1
|
Muñoz-Villagrán C, Acevedo-Arbunic J, Härtig E, Issotta F, Mascayano C, Jahn D, Jahn M, Levicán G. The Thioredoxin Fold Protein (TFP2) from Extreme Acidophilic Leptospirillum sp. CF-1 Is a Chaperedoxin-like Protein That Prevents the Aggregation of Proteins under Oxidative Stress. Int J Mol Sci 2024; 25:6905. [PMID: 39000017 PMCID: PMC11241051 DOI: 10.3390/ijms25136905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Extreme acidophilic bacteria like Leptospirillum sp. require an efficient enzyme system to counteract strong oxygen stress conditions in their natural habitat. The genome of Leptospirillum sp. CF-1 encodes the thioredoxin-fold protein TFP2, which exhibits a high structural similarity to the thioredoxin domain of E. coli CnoX. CnoX from Escherichia coli is a chaperedoxin that protects protein substrates from oxidative stress conditions using its holdase function and a subsequent transfer to foldase chaperones for refolding. Recombinantly produced and purified Leptospirillum sp. TFP2 possesses both thioredoxin and chaperone holdase activities in vitro. It can be reduced by thioredoxin reductase (TrxR). The tfp2 gene co-locates with genes for the chaperone foldase GroES/EL on the chromosome. The "tfp2 cluster" (ctpA-groES-groEL-hyp-tfp2-recN) was found between 1.9 and 8.8-fold transcriptionally up-regulated in response to 1 mM hydrogen peroxide (H2O2). Leptospirillum sp. tfp2 heterologously expressed in E. coli wild type and cnoX mutant strains lead to an increased tolerance of these E. coli strains to H2O2 and significantly reduced intracellular protein aggregates. Finally, a proteomic analysis of protein aggregates produced in E. coli upon exposition to oxidative stress with 4 mM H2O2, showed that Leptospirillum sp. tfp2 expression caused a significant decrease in the aggregation of 124 proteins belonging to fifteen different metabolic categories. These included several known substrates of DnaK and GroEL/ES. These findings demonstrate that Leptospirillum sp. TFP2 is a chaperedoxin-like protein, acting as a key player in the control of cellular proteostasis under highly oxidative conditions that prevail in extreme acidic environments.
Collapse
Affiliation(s)
- Claudia Muñoz-Villagrán
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Javiera Acevedo-Arbunic
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (E.H.)
| | - Francisco Issotta
- Departamento Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Carolina Mascayano
- Laboratorio de Simulación Computacional y Diseño Racional de Fármacos, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Dieter Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (E.H.)
- Braunschweig Integrated Centre of Systems Biology BRICS, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany; (E.H.)
| | - Gloria Levicán
- Laboratorio de Microbiología Básica y Aplicada, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| |
Collapse
|
2
|
Horovitz A, Reingewertz TH, Cuéllar J, Valpuesta JM. Chaperonin Mechanisms: Multiple and (Mis)Understood? Annu Rev Biophys 2022; 51:115-133. [DOI: 10.1146/annurev-biophys-082521-113418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from Escherichia coli and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Jorge Cuéllar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
3
|
Houben B, Rousseau F, Schymkowitz J. Protein structure and aggregation: a marriage of necessity ruled by aggregation gatekeepers. Trends Biochem Sci 2021; 47:194-205. [PMID: 34561149 DOI: 10.1016/j.tibs.2021.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
Protein aggregation propensity is a pervasive and seemingly inescapable property of proteomes. Strikingly, a significant fraction of the proteome is supersaturated, meaning that, for these proteins, their native conformation is less stable than the aggregated state. Maintaining the integrity of a proteome under such conditions is precarious and requires energy-consuming proteostatic regulation. Why then is aggregation propensity maintained at such high levels over long evolutionary timescales? Here, we argue that the conformational stability of the native and aggregated states are correlated thermodynamically and that codon usage strengthens this correlation. As a result, the folding of stable proteins requires kinetic control to avoid aggregation, provided by aggregation gatekeepers. These unique residues are evolutionarily selected to kinetically favor native folding, either on their own or by coopting chaperones.
