1
|
Grassmann G, Di Rienzo L, Ruocco G, Miotto M, Milanetti E. Compact Assessment of Molecular Surface Complementarities Enhances Neural Network-Aided Prediction of Key Binding Residues. J Chem Inf Model 2025; 65:2695-2709. [PMID: 39982412 PMCID: PMC11898074 DOI: 10.1021/acs.jcim.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Predicting interactions between proteins is fundamental for understanding the mechanisms underlying cellular processes, since protein-protein complexes are crucial in physiological conditions but also in many diseases, for example by seeding aggregates formation. Despite the many advancements made so far, the performance of docking protocols is deeply dependent on their capability to identify binding regions. From this, the importance of developing low-cost and computationally efficient methods in this field. We present an integrated novel protocol mainly based on compact modeling of protein surface patches via sets of orthogonal polynomials to identify regions of high shape/electrostatic complementarity. By incorporating both hydrophilic and hydrophobic contributions, we define new binding matrices, which serve as effective inputs for training a neural network. In this work, we propose a new Neural Network (NN)-based architecture, Core Interacting Residues Network (CIRNet), which achieves a performance in terms of Area Under the Receiver Operating Characteristic Curve (ROC AUC) of approximately 0.87 in identifying pairs of core interacting residues on a balanced data set. In a blind search for core interacting residues, CIRNet distinguishes them from random decoys with an ROC AUC of 0.72. We test this protocol to enhance docking algorithms by filtering the proposed poses, addressing one of the still open problems in computational biology. Notably, when applied to the top ten models from three widely used docking servers, CIRNet improves docking outcomes, significantly reducing the average RMSD between the selected poses and the native state. Compared to another state-of-the-art tool for rescaling docking poses, CIRNet more efficiently identified the worst poses generated by the three docking servers under consideration and achieved superior rescaling performance in two cases.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, P.Le A. Moro 5, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, Rome 00161, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
2
|
Pržulj N, Malod-Dognin N. Simplicity within biological complexity. BIOINFORMATICS ADVANCES 2025; 5:vbae164. [PMID: 39927291 PMCID: PMC11805345 DOI: 10.1093/bioadv/vbae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 02/11/2025]
Abstract
Motivation Heterogeneous, interconnected, systems-level, molecular (multi-omic) data have become increasingly available and key in precision medicine. We need to utilize them to better stratify patients into risk groups, discover new biomarkers and targets, repurpose known and discover new drugs to personalize medical treatment. Existing methodologies are limited and a paradigm shift is needed to achieve quantitative and qualitative breakthroughs. Results In this perspective paper, we survey the literature and argue for the development of a comprehensive, general framework for embedding of multi-scale molecular network data that would enable their explainable exploitation in precision medicine in linear time. Network embedding methods (also called graph representation learning) map nodes to points in low-dimensional space, so that proximity in the learned space reflects the network's topology-function relationships. They have recently achieved unprecedented performance on hard problems of utilizing few omic data in various biomedical applications. However, research thus far has been limited to special variants of the problems and data, with the performance depending on the underlying topology-function network biology hypotheses, the biomedical applications, and evaluation metrics. The availability of multi-omic data, modern graph embedding paradigms and compute power call for a creation and training of efficient, explainable and controllable models, having no potentially dangerous, unexpected behaviour, that make a qualitative breakthrough. We propose to develop a general, comprehensive embedding framework for multi-omic network data, from models to efficient and scalable software implementation, and to apply it to biomedical informatics, focusing on precision medicine and personalized drug discovery. It will lead to a paradigm shift in the computational and biomedical understanding of data and diseases that will open up ways to solve some of the major bottlenecks in precision medicine and other domains.
Collapse
Affiliation(s)
- Nataša Pržulj
- Computational Biology Department, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, 00000, United Arabic Emirates
- Barcelona Supercomputing Center, Barcelona 08034, Spain
- Department of Computer Science, University College London, London WC1E6BT, United Kingdom
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | | |
Collapse
|
3
|
Shirali A, Stebliankin V, Karki U, Shi J, Chapagain P, Narasimhan G. A comprehensive survey of scoring functions for protein docking models. BMC Bioinformatics 2025; 26:25. [PMID: 39844036 PMCID: PMC11755896 DOI: 10.1186/s12859-024-05991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/18/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND While protein-protein docking is fundamental to our understanding of how proteins interact, scoring protein-protein complex conformations is a critical component of successful docking programs. Without accurate and efficient scoring functions to differentiate between native and non-native binding complexes, the accuracy of current docking tools cannot be guaranteed. Although many innovative scoring functions have been proposed, a good scoring function for docking remains elusive. Deep learning models offer alternatives to using explicit empirical or mathematical functions for scoring protein-protein complexes. RESULTS In this study, we perform a comprehensive survey of the state-of-the-art scoring functions by considering the most popular and highly performant approaches, both classical and deep learning-based, for scoring protein-protein complexes. The methods were also compared based on their runtime as it directly impacts their use in large-scale docking applications. CONCLUSIONS We evaluate the strengths and weaknesses of classical and deep learning-based approaches across seven public and popular datasets to aid researchers in understanding the progress made in this field.
Collapse
Affiliation(s)
- Azam Shirali
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
| | - Vitalii Stebliankin
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
| | - Ukesh Karki
- Department of Physics, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
| | - Jimeng Shi
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, 33199, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th 10 St, Miami, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St, Miami, 33199, USA.
| |
Collapse
|
4
|
McFee M, Kim J, Kim PM. EuDockScore: Euclidean graph neural networks for scoring protein-protein interfaces. Bioinformatics 2024; 40:btae636. [PMID: 39441796 PMCID: PMC11543620 DOI: 10.1093/bioinformatics/btae636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
MOTIVATION Protein-protein interactions are essential for a variety of biological phenomena including mediating biochemical reactions, cell signaling, and the immune response. Proteins seek to form interfaces which reduce overall system energy. Although determination of single polypeptide chain protein structures has been revolutionized by deep learning techniques, complex prediction has still not been perfected. Additionally, experimentally determining structures is incredibly resource and time expensive. An alternative is the technique of computational docking, which takes the solved individual structures of proteins to produce candidate interfaces (decoys). Decoys are then scored using a mathematical function that assess the quality of the system, known as scoring functions. Beyond docking, scoring functions are a critical component of assessing structures produced by many protein generative models. Scoring models are also used as a final filtering in many generative deep learning models including those that generate antibody binders, and those which perform docking. RESULTS In this work, we present improved scoring functions for protein-protein interactions which utilizes cutting-edge Euclidean graph neural network architectures, to assess protein-protein interfaces. These Euclidean docking score models are known as EuDockScore, and EuDockScore-Ab with the latter being antibody-antigen dock specific. Finally, we provided EuDockScore-AFM a model trained on antibody-antigen outputs from AlphaFold-Multimer (AFM) which proves useful in reranking large numbers of AFM outputs. AVAILABILITY AND IMPLEMENTATION The code for these models is available at https://gitlab.com/mcfeemat/eudockscore.
