyzed for their operonic arrangement. Out of 421, a total of 352 operons were found to be in consensus arrangement, while the remaining 69 show a varying arrangement of genes. The analysis of the intergenic distance between the subunits of the sap operon suggests a signature pattern with sapAB (-4), sapBC (-14), sapCD (-1), and sapDF (-4 to 1). An evolutionary analysis of these operons favors the consensus arrangement of the Sap transporter systems, substantiating its prevalence in most of the Gram-negative pathogens. Overall, this study provides insight into bacterial evolution, favoring the maintenance of the genetic organization of essential pathogenicity factors.
Collapse
Affiliation(s)
- Pratik Dasgupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Kavya Vinil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
2
|
Ge J, Li M, Yao J, Guo J, Li X, Li G, Han X, Li Z, Liu M, Zhao J. The potential of EGCG in modulating the oral-gut axis microbiota for treating inflammatory bowel disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155643. [PMID: 38820660 DOI: 10.1016/j.phymed.2024.155643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 06/02/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurrent chronic intestinal disorder that includes ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis involves intricate interactions between pathogenic microorganisms, native intestinal microorganisms, and the intestinal immune system via the oral-gut axis. The strong correlation observed between oral diseases and IBD indicates the potential involvement of oral pathogenic microorganisms in IBD development. Consequently, therapeutic strategies targeting the proliferation, translocation, intestinal colonization and exacerbated intestinal inflammation of oral microorganisms within the oral-gut axis may partially alleviate IBD. Tea consumption has been identified as a contributing factor in reducing IBD, with epigallocatechin gallate (EGCG) being the primary bioactive compound used for IBD treatment. However, the precise mechanism by which EGCG mediates microbial crosstalk within the oral-gut axis remains unclear. In this review, we provide a comprehensive overview of the diverse oral microorganisms implicated in the pathogenesis of IBD and elucidate their colonization pathways and mechanisms. Subsequently, we investigated the antibacterial properties of EGCG and its potential to attenuate microbial translocation and colonization in the gut, emphasizing its role in attenuating exacerbations of IBD. We also elucidated the toxic and side effects of EGCG. Finally, we discuss current strategies for enhancing EGCG bioavailability and propose novel multi-targeted nano-delivery systems for the more efficacious management of IBD. This review elucidates the role and feasibility of EGCG-mediated modulation of the oral-gut axis microbiota in the management of IBD, contributing to a better understanding of the mechanism of action of EGCG in the treatment of IBD and the development of prospective treatment strategies.
Collapse
Affiliation(s)
- Jiaming Ge
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengyuan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingwen Yao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinling Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiankuan Li
- Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiangli Han
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin 300450, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ming Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China.
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent TCM Diagnosis and Treatment Technology and Equipment, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Shaimerdenova U, Kaiyrmanova G, Lewandowska W, Bartoszewicz M, Swiecicka I, Yernazarova A. Biosurfactant and biopolymer producing microorganisms from West Kazakhstan oilfield. Sci Rep 2024; 14:2294. [PMID: 38280982 PMCID: PMC10821952 DOI: 10.1038/s41598-024-52906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
Microbiological enhanced oil recovery (MEOR) uses indigenous or exogenous microorganisms and nutrients to enhance oil production through synthesis of metabolites reducing oil viscosity and surface tension. In order to find bacteria suitable for MEOR, we studied 26 isolates from wells in the Akingen oilfield in West Kazakhstan. Six of them were selected for further analysis based on their ability to reduce surface tension to less than 40 mN/m, with the A9 isolate exhibiting tension reduction values of 32.76 ± 0.3 mN/m. Based on the morphological features, biochemical activities, and the 16S rRNA gene, the isolates were classified to the Bacillus subtilis group. In the phylogenetic analysis the isolates grouped into two main clusters. Genes encoding the surfactin synthetase subunits were found in A2, A8, A9, A12, PW2, only the PW2 strain had lchAA encoding lichenysin, while sacB encoding levan was noted in A2, A8, A9, and A12. The expression of srfAB, srfAC, and sacB tested with qPCR varied among strains. Nevertheless, whereas temperature moderately affects the expression level, with the highest level recorded at 40 °C, salinity significantly impacts the expression of the genes encoding biosurfactants. B. subtilis strains isolated in the study, especially A9, are promising for microbial-enhanced oil recovery.