Collapse
Affiliation(s)
- Bert Houben
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Khodaparast L, Wu G, Khodaparast L, Schmidt BZ, Rousseau F, Schymkowitz J. Bacterial Protein Homeostasis Disruption as a Therapeutic Intervention. Front Mol Biosci 2021; 8:681855. [PMID: 34150852 PMCID: PMC8206779 DOI: 10.3389/fmolb.2021.681855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cells have evolved a complex molecular network, collectively called the protein homeostasis (proteostasis) network, to produce and maintain proteins in the appropriate conformation, concentration and subcellular localization. Loss of proteostasis leads to a reduction in cell viability, which occurs to some degree during healthy ageing, but is also the root cause of a group of diverse human pathologies. The accumulation of proteins in aberrant conformations and their aggregation into specific beta-rich assemblies are particularly detrimental to cell viability and challenging to the protein homeostasis network. This is especially true for bacteria; it can be argued that the need to adapt to their changing environments and their high protein turnover rates render bacteria particularly vulnerable to the disruption of protein homeostasis in general, as well as protein misfolding and aggregation. Targeting bacterial proteostasis could therefore be an attractive strategy for the development of novel antibacterial therapeutics. This review highlights advances with an antibacterial strategy that is based on deliberately inducing aggregation of target proteins in bacterial cells aiming to induce a lethal collapse of protein homeostasis. The approach exploits the intrinsic aggregation propensity of regions residing in the hydrophobic core regions of the polypeptide sequence of proteins, which are genetically conserved because of their essential role in protein folding and stability. Moreover, the molecules were designed to target multiple proteins, to slow down the build-up of resistance. Although more research is required, results thus far allow the hope that this strategy may one day contribute to the arsenal to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Laleh Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Béla Z Schmidt
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| |
Collapse
|
5
|
Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. EMBO J 2020; 39:e102864. [PMID: 32237079 PMCID: PMC7265246 DOI: 10.15252/embj.2019102864] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Many chaperones favour binding to hydrophobic sequences that are flanked by basic residues while disfavouring acidic residues. However, the origin of this bias in protein quality control remains poorly understood. Here, we show that while acidic residues are the most efficient aggregation inhibitors, they are also less compatible with globular protein structure than basic amino acids. As a result, while acidic residues allow for chaperone-independent control of aggregation, their use is structurally limited. Conversely, we find that, while being more compatible with globular structure, basic residues are not sufficient to autonomously suppress protein aggregation. Using Hsp70, we show that chaperones with a bias towards basic residues are structurally adapted to prioritize aggregating sequences whose structural context forced the use of the less effective basic residues. The hypothesis that emerges from our analysis is that the bias of many chaperones for basic residues results from fundamental thermodynamic and kinetic constraints of globular structure. This also suggests the co-evolution of basic residues and chaperones allowed for an expansion of structural variety in the protein universe.
Collapse
Affiliation(s)
- Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Joffré Verniers
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Rob van der Kant
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Matthias De Vleeschouwer
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Nuno Chicória
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Thomas Vanpoucke
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Rodrigo Gallardo
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KULeuven, Leuven, Belgium
| |
Collapse
|
6
|
Ramakrishnan R, Houben B, Kreft Ł, Botzki A, Schymkowitz J, Rousseau F. Protein Homeostasis Database: protein quality control in E.coli. Bioinformatics 2019; 36:948-949. [PMID: 31392322 PMCID: PMC9883681 DOI: 10.1093/bioinformatics/btz628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION In vivo protein folding is governed by molecular chaperones, that escort proteins from their translational birth to their proteolytic degradation. In E.coli the main classes of chaperones that interact with the nascent chain are trigger factor, DnaK/J and GroEL/ES and several authors have performed whole-genome experiments to construct exhaustive client lists for each of these. RESULTS We constructed a database collecting all publicly available data of experimental chaperone-interaction and -dependency data for the E.coli proteome, and enriched it with an extensive set of protein-specific as well as cell context-dependent proteostatic parameters. We made this publicly accessible via a web interface that allows to search for proteins or chaperone client lists, but also to profile user-specified datasets against all the collected parameters. We hope this will accelerate research in this field by quickly identifying differentiating features in datasets. AVAILABILITY AND IMPLEMENTATION The Protein Homeostasis Database is freely available without any registration requirement at http://PHDB.switchlab.org/.
Collapse
Affiliation(s)
| | | | - Łukasz Kreft
- VIB Bioinformatics Core, VIB, Gent 9052, Belgium
| | | | | | | |
Collapse
|