Collapse
Affiliation(s)
- Matthew McFee
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jisun Kim
- Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Philip M Kim
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Computer Science, The University of Toronto, Toronto, ON M5S 2E4, Canada
| |
Collapse
|
5
|
Yang Q, Jin X, Zhou H, Ying J, Zou J, Liao Y, Lu X, Ge S, Yu H, Min X. SurfPro-NN: A 3D point cloud neural network for the scoring of protein-protein docking models based on surfaces features and protein language models. Comput Biol Chem 2024; 110:108067. [PMID: 38714420 DOI: 10.1016/j.compbiolchem.2024.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024]
Abstract
Protein-protein interactions (PPI) play a crucial role in numerous key biological processes, and the structure of protein complexes provides valuable clues for in-depth exploration of molecular-level biological processes. Protein-protein docking technology is widely used to simulate the spatial structure of proteins. However, there are still challenges in selecting candidate decoys that closely resemble the native structure from protein-protein docking simulations. In this study, we introduce a docking evaluation method based on three-dimensional point cloud neural networks named SurfPro-NN, which represents protein structures as point clouds and learns interaction information from protein interfaces by applying a point cloud neural network. With the continuous advancement of deep learning in the field of biology, a series of knowledge-rich pre-trained models have emerged. We incorporate protein surface representation models and language models into our approach, greatly enhancing feature representation capabilities and achieving superior performance in protein docking model scoring tasks. Through comprehensive testing on public datasets, we find that our method outperforms state-of-the-art deep learning approaches in protein-protein docking model scoring. Not only does it significantly improve performance, but it also greatly accelerates training speed. This study demonstrates the potential of our approach in addressing protein interaction assessment problems, providing strong support for future research and applications in the field of biology.
Collapse
Affiliation(s)
- Qianli Yang
- Institute of Artifical Intelligence, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China.
| | - Xiaocheng Jin
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; School of Public Health, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Haixia Zhou
- School of Public Health, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Junjie Ying
- Institute of Artifical Intelligence, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - JiaJun Zou
- School of Informatics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Yiyang Liao
- School of Informatics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Xiaoli Lu
- Information and Networking Center, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Shengxiang Ge
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; School of Public Health, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China
| | - Hai Yu
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; School of Public Health, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China.
| | - Xiaoping Min
- School of Informatics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, XiaMen University, No. 422, Siming South Road, XiaMen, 361005, Fujian, China.
| |
Collapse
|
6
|
Zhao H, Petrey D, Murray D, Honig B. ZEPPI: Proteome-scale sequence-based evaluation of protein-protein interaction models. Proc Natl Acad Sci U S A 2024; 121:e2400260121. [PMID: 38743624 PMCID: PMC11127014 DOI: 10.1073/pnas.2400260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to evaluate structural models of a complex based on sequence coevolution and conservation involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing metrics for an interface to those obtained from randomly chosen residues. Since contacting residues are defined by the structural model, this obviates the need to account for indirect interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI can be implemented on a proteome-wide scale and is applied here to millions of structural models of dimeric complexes in the Escherichia coli and human interactomes found in the PrePPI database. PrePPI's scoring function is based primarily on the evaluation of protein-protein interfaces, and ZEPPI adds a new feature to this analysis through the incorporation of evolutionary information. ZEPPI performance is evaluated through applications to experimentally determined complexes and to decoys from the CASP-CAPRI experiment. As we discuss, the standard CAPRI scores used to evaluate docking models are based on model quality and not on the ability to give yes/no answers as to whether two proteins interact. ZEPPI is able to detect weak signals from PPI models that the CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low confidence by the current PrePPI scoring function. A number of examples that illustrate how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.
Collapse
Affiliation(s)
- Haiqing Zhao
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Donald Petrey
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Diana Murray
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Barry Honig
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY10032
- Department of Medicine, Columbia University, New York, NY10032
- Zuckerman Institute, Columbia University, New York, NY10027
| |
Collapse
|
7
|
Chen X, Liu J, Park N, Cheng J. A Survey of Deep Learning Methods for Estimating the Accuracy of Protein Quaternary Structure Models. Biomolecules 2024; 14:574. [PMID: 38785981 PMCID: PMC11117562 DOI: 10.3390/biom14050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The quality prediction of quaternary structure models of a protein complex, in the absence of its true structure, is known as the Estimation of Model Accuracy (EMA). EMA is useful for ranking predicted protein complex structures and using them appropriately in biomedical research, such as protein-protein interaction studies, protein design, and drug discovery. With the advent of more accurate protein complex (multimer) prediction tools, such as AlphaFold2-Multimer and ESMFold, the estimation of the accuracy of protein complex structures has attracted increasing attention. Many deep learning methods have been developed to tackle this problem; however, there is a noticeable absence of a comprehensive overview of these methods to facilitate future development. Addressing this gap, we present a review of deep learning EMA methods for protein complex structures developed in the past several years, analyzing their methodologies, data and feature construction. We also provide a prospective summary of some potential new developments for further improving the accuracy of the EMA methods.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Nolan Park
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
Woodman RJ, Koczwara B, Mangoni AA. Applying precision medicine principles to the management of multimorbidity: the utility of comorbidity networks, graph machine learning, and knowledge graphs. Front Med (Lausanne) 2024; 10:1302844. [PMID: 38404463 PMCID: PMC10885565 DOI: 10.3389/fmed.2023.1302844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 02/27/2024] Open
Abstract
The current management of patients with multimorbidity is suboptimal, with either a single-disease approach to care or treatment guideline adaptations that result in poor adherence due to their complexity. Although this has resulted in calls for more holistic and personalized approaches to prescribing, progress toward these goals has remained slow. With the rapid advancement of machine learning (ML) methods, promising approaches now also exist to accelerate the advance of precision medicine in multimorbidity. These include analyzing disease comorbidity networks, using knowledge graphs that integrate knowledge from different medical domains, and applying network analysis and graph ML. Multimorbidity disease networks have been used to improve disease diagnosis, treatment recommendations, and patient prognosis. Knowledge graphs that combine different medical entities connected by multiple relationship types integrate data from different sources, allowing for complex interactions and creating a continuous flow of information. Network analysis and graph ML can then extract the topology and structure of networks and reveal hidden properties, including disease phenotypes, network hubs, and pathways; predict drugs for repurposing; and determine safe and more holistic treatments. In this article, we describe the basic concepts of creating bipartite and unipartite disease and patient networks and review the use of knowledge graphs, graph algorithms, graph embedding methods, and graph ML within the context of multimorbidity. Specifically, we provide an overview of the application of graph theory for studying multimorbidity, the methods employed to extract knowledge from graphs, and examples of the application of disease networks for determining the structure and pathways of multimorbidity, identifying disease phenotypes, predicting health outcomes, and selecting safe and effective treatments. In today's modern data-hungry, ML-focused world, such network-based techniques are likely to be at the forefront of developing robust clinical decision support tools for safer and more holistic approaches to treating older patients with multimorbidity.