Collapse
Affiliation(s)
- Ulzhan Shaimerdenova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, 050038, Almaty, Kazakhstan
| | - Gulzhan Kaiyrmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, 050038, Almaty, Kazakhstan
| | - Wioleta Lewandowska
- Doctoral School of Exact and Natural Sciences, University of Białystok, 1K Konstanty Ciołkowski Str, 15-245, Białystok, Poland
| | - Marek Bartoszewicz
- Faculty of Biology, University of Bialystok, 1J Konstanty Ciołkowski Str, 15-245, Bialystok, Poland
| | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, 1J Konstanty Ciołkowski Str, 15-245, Bialystok, Poland
- Laboratory of Applied Microbiology, Faculty of Biology, University of Bialystok, 1J Konstanty Ciołkowski Str, 15-245, Bialystok, Poland
| | - Aliya Yernazarova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, 050038, Almaty, Kazakhstan.
| |
Collapse
|
4
|
Tirumalai MR, Sivaraman RV, Kutty LA, Song EL, Fox GE. Ribosomal Protein Cluster Organization in Asgard Archaea. ARCHAEA (VANCOUVER, B.C.) 2023; 2023:5512414. [PMID: 38314098 PMCID: PMC10833476 DOI: 10.1155/2023/5512414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 02/06/2024]
Abstract
It has been proposed that the superphylum of Asgard Archaea may represent a historical link between the Archaea and Eukarya. Following the discovery of the Archaea, it was soon appreciated that archaeal ribosomes were more similar to those of Eukarya rather than Bacteria. Coupled with other eukaryotic-like features, it has been suggested that the Asgard Archaea may be directly linked to eukaryotes. However, the genomes of Bacteria and non-Asgard Archaea generally organize ribosome-related genes into clusters that likely function as operons. In contrast, eukaryotes typically do not employ an operon strategy. To gain further insight into conservation of the r-protein genes, the genome order of conserved ribosomal protein (r-protein) coding genes was identified in 17 Asgard genomes (thirteen complete genomes and four genomes with less than 20 contigs) and compared with those found previously in non-Asgard archaeal and bacterial genomes. A universal core of two clusters of 14 and 4 cooccurring r-proteins, respectively, was identified in both the Asgard and non-Asgard Archaea. The equivalent genes in the E. coli version of the cluster are found in the S10 and spc operons. The large cluster of 14 r-protein genes (uS19-uL22-uS3-uL29-uS17 from the S10 operon and uL14-uL24-uL5-uS14-uS8-uL6-uL18-uS5-uL30-uL15 from the spc operon) occurs as a complete set in the genomes of thirteen Asgard genomes (five Lokiarchaeotes, three Heimdallarchaeotes, one Odinarchaeote, and four Thorarchaeotes). Four less conserved clusters with partial bacterial equivalents were found in the Asgard. These were the L30e (str operon in Bacteria) cluster, the L18e (alpha operon in Bacteria) cluster, the S24e-S27ae-rpoE1 cluster, and the L31e, L12..L1 cluster. Finally, a new cluster referred to as L7ae was identified. In many cases, r-protein gene clusters/operons are less conserved in their organization in the Asgard group than in other Archaea. If this is generally true for nonribosomal gene clusters, the results may have implications for the history of genome organization. In particular, there may have been an early transition to or from the operon approach to genome organization. Other nonribosomal cellular features may support different relationships. For this reason, it may be important to consider ribosome features separately.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| | | | | | | | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5001, USA
| |
Collapse
|
5
|
Del Duca S, Semenzato G, Esposito A, Liò P, Fani R. The Operon as a Conundrum of Gene Dynamics and Biochemical Constraints: What We Have Learned from Histidine Biosynthesis. Genes (Basel) 2023; 14:genes14040949. [PMID: 37107707 PMCID: PMC10138114 DOI: 10.3390/genes14040949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Operons represent one of the leading strategies of gene organization in prokaryotes, having a crucial influence on the regulation of gene expression and on bacterial chromosome organization. However, there is no consensus yet on why, how, and when operons are formed and conserved, and many different theories have been proposed. Histidine biosynthesis is a highly studied metabolic pathway, and many of the models suggested to explain operons origin and evolution can be applied to the histidine pathway, making this route an attractive model for the study of operon evolution. Indeed, the organization of his genes in operons can be due to a progressive clustering of biosynthetic genes during evolution, coupled with a horizontal transfer of these gene clusters. The necessity of physical interactions among the His enzymes could also have had a role in favoring gene closeness, of particular importance in extreme environmental conditions. In addition, the presence in this pathway of paralogous genes, heterodimeric enzymes and complex regulatory networks also support other operon evolution hypotheses. It is possible that histidine biosynthesis, and in general all bacterial operons, may result from a mixture of several models, being shaped by different forces and mechanisms during evolution.
