1
|
Alidoost M, Wilson JL. Preclinical side effect prediction through pathway engineering of protein interaction network models. CPT Pharmacometrics Syst Pharmacol 2024; 13:1180-1200. [PMID: 38736280 PMCID: PMC11247120 DOI: 10.1002/psp4.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Modeling tools aim to predict potential drug side effects, although they suffer from imperfect performance. Specifically, protein-protein interaction models predict drug effects from proteins surrounding drug targets, but they tend to overpredict drug phenotypes and require well-defined pathway phenotypes. In this study, we used PathFX, a protein-protein interaction tool, to predict side effects for active ingredient-side effect pairs extracted from drug labels. We observed limited performance and defined new pathway phenotypes using pathway engineering strategies. We defined new pathway phenotypes using a network-based and gene expression-based approach. Overall, we discovered a trade-off between sensitivity and specificity values and demonstrated a way to limit overprediction for side effects with sufficient true positive examples. We compared our predictions to animal models and demonstrated similar performance metrics, suggesting that protein-protein interaction models do not need perfect evaluation metrics to be useful. Pathway engineering, through the inclusion of true positive examples and omics measurements, emerges as a promising approach to enhance the utility of protein interaction network models for drug effect prediction.
Collapse
Affiliation(s)
- Mohammadali Alidoost
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Jennifer L Wilson
- Department of Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
2
|
Bowen ER, DiGiacomo P, Fraser HP, Guttenplan K, Smith BAH, Heberling ML, Vidano L, Shah N, Shamloo M, Wilson JL, Grimes KV. Beta-2 adrenergic receptor agonism alters astrocyte phagocytic activity and has potential applications to psychiatric disease. DISCOVER MENTAL HEALTH 2023; 3:27. [PMID: 38036718 PMCID: PMC10689618 DOI: 10.1007/s44192-023-00050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Schizophrenia is a debilitating condition necessitating more efficacious therapies. Previous studies suggested that schizophrenia development is associated with aberrant synaptic pruning by glial cells. We pursued an interdisciplinary approach to understand whether therapeutic reduction in glial cell-specifically astrocytic-phagocytosis might benefit neuropsychiatric patients. We discovered that beta-2 adrenergic receptor (ADRB2) agonists reduced phagocytosis using a high-throughput, phenotypic screen of over 3200 compounds in primary human fetal astrocytes. We used protein interaction pathways analysis to associate ADRB2, to schizophrenia and endocytosis. We demonstrated that patients with a pediatric exposure to salmeterol, an ADRB2 agonist, had reduced in-patient psychiatry visits using a novel observational study in the electronic health record. We used a mouse model of inflammatory neurodegenerative disease and measured changes in proteins associated with endocytosis and vesicle-mediated transport after ADRB2 agonism. These results provide substantial rationale for clinical consideration of ADRB2 agonists as possible therapies for patients with schizophrenia.
Collapse
Affiliation(s)
- Ellen R Bowen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Weill Cornell Medicine, New York, NY, USA
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Phillip DiGiacomo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah P Fraser
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin Guttenplan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Benjamin A H Smith
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marlene L Heberling
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Vidano
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nigam Shah
- Center for Biomedical Informatics Research, Stanford School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer L Wilson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
| | - Kevin V Grimes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Wilson JL, Gravina A, Grimes K. From random to predictive: a context-specific interaction framework improves selection of drug protein-protein interactions for unknown drug pathways. Integr Biol (Camb) 2022; 14:13-24. [PMID: 35293584 DOI: 10.1093/intbio/zyac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022]
Abstract
With high drug attrition, protein-protein interaction (PPI) network models are attractive as efficient methods for predicting drug outcomes by analyzing proteins downstream of drug targets. Unfortunately, these methods tend to overpredict associations and they have low precision and prediction performance; performance is often no better than random (AUROC ~0.5). Typically, PPI models identify ranked phenotypes associated with downstream proteins, yet methods differ in prioritization of downstream proteins. Most methods apply global approaches for assessing all phenotypes. We hypothesized that a per-phenotype analysis could improve prediction performance. We compared two global approaches-statistical and distance-based-and our novel per-phenotype approach, 'context-specific interaction' (CSI) analysis, on severe side effect prediction. We used a novel dataset of adverse events (or designated medical events, DMEs) and discovered that CSI had a 50% improvement over global approaches (AUROC 0.77 compared to 0.51), and a 76-95% improvement in average precision (0.499 compared to 0.284, 0.256). Our results provide a quantitative rationale for considering downstream proteins on a per-phenotype basis when using PPI network methods to predict drug phenotypes.
Collapse
Affiliation(s)
- Jennifer L Wilson
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Alessio Gravina
- Department of Computer Science, University of Pisa, Pisa, Italy
| | - Kevin Grimes
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Abstract
Assessing the drug safety at an early stage of a drug discovery program is a critical issue. With the recent advances in molecular biology and genomic, massive amounts of generated and accumulated data by advanced experimental technologies such as RNA sequencing or proteomics start to be at the disposal of the scientific community. Innovative and adequate bioinformatic methods, tools, and protocols are required to analyze properly these diverse and extensive data sources with the aim to identify key features that are related to toxicity observations. Furthermore, the assessment of drug safety can be performed across multiple scales of complexity from molecular, cellular to phenotypic levels; therefore, the application of network science contributes to a better interpretation of the drug's exposure effect on human health. Here, we review databases containing toxicogenomics and chemical-phenotype information, as well as appropriated bioinformatics approaches that are currently used to analyze such data. Extension to others methods such as dose-responses, time-dependent processes, and text mining is also presented giving an overview of suitable tools available for a best practice of drug safety analysis.
Collapse
|
5
|
Wilson JL, Wong M, Stepanov N, Petkovic D, Altman R. PhenClust, a standalone tool for identifying trends within sets of biological phenotypes using semantic similarity and the Unified Medical Language System metathesaurus. JAMIA Open 2021; 4:ooab079. [PMID: 34541463 PMCID: PMC8442701 DOI: 10.1093/jamiaopen/ooab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives We sought to cluster biological phenotypes using semantic similarity and create an easy-to-install, stable, and reproducible tool. Materials and Methods We generated Phenotype Clustering (PhenClust)—a novel application of semantic similarity for interpreting biological phenotype associations—using the Unified Medical Language System (UMLS) metathesaurus, demonstrated the tool’s application, and developed Docker containers with stable installations of two UMLS versions. Results PhenClust identified disease clusters for drug network-associated phenotypes and a meta-analysis of drug target candidates. The Dockerized containers eliminated the requirement that the user install the UMLS metathesaurus. Discussion Clustering phenotypes summarized all phenotypes associated with a drug network and two drug candidates. Docker containers can support dissemination and reproducibility of tools that are otherwise limited due to insufficient software support. Conclusion PhenClust can improve interpretation of high-throughput biological analyses where many phenotypes are associated with a query and the Dockerized PhenClust achieved our objective of decreasing installation complexity.
Collapse
Affiliation(s)
- Jennifer L Wilson
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | - Mike Wong
- CoSE Computing for Life Science, San Francisco State University, San Francisco, California, USA
| | - Nicholas Stepanov
- Department of Computer Science, San Francisco State University, San Francisco, California, USA
| | - Dragutin Petkovic
- CoSE Computing for Life Science, San Francisco State University, San Francisco, California, USA.,Department of Computer Science, San Francisco State University, San Francisco, California, USA
| | - Russ Altman
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|