Collapse
Affiliation(s)
- Richard John Woodman
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Bogda Koczwara
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Medical Oncology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Arduino Aleksander Mangoni
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
9
|
Xu X, Bonvin AMJJ. DeepRank-GNN-esm: a graph neural network for scoring protein-protein models using protein language model. BIOINFORMATICS ADVANCES 2024; 4:vbad191. [PMID: 38213822 PMCID: PMC10782804 DOI: 10.1093/bioadv/vbad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Motivation Protein-Protein interactions (PPIs) play critical roles in numerous cellular processes. By modelling the 3D structures of the correspond protein complexes valuable insights can be obtained, providing, e.g. starting points for drug and protein design. One challenge in the modelling process is however the identification of near-native models from the large pool of generated models. To this end we have previously developed DeepRank-GNN, a graph neural network that integrates structural and sequence information to enable effective pattern learning at PPI interfaces. Its main features are related to the Position Specific Scoring Matrices (PSSMs), which are computationally expensive to generate, significantly limits the algorithm's usability. Results We introduce here DeepRank-GNN-esm that includes as additional features protein language model embeddings from the ESM-2 model. We show that the ESM-2 embeddings can actually replace the PSSM features at no cost in-, or even better performance on two PPI-related tasks: scoring docking poses and detecting crystal artifacts. This new DeepRank version bypasses thus the need of generating PSSM, greatly improving the usability of the software and opening new application opportunities for systems for which PSSM profiles cannot be obtained or are irrelevant (e.g. antibody-antigen complexes). Availability and implementation DeepRank-GNN-esm is freely available from https://github.com/DeepRank/DeepRank-GNN-esm.
Collapse
Affiliation(s)
- Xiaotong Xu
- Department of Chemistry, Faculty of Science, Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Utrecht 3584 CS, The Netherlands
| | - Alexandre M J J Bonvin
- Department of Chemistry, Faculty of Science, Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Utrecht 3584 CS, The Netherlands
| |
Collapse
|
10
|
Zhang L, Wang S, Hou J, Si D, Zhu J, Cao R. ComplexQA: a deep graph learning approach for protein complex structure assessment. Brief Bioinform 2023; 24:bbad287. [PMID: 37930021 DOI: 10.1093/bib/bbad287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 11/07/2023] Open
Abstract
MOTIVATION In recent years, the end-to-end deep learning method for single-chain protein structure prediction has achieved high accuracy. For example, the state-of-the-art method AlphaFold, developed by Google, has largely increased the accuracy of protein structure predictions to near experimental accuracy in some of the cases. At the same time, there are few methods that can evaluate the quality of protein complexes at the residue level. In particular, evaluating the quality of residues at the interface of protein complexes can lead to a wide range of applications, such as protein function analysis and drug design. In this paper, we introduce a new deep graph neural network-based method ComplexQA, to evaluate the local quality of interfaces for protein complexes by utilizing the residue-level structural information in 3D space and the sequence-level constraints. RESULTS We benchmark our method to other state-of-the-art quality assessment approaches on the HAF2 and DBM55-AF2 datasets (high-quality structural models predicted by AlphaFold-Multimer), and the BM5 docking dataset. The experimental results show that our proposed method achieves better or similar performance compared with other state-of-the-art methods, especially on difficult targets which only contain a few acceptable models. Our method is able to suggest a score for each interfac e residue, which demonstrates a powerful assessment tool for the ever-increasing number of protein complexes. AVAILABILITY https://github.com/Cao-Labs/ComplexQA.git. Contact: caora@plu.edu.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Computer Science and Technology, AnHui University, Hefei, 230601, Anhui, China
| | - Sheng Wang
- Department of Computer Science and Technology, AnHui University, Hefei, 230601, Anhui, China
| | - Jie Hou
- Department of Computer Science, Saint Louis University, Saint. Louis, 63103, MO, USA
| | - Dong Si
- Division of Computing and Software Systems, University of Washington Bothell, Bothell, 98011, WA, USA
| | - Junyong Zhu
- Department of Computer Science and Technology, AnHui University, Hefei, 230601, Anhui, China
| | - Renzhi Cao
- Department of Humanities, Pacific Lutheran University, Tacoma, 98447, WA, USA
| |
Collapse
|
11
|
Hagg A, Kirschner KN. Open-Source Machine Learning in Computational Chemistry. J Chem Inf Model 2023; 63:4505-4532. [PMID: 37466636 PMCID: PMC10430767 DOI: 10.1021/acs.jcim.3c00643] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 07/20/2023]
Abstract
The field of computational chemistry has seen a significant increase in the integration of machine learning concepts and algorithms. In this Perspective, we surveyed 179 open-source software projects, with corresponding peer-reviewed papers published within the last 5 years, to better understand the topics within the field being investigated by machine learning approaches. For each project, we provide a short description, the link to the code, the accompanying license type, and whether the training data and resulting models are made publicly available. Based on those deposited in GitHub repositories, the most popular employed Python libraries are identified. We hope that this survey will serve as a resource to learn about machine learning or specific architectures thereof by identifying accessible codes with accompanying papers on a topic basis. To this end, we also include computational chemistry open-source software for generating training data and fundamental Python libraries for machine learning. Based on our observations and considering the three pillars of collaborative machine learning work, open data, open source (code), and open models, we provide some suggestions to the community.