Collapse
Affiliation(s)
- Sara Del Duca
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via di Lanciola 12/A, Cascine del Riccio, 50125 Firenze, Italy
| | - Giulia Semenzato
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Antonia Esposito
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via di Lanciola 12/A, Cascine del Riccio, 50125 Firenze, Italy
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Xu Y, Wu JY, Liu QJ, Xue JY. Genome-Wide Identification and Evolutionary Analyses of SrfA Operon Genes in Bacillus. Genes (Basel) 2023; 14:422. [PMID: 36833349 PMCID: PMC9956979 DOI: 10.3390/genes14020422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
A variety of secondary metabolites contributing to plant growth are synthesized by bacterial nonribosomal peptide synthases (NRPSs). Among them, the NRPS biosynthesis of surfactin is regulated by the SrfA operon. To explore the molecular mechanism for the diversity of surfactins produced by bacteria within the genus Bacillus, we performed a genome-wide identification study focused on three critical genes of the SrfA operon-SrfAA, SrfAB and SrfAC-from 999 Bacillus genomes (belonging to 47 species). Gene family clustering indicated the three genes can be divided into 66 orthologous groups (gene families), of which a majority comprised members of multiple genes (e.g., OG0000009 had members of all three SrfAA, SrfAB and SrfAC genes), indicating high sequence similarity among the three genes. Phylogenetic analyses also found that none of the three genes formed monophyletic groups, but were usually arranged in a mixed manner, suggesting the close evolutionary relationship among the three genes. Considering the module structure of the three genes, we propose that self-duplication, especially tandem duplications, might have contributed to the initial establishment of the entire SrfA operon, and further gene fusion and recombination as well as accumulated mutations might have continuously shaped the different functional roles of SrfAA, SrfAB and SrfAC. Overall, this study provides novel insight into metabolic gene clusters and operon evolution in bacteria.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Jia-Yi Wu
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing-Jie Liu
- State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Nguyen HN, Markin A, Friedberg I, Eulenstein O. Finding orthologous gene blocks in bacteria: the computational hardness of the problem and novel methods to address it. Bioinformatics 2021; 36:i668-i674. [PMID: 33381825 PMCID: PMC7773486 DOI: 10.1093/bioinformatics/btaa794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
Motivation The evolution of complexity is one of the most fascinating and challenging problems in modern biology, and tracing the evolution of complex traits is an open problem. In bacteria, operons and gene blocks provide a model of tractable evolutionary complexity at the genomic level. Gene blocks are structures of co-located genes with related functions, and operons are gene blocks whose genes are co-transcribed on a single mRNA molecule. The genes in operons and gene blocks typically work together in the same system or molecular complex. Previously, we proposed a method that explains the evolution of orthologous gene blocks (orthoblocks) as a combination of a small set of events that take place in vertical evolution from common ancestors. A heuristic method was proposed to solve this problem. However, no study was done to identify the complexity of the problem. Results Here, we establish that finding the homologous gene block problem is NP-hard and APX-hard. We have developed a greedy algorithm that runs in polynomial time and guarantees an O(lnn) approximation. In addition, we formalize our problem as an integer linear program problem and solve it using the PuLP package and the standard CPLEX algorithm. Our exploration of several candidate operons reveals that our new method provides more optimal results than the results from the heuristic approach, and is significantly faster. Availability and implementation The software and data accompanying this paper are available under the GPLv3 and CC0 license respectively on: https://github.com/nguyenngochuy91/Relevant-Operon.
Collapse
Affiliation(s)
- Huy N Nguyen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA.,Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Alexey Markin
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Oliver Eulenstein
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA.,Interdepartmental Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
8
|
Abstract
Gibberellin (GA) phytohormones are ubiquitous regulators of growth and developmental processes in vascular plants. The convergent evolution of GA production by plant-associated bacteria, including both symbiotic nitrogen-fixing rhizobia and phytopathogens, suggests that manipulation of GA signaling is a powerful mechanism for microbes to gain an advantage in these interactions. Although orthologous operons encode GA biosynthetic enzymes in both rhizobia and phytopathogens, notable genetic heterogeneity and scattered operon distribution in these lineages, including loss of the gene for the final biosynthetic step in most rhizobia, suggest varied functions for GA in these distinct plant-microbe interactions. Therefore, deciphering GA operon evolutionary history should provide crucial evidence toward understanding the distinct biological roles for bacterial GA production. To further establish the genetic composition of the GA operon, two operon-associated genes that exhibit limited distribution among rhizobia were biochemically characterized, verifying their roles in GA biosynthesis. This enabled employment of a maximum parsimony ancestral gene block reconstruction algorithm to characterize loss, gain, and horizontal gene transfer (HGT) of GA operon genes within alphaproteobacterial rhizobia, which exhibit the most heterogeneity among the bacteria containing this biosynthetic gene cluster. Collectively, this evolutionary analysis reveals a complex history for HGT of the entire GA operon, as well as the individual genes therein, and ultimately provides a basis for linking genetic content to bacterial GA functions in diverse plant-microbe interactions, including insight into the subtleties of the coevolving molecular interactions between rhizobia and their leguminous host plants.IMPORTANCE While production of phytohormones by plant-associated microbes has long been appreciated, identification of the gibberellin (GA) biosynthetic operon in plant-associated bacteria has revealed surprising genetic heterogeneity. Notably, this heterogeneity seems to be associated with the lifestyle of the microbe; while the GA operon in phytopathogenic bacteria does not seem to vary to any significant degree, thus enabling production of bioactive GA, symbiotic rhizobia exhibit a number of GA operon gene loss and gain events. This suggests that a unique set of selective pressures are exerted on this biosynthetic gene cluster in rhizobia. Through analysis of the evolutionary history of the GA operon in alphaproteobacterial rhizobia, which display substantial diversity in their GA operon structure and gene content, we provide insight into the effect of lifestyle and host interactions on the production of this phytohormone by plant-associated bacteria.
Collapse
|