Collapse
Affiliation(s)
- Alexander Hagg
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Electrical Engineering, Mechanical Engineering and Technical Journalism, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| | - Karl N. Kirschner
- Institute
of Technology, Resource and Energy-Efficient Engineering (TREE), University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
- Department
of Computer Science, University of Applied
Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany
| |
Collapse
|
12
|
Chen X, Morehead A, Liu J, Cheng J. A gated graph transformer for protein complex structure quality assessment and its performance in CASP15. Bioinformatics 2023; 39:i308-i317. [PMID: 37387159 PMCID: PMC10311325 DOI: 10.1093/bioinformatics/btad203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Proteins interact to form complexes to carry out essential biological functions. Computational methods such as AlphaFold-multimer have been developed to predict the quaternary structures of protein complexes. An important yet largely unsolved challenge in protein complex structure prediction is to accurately estimate the quality of predicted protein complex structures without any knowledge of the corresponding native structures. Such estimations can then be used to select high-quality predicted complex structures to facilitate biomedical research such as protein function analysis and drug discovery. RESULTS In this work, we introduce a new gated neighborhood-modulating graph transformer to predict the quality of 3D protein complex structures. It incorporates node and edge gates within a graph transformer framework to control information flow during graph message passing. We trained, evaluated and tested the method (called DProQA) on newly-curated protein complex datasets before the 15th Critical Assessment of Techniques for Protein Structure Prediction (CASP15) and then blindly tested it in the 2022 CASP15 experiment. The method was ranked 3rd among the single-model quality assessment methods in CASP15 in terms of the ranking loss of TM-score on 36 complex targets. The rigorous internal and external experiments demonstrate that DProQA is effective in ranking protein complex structures. AVAILABILITY AND IMPLEMENTATION The source code, data, and pre-trained models are available at https://github.com/jianlin-cheng/DProQA.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Alex Morehead
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, United States
| |
Collapse
|
13
|
McFee M, Kim PM. GDockScore: a graph-based protein-protein docking scoring function. BIOINFORMATICS ADVANCES 2023; 3:vbad072. [PMID: 37359726 PMCID: PMC10290236 DOI: 10.1093/bioadv/vbad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
Summary Protein complexes play vital roles in a variety of biological processes, such as mediating biochemical reactions, the immune response and cell signalling, with 3D structure specifying function. Computational docking methods provide a means to determine the interface between two complexed polypeptide chains without using time-consuming experimental techniques. The docking process requires the optimal solution to be selected with a scoring function. Here, we propose a novel graph-based deep learning model that utilizes mathematical graph representations of proteins to learn a scoring function (GDockScore). GDockScore was pre-trained on docking outputs generated with the Protein Data Bank biounits and the RosettaDock protocol, and then fine-tuned on HADDOCK decoys generated on the ZDOCK Protein Docking Benchmark. GDockScore performs similarly to the Rosetta scoring function on docking decoys generated using the RosettaDock protocol. Furthermore, state-of-the-art is achieved on the CAPRI score set, a challenging dataset for developing docking scoring functions. Availability and implementation The model implementation is available at https://gitlab.com/mcfeemat/gdockscore. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Matthew McFee
- Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON M5S 3E1, Canada
| | | |
Collapse
|
14
|
Kim HY, Kim S, Park WY, Kim D. G-RANK: an equivariant graph neural network for the scoring of protein-protein docking models. BIOINFORMATICS ADVANCES 2023; 3:vbad011. [PMID: 36818727 PMCID: PMC9927558 DOI: 10.1093/bioadv/vbad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Motivation Protein complex structure prediction is important for many applications in bioengineering. A widely used method for predicting the structure of protein complexes is computational docking. Although many tools for scoring protein-protein docking models have been developed, it is still a challenge to accurately identify near-native models for unknown protein complexes. A recently proposed model called the geometric vector perceptron-graph neural network (GVP-GNN), a subtype of equivariant graph neural networks, has demonstrated success in various 3D molecular structure modeling tasks. Results Herein, we present G-RANK, a GVP-GNN-based method for the scoring of protein-protein docking models. When evaluated on two different test datasets, G-RANK achieved a performance competitive with or better than the state-of-the-art scoring functions. We expect G-RANK to be a useful tool for various applications in biological engineering. Availability and implementation Source code is available at https://github.com/ha01994/grank. Contact kds@kaist.ac.kr. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Ha Young Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | | | - Woong-Yang Park
- GENINUS Inc., Seoul 05836, South Korea,Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | | |
Collapse
|
15
|
Barradas-Bautista D, Almajed A, Oliva R, Kalnis P, Cavallo L. Improving classification of correct and incorrect protein-protein docking models by augmenting the training set. BIOINFORMATICS ADVANCES 2023; 3:vbad012. [PMID: 36789292 PMCID: PMC9923443 DOI: 10.1093/bioadv/vbad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Motivation Protein-protein interactions drive many relevant biological events, such as infection, replication and recognition. To control or engineer such events, we need to access the molecular details of the interaction provided by experimental 3D structures. However, such experiments take time and are expensive; moreover, the current technology cannot keep up with the high discovery rate of new interactions. Computational modeling, like protein-protein docking, can help to fill this gap by generating docking poses. Protein-protein docking generally consists of two parts, sampling and scoring. The sampling is an exhaustive search of the tridimensional space. The caveat of the sampling is that it generates a large number of incorrect poses, producing a highly unbalanced dataset. This limits the utility of the data to train machine learning classifiers. Results Using weak supervision, we developed a data augmentation method that we named hAIkal. Using hAIkal, we increased the labeled training data to train several algorithms. We trained and obtained different classifiers; the best classifier has 81% accuracy and 0.51 Matthews' correlation coefficient on the test set, surpassing the state-of-the-art scoring functions. Availability and implementation Docking models from Benchmark 5 are available at https://doi.org/10.5281/zenodo.4012018. Processed tabular data are available at https://repository.kaust.edu.sa/handle/10754/666961. Google colab is available at https://colab.research.google.com/drive/1vbVrJcQSf6\_C3jOAmZzgQbTpuJ5zC1RP?usp=sharing. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | - Ali Almajed
- Computer, Electrical and Mathematical Science and Engineering Division, Kaust Extreme Computing Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University of Naples “Parthenope”, I-80143 Naples, Italy
| | - Panos Kalnis
- Computer, Electrical and Mathematical Science and Engineering Division, Kaust Extreme Computing Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
16
|
Jung Y, Geng C, Bonvin AMJJ, Xue LC, Honavar VG. MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein-Protein Docking Conformations. Biomolecules 2023; 13:121. [PMID: 36671507 PMCID: PMC9855734 DOI: 10.3390/biom13010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions play a ubiquitous role in biological function. Knowledge of the three-dimensional (3D) structures of the complexes they form is essential for understanding the structural basis of those interactions and how they orchestrate key cellular processes. Computational docking has become an indispensable alternative to the expensive and time-consuming experimental approaches for determining the 3D structures of protein complexes. Despite recent progress, identifying near-native models from a large set of conformations sampled by docking-the so-called scoring problem-still has considerable room for improvement. We present MetaScore, a new machine-learning-based approach to improve the scoring of docked conformations. MetaScore utilizes a random forest (RF) classifier trained to distinguish near-native from non-native conformations using their protein-protein interfacial features. The features include physicochemical properties, energy terms, interaction-propensity-based features, geometric properties, interface topology features, evolutionary conservation, and also scores produced by traditional scoring functions (SFs). MetaScore scores docked conformations by simply averaging the score produced by the RF classifier with that produced by any traditional SF. We demonstrate that (i) MetaScore consistently outperforms each of the nine traditional SFs included in this work in terms of success rate and hit rate evaluated over conformations ranked among the top 10; (ii) an ensemble method, MetaScore-Ensemble, that combines 10 variants of MetaScore obtained by combining the RF score with each of the traditional SFs outperforms each of the MetaScore variants. We conclude that the performance of traditional SFs can be improved upon by using machine learning to judiciously leverage protein-protein interfacial features and by using ensemble methods to combine multiple scoring functions.
Collapse
Affiliation(s)
- Yong Jung
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- Artificial Intelligence Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Cunliang Geng
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre M. J. J. Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Li C. Xue
- Bijvoet Centre for Biomolecular Research, Faculty of Science—Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Center for Molecular and Biomolecular Informatics, Radboudumc, Greet Grooteplein 26-28, 6525 GA Nijmegen, The Netherlands
| | - Vasant G. Honavar
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- Artificial Intelligence Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Clinical and Translational Sciences Institute, Pennsylvania State University, University Park, PA 16802, USA
- College of Information Sciences & Technology, Pennsylvania State University, University Park, PA 16802, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Center for Big Data Analytics and Discovery Informatics, Pennsylvania State University, University Park, PA 16823, USA
| |
Collapse
|
17
|
Li MM, Huang K, Zitnik M. Graph representation learning in biomedicine and healthcare. Nat Biomed Eng 2022; 6:1353-1369. [PMID: 36316368 PMCID: PMC10699434 DOI: 10.1038/s41551-022-00942-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
Networks-or graphs-are universal descriptors of systems of interacting elements. In biomedicine and healthcare, they can represent, for example, molecular interactions, signalling pathways, disease co-morbidities or healthcare systems. In this Perspective, we posit that representation learning can realize principles of network medicine, discuss successes and current limitations of the use of representation learning on graphs in biomedicine and healthcare, and outline algorithmic strategies that leverage the topology of graphs to embed them into compact vectorial spaces. We argue that graph representation learning will keep pushing forward machine learning for biomedicine and healthcare applications, including the identification of genetic variants underlying complex traits, the disentanglement of single-cell behaviours and their effects on health, the assistance of patients in diagnosis and treatment, and the development of safe and effective medicines.
Collapse
Affiliation(s)
- Michelle M Li
- Bioinformatics and Integrative Genomics Program, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kexin Huang
- Health Data Science Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Data Science Initiative, Cambridge, MA, USA.
| |
Collapse
|
18
|
Tsuchiya Y, Yamamori Y, Tomii K. Protein-protein interaction prediction methods: from docking-based to AI-based approaches. Biophys Rev 2022; 14:1341-1348. [PMID: 36570321 PMCID: PMC9759050 DOI: 10.1007/s12551-022-01032-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Protein-protein interactions (PPIs), such as protein-protein inhibitor, antibody-antigen complex, and supercomplexes play diverse and important roles in cells. Recent advances in structural analysis methods, including cryo-EM, for the determination of protein complex structures are remarkable. Nevertheless, much room remains for improvement and utilization of computational methods to predict PPIs because of the large number and great diversity of unresolved complex structures. This review introduces a wide array of computational methods, including our own, for estimating PPIs including antibody-antigen interactions, offering both historical and forward-looking perspectives.
Collapse
Affiliation(s)
- Yuko Tsuchiya
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| | - Yu Yamamori
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-Ku, Tokyo, 135-0064 Japan
| |
Collapse
|
19
|
Réau M, Renaud N, Xue LC, Bonvin AMJJ. DeepRank-GNN: a graph neural network framework to learn patterns in protein-protein interfaces. Bioinformatics 2022; 39:6845451. [PMID: 36420989 PMCID: PMC9805592 DOI: 10.1093/bioinformatics/btac759] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
MOTIVATION Gaining structural insights into the protein-protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from protein-protein interfaces using convolutional neural network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required to desensitize the network to the input data orientation which dramatically impairs the computation performance. Representing protein-protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using graph neural networks (GNN) approaches, bypassing those limitations. RESULTS We have developed DeepRank-GNN, a framework that converts protein-protein interfaces from PDB 3D coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN's performance on two applications using a dedicated graph interaction neural network: (i) the scoring of docking poses and (ii) the discriminating of biological and crystal interfaces. In addition to the highly competitive performance obtained in those tasks as compared to state-of-the-art methods, we show a significant improvement in speed and storage requirement using DeepRank-GNN as compared to DeepRank. AVAILABILITY AND IMPLEMENTATION DeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-GNN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Li C Xue
- Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen 6525 GA, The Netherlands
| | | |
Collapse
|
20
|
Prediction of the structural interface between fibroblast growth factor23 and Burosumab using alanine scanning and molecular docking. Sci Rep 2022; 12:14754. [PMID: 36042241 PMCID: PMC9427789 DOI: 10.1038/s41598-022-18580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Burosumab, an FGF23 targeting monoclonal antibody, was approved by the FDA in 2018 for use in children and adults with X-linked hypophosphatemia (or XLH). While several clinical studies have demonstrated the long-term safety and efficacy of Burosumab, the molecular basis of FGF23-Burosumab interaction which underpins its mechanism of action remains unknown. In this study, we employed molecular docking combined with alanine scanning of epitope and paratope to predict a model of FGF23-Burosumab interaction. Then, we used the model to understand the species-species cross-reactivity of Burosumab and to reverse engineer mouse FGF23 with 'back to human' mutations to bind Burosumab. Finally, we redesigned the CDRs with two mutations to engineer an affinity enhanced variant of the antibody. Our study provides insights into the FGF23-Burosumab interaction and demonstrates that alanine-scanning coupled with molecular docking can be used to optimize antibody candidates (e.g., structure-guided affinity maturation) for therapeutic use.
Collapse
|
21
|
Xu G, Wang Y, Wang Q, Ma J. Studying protein-protein interaction through side-chain modeling method OPUS-Mut. Brief Bioinform 2022; 23:6663639. [PMID: 35959990 DOI: 10.1093/bib/bbac330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Protein side chains are vitally important to many biological processes such as protein-protein interaction. In this study, we evaluate the performance of our previous released side-chain modeling method OPUS-Mut, together with some other methods, on three oligomer datasets, CASP14 (11), CAMEO-Homo (65) and CAMEO-Hetero (21). The results show that OPUS-Mut outperforms other methods measured by all residues or by the interfacial residues. We also demonstrate our method on evaluating protein-protein docking pose on a dataset Oligomer-Dock (75) created using the top 10 predictions from ZDOCK 3.0.2. Our scoring function correctly identifies the native pose as the top-1 in 45 out of 75 targets. Different from traditional scoring functions, our method is based on the overall side-chain packing favorableness in accordance with the local packing environment. It emphasizes the significance of side chains and provides a new and effective scoring term for studying protein-protein interaction.
Collapse
Affiliation(s)
- Gang Xu
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China.,Shanghai AI Laboratory, Shanghai 200030, China
| | - Yilin Wang
- Georgetown Preparatory School, North Bethesda, MD 20852, USA
| | - Qinghua Wang
- Center for Biomolecular Innovation, Harcam Biomedicines, Shanghai, China
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China.,Shanghai AI Laboratory, Shanghai 200030, China
| |
Collapse
|
22
|
Yang P, Henle EA, Fern XZ, Simon CM. Classifying the toxicity of pesticides to honey bees via support vector machines with random walk graph kernels. J Chem Phys 2022; 157:034102. [DOI: 10.1063/5.0090573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pesticides benefit agriculture by increasing crop yield, quality, and security. However, pesticides may inadvertently harm bees, which are valuable as pollinators. Thus, candidate pesticides in development pipelines must be assessed for toxicity to bees. Leveraging a dataset of 382 molecules with toxicity labels from honey bee exposure experiments, we train a support vector machine (SVM) to predict the toxicity of pesticides to honey bees. We compare two representations of the pesticide molecules: (i) a random walk feature vector listing counts of length- L walks on the molecular graph with each vertex- and edge-label sequence and (ii) the Molecular ACCess System (MACCS) structural key fingerprint (FP), a bit vector indicating the presence/absence of a list of pre-defined subgraph patterns in the molecular graph. We explicitly construct the MACCS FPs but rely on the fixed-length- L random walk graph kernel (RWGK) in place of the dot product for the random walk representation. The L-RWGK-SVM achieves an accuracy, precision, recall, and F1 score (mean over 2000 runs) of 0.81, 0.68, 0.71, and 0.69, respectively, on the test data set—with L = 4 being the mode optimal walk length. The MACCS-FP-SVM performs on par/marginally better than the L-RWGK-SVM, lends more interpretability, but varies more in performance. We interpret the MACCS-FP-SVM by illuminating which subgraph patterns in the molecules tend to strongly push them toward the toxic/non-toxic side of the separating hyperplane.
Collapse
Affiliation(s)
- Ping Yang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | - E. Adrian Henle
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | - Xiaoli Z. Fern
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cory M. Simon
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
23
|
Wilman W, Wróbel S, Bielska W, Deszynski P, Dudzic P, Jaszczyszyn I, Kaniewski J, Młokosiewicz J, Rouyan A, Satława T, Kumar S, Greiff V, Krawczyk K. Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery. Brief Bioinform 2022; 23:bbac267. [PMID: 35830864 PMCID: PMC9294429 DOI: 10.1093/bib/bbac267] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Antibodies are versatile molecular binders with an established and growing role as therapeutics. Computational approaches to developing and designing these molecules are being increasingly used to complement traditional lab-based processes. Nowadays, in silico methods fill multiple elements of the discovery stage, such as characterizing antibody-antigen interactions and identifying developability liabilities. Recently, computational methods tackling such problems have begun to follow machine learning paradigms, in many cases deep learning specifically. This paradigm shift offers improvements in established areas such as structure or binding prediction and opens up new possibilities such as language-based modeling of antibody repertoires or machine-learning-based generation of novel sequences. In this review, we critically examine the recent developments in (deep) machine learning approaches to therapeutic antibody design with implications for fully computational antibody design.
Collapse
|
24
|
Rajendran M, Ferran MC, Babbitt GA. Identifying vaccine escape sites via statistical comparisons of short-term molecular dynamics. BIOPHYSICAL REPORTS 2022; 2:100056. [PMID: 35403093 PMCID: PMC8978532 DOI: 10.1016/j.bpr.2022.100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/31/2022] [Indexed: 01/08/2023]
Abstract
The identification of viral mutations that confer escape from antibodies is crucial for understanding the interplay between immunity and viral evolution. We describe a molecular dynamics (MD)-based approach that goes beyond contact mapping, scales well to a desktop computer with a modern graphics processor, and enables the user to identify functional protein sites that are prone to vaccine escape in a viral antigen. We first implement our MD pipeline to employ site-wise calculation of Kullback-Leibler divergence in atom fluctuation over replicate sets of short-term MD production runs thus enabling a statistical comparison of the rapid motion of influenza hemagglutinin (HA) in both the presence and absence of three well-known neutralizing antibodies. Using this simple comparative method applied to motions of viral proteins, we successfully identified in silico all previously empirically confirmed sites of escape in influenza HA, predetermined via selection experiments and neutralization assays. Upon the validation of our computational approach, we then surveyed potential hotspot residues in the receptor binding domain of the SARS-CoV-2 virus in the presence of COVOX-222 and S2H97 antibodies. We identified many single sites in the antigen-antibody interface that are similarly prone to potential antibody escape and that match many of the known sites of mutations arising in the SARS-CoV-2 variants of concern. In the Omicron variant, we find only minimal adaptive evolutionary shifts in the functional binding profiles of both antibodies. In summary, we provide an inexpensive and accurate computational method to monitor hotspots of functional evolution in antibody binding footprints.
Collapse
|
25
|
De Lauro A, Di Rienzo L, Miotto M, Olimpieri PP, Milanetti E, Ruocco G. Shape Complementarity Optimization of Antibody–Antigen Interfaces: The Application to SARS-CoV-2 Spike Protein. Front Mol Biosci 2022; 9:874296. [PMID: 35669567 PMCID: PMC9163568 DOI: 10.3389/fmolb.2022.874296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Many factors influence biomolecule binding, and its assessment constitutes an elusive challenge in computational structural biology. In this aspect, the evaluation of shape complementarity at molecular interfaces is one of the main factors to be considered. We focus on the particular case of antibody–antigen complexes to quantify the complementarities occurring at molecular interfaces. We relied on a method we recently developed, which employs the 2D Zernike descriptors, to characterize the investigated regions with an ordered set of numbers summarizing the local shape properties. Collecting a structural dataset of antibody–antigen complexes, we applied this method and we statistically distinguished, in terms of shape complementarity, pairs of the interacting regions from the non-interacting ones. Thus, we set up a novel computational strategy based on in silico mutagenesis of antibody-binding site residues. We developed a Monte Carlo procedure to increase the shape complementarity between the antibody paratope and a given epitope on a target protein surface. We applied our protocol against several molecular targets in SARS-CoV-2 spike protein, known to be indispensable for viral cell invasion. We, therefore, optimized the shape of template antibodies for the interaction with such regions. As the last step of our procedure, we performed an independent molecular docking validation of the results of our Monte Carlo simulations.
Collapse
Affiliation(s)
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- *Correspondence: Lorenzo Di Rienzo,
| | - Mattia Miotto
- Center for Life Nano & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Edoardo Milanetti
- Center for Life Nano & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro-Science, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, Sapienza University, Rome, Italy
| |
Collapse
|
26
|
Guo L, He J, Lin P, Huang SY, Wang J. TRScore: a three-dimensional RepVGG-based scoring method for ranking protein docking models. Bioinformatics 2022; 38:2444-2451. [PMID: 35199137 DOI: 10.1093/bioinformatics/btac120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Protein-protein interactions (PPI) play important roles in cellular activities. Due to the technical difficulty and high cost of experimental methods, there are considerable interests towards the development of computational approaches, such as protein docking, to decipher PPI patterns. One of the important and difficult aspects in protein docking is recognizing near-native conformations from a set of decoys, but unfortunately traditional scoring functions still suffer from limited accuracy. Therefore, new scoring methods are pressingly needed in methodological and/or practical implications. RESULTS We present a new deep learning-based scoring method for ranking protein-protein docking models based on a three-dimensional (3D) RepVGG network, named TRScore. To recognize near-native conformations from a set of decoys, TRScore voxelizes the protein-protein interface into a 3D grid labeled by the number of atoms in different physicochemical classes. Benefiting from the deep convolutional RepVGG architecture, TRScore can effectively capture the subtle differences between energetically favorable near-native models and unfavorable non-native decoys without needing extra information. TRScore was extensively evaluated on diverse test sets including protein-protein docking benchmark 5.0 update set, DockGround decoy set, as well as realistic CAPRI decoy set, and overall obtained a significant improvement over existing methods in cross validation and independent evaluations. AVAILABILITY Codes available at: https://github.com/BioinformaticsCSU/TRScore.
Collapse
Affiliation(s)
- Linyuan Guo
- School of Computer Science, Central South University, Changsha, Hunan 410083, China
| | - Jiahua He
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianxin Wang
- School of Computer Science, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
27
|
Li H, Yan Y, Zhao X, Huang SY. Inclusion of Desolvation Energy into Protein–Protein Docking through Atomic Contact Potentials. J Chem Inf Model 2022; 62:740-750. [DOI: 10.1021/acs.jcim.1c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Xuejun Zhao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
28
|
Fundamental considerations in drug design. COMPUTER AIDED DRUG DESIGN (CADD): FROM LIGAND-BASED METHODS TO STRUCTURE-BASED APPROACHES 2022:17-55. [PMCID: PMC9212230 DOI: 10.1016/b978-0-323-90608-1.00005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The drug discovery paradigm has been very time-consuming, challenging, and expensive; however, the disease conditions originating from bacteria, virus, protozoa, fungus and other microorganisms are steadily shooting up. For instance, COVID-19 is the latest viral infection that affects millions of people and the world’s economy very severely. Therefore, the quest for discovery of novel and potent drug compounds against deadly pathogens is crucial at the moment. Despite a lot of drawbacks in drug discovery and development and its pertaining technology, the advancement must be taken into account so the time duration and cost would be minimized. In this chapter, basic principles in drug design and discovery have been discussed together with advances in drug development.
Collapse
|
29
|
Barradas-Bautista D, Cao Z, Vangone A, Oliva R, Cavallo L. A random forest classifier for protein-protein docking models. BIOINFORMATICS ADVANCES 2021; 2:vbab042. [PMID: 36699405 PMCID: PMC9710594 DOI: 10.1093/bioadv/vbab042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 01/28/2023]
Abstract
Herein, we present the results of a machine learning approach we developed to single out correct 3D docking models of protein-protein complexes obtained by popular docking software. To this aim, we generated 3 × 10 4 docking models for each of the 230 complexes in the protein-protein benchmark, version 5, using three different docking programs (HADDOCK, FTDock and ZDOCK), for a cumulative set of ≈ 7 × 10 6 docking models. Three different machine learning approaches (Random Forest, Supported Vector Machine and Perceptron) were used to train classifiers with 158 different scoring functions (features). The Random Forest algorithm outperformed the other two algorithms and was selected for further optimization. Using a features selection algorithm, and optimizing the random forest hyperparameters, allowed us to train and validate a random forest classifier, named COnservation Driven Expert System (CoDES). Testing of CoDES on independent datasets, as well as results of its comparative performance with machine learning methods recently developed in the field for the scoring of docking decoys, confirm its state-of-the-art ability to discriminate correct from incorrect decoys both in terms of global parameters and in terms of decoys ranked at the top positions. Supplementary information Supplementary data are available at Bioinformatics Advances online. Software and data availability statement The docking models are available at https://doi.org/10.5281/zenodo.4012018. The programs underlying this article will be shared on request to the corresponding authors.
Collapse
Affiliation(s)
- Didier Barradas-Bautista
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia,To whom correspondence should be addressed. or or
| | - Zhen Cao
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Anna Vangone
- Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich Large Molecule Research, 82377 Penzberg, Germany
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy,To whom correspondence should be addressed. or or
| | - Luigi Cavallo
- Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia,To whom correspondence should be addressed. or or
| |
Collapse
|
30
|
Renaud N, Geng C, Georgievska S, Ambrosetti F, Ridder L, Marzella DF, Réau MF, Bonvin AMJJ, Xue LC. DeepRank: a deep learning framework for data mining 3D protein-protein interfaces. Nat Commun 2021; 12:7068. [PMID: 34862392 PMCID: PMC8642403 DOI: 10.1038/s41467-021-27396-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022] Open
Abstract
Three-dimensional (3D) structures of protein complexes provide fundamental information to decipher biological processes at the molecular scale. The vast amount of experimentally and computationally resolved protein-protein interfaces (PPIs) offers the possibility of training deep learning models to aid the predictions of their biological relevance. We present here DeepRank, a general, configurable deep learning framework for data mining PPIs using 3D convolutional neural networks (CNNs). DeepRank maps features of PPIs onto 3D grids and trains a user-specified CNN on these 3D grids. DeepRank allows for efficient training of 3D CNNs with data sets containing millions of PPIs and supports both classification and regression. We demonstrate the performance of DeepRank on two distinct challenges: The classification of biological versus crystallographic PPIs, and the ranking of docking models. For both problems DeepRank is competitive with, or outperforms, state-of-the-art methods, demonstrating the versatility of the framework for research in structural biology.
Collapse
Affiliation(s)
- Nicolas Renaud
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
| | - Cunliang Geng
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands
| | - Sonja Georgievska
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
| | - Francesco Ambrosetti
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands
| | - Lars Ridder
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
| | - Dario F Marzella
- Center for Molecular and Biomolecular Informatics, Radboudumc, Greet Grooteplein 26-28, 6525, Nijmegen, GA, The Netherlands
| | - Manon F Réau
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands.
| | - Li C Xue
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands.
- Center for Molecular and Biomolecular Informatics, Radboudumc, Greet Grooteplein 26-28, 6525, Nijmegen, GA, The Netherlands.
| |
Collapse
|
31
|
Lensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, Clarence T, Bates PA, Kong R, Liu B, Yang G, Liu M, Shi H, Lu X, Chang S, Roy RS, Quadir F, Liu J, Cheng J, Antoniak A, Czaplewski C, Giełdoń A, Kogut M, Lipska AG, Liwo A, Lubecka EA, Maszota-Zieleniak M, Sieradzan AK, Ślusarz R, Wesołowski PA, Zięba K, Del Carpio Muñoz CA, Ichiishi E, Harmalkar A, Gray JJ, Bonvin AMJJ, Ambrosetti F, Vargas Honorato R, Jandova Z, Jiménez-García B, Koukos PI, Van Keulen S, Van Noort CW, Réau M, Roel-Touris J, Kotelnikov S, Padhorny D, Porter KA, Alekseenko A, Ignatov M, Desta I, Ashizawa R, Sun Z, Ghani U, Hashemi N, Vajda S, Kozakov D, Rosell M, Rodríguez-Lumbreras LA, Fernandez-Recio J, Karczynska A, Grudinin S, Yan Y, Li H, Lin P, Huang SY, Christoffer C, Terashi G, Verburgt J, Sarkar D, Aderinwale T, Wang X, Kihara D, Nakamura T, Hanazono Y, Gowthaman R, Guest JD, Yin R, Taherzadeh G, Pierce BG, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Sun Y, Zhu S, Shen Y, Park T, Woo H, Yang J, Kwon S, Won J, Seok C, Kiyota Y, Kobayashi S, Harada Y, Takeda-Shitaka M, Kundrotas PJ, Singh A, Vakser IA, et alLensink MF, Brysbaert G, Mauri T, Nadzirin N, Velankar S, Chaleil RAG, Clarence T, Bates PA, Kong R, Liu B, Yang G, Liu M, Shi H, Lu X, Chang S, Roy RS, Quadir F, Liu J, Cheng J, Antoniak A, Czaplewski C, Giełdoń A, Kogut M, Lipska AG, Liwo A, Lubecka EA, Maszota-Zieleniak M, Sieradzan AK, Ślusarz R, Wesołowski PA, Zięba K, Del Carpio Muñoz CA, Ichiishi E, Harmalkar A, Gray JJ, Bonvin AMJJ, Ambrosetti F, Vargas Honorato R, Jandova Z, Jiménez-García B, Koukos PI, Van Keulen S, Van Noort CW, Réau M, Roel-Touris J, Kotelnikov S, Padhorny D, Porter KA, Alekseenko A, Ignatov M, Desta I, Ashizawa R, Sun Z, Ghani U, Hashemi N, Vajda S, Kozakov D, Rosell M, Rodríguez-Lumbreras LA, Fernandez-Recio J, Karczynska A, Grudinin S, Yan Y, Li H, Lin P, Huang SY, Christoffer C, Terashi G, Verburgt J, Sarkar D, Aderinwale T, Wang X, Kihara D, Nakamura T, Hanazono Y, Gowthaman R, Guest JD, Yin R, Taherzadeh G, Pierce BG, Barradas-Bautista D, Cao Z, Cavallo L, Oliva R, Sun Y, Zhu S, Shen Y, Park T, Woo H, Yang J, Kwon S, Won J, Seok C, Kiyota Y, Kobayashi S, Harada Y, Takeda-Shitaka M, Kundrotas PJ, Singh A, Vakser IA, Dapkūnas J, Olechnovič K, Venclovas Č, Duan R, Qiu L, Xu X, Zhang S, Zou X, Wodak SJ. Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment. Proteins 2021; 89:1800-1823. [PMID: 34453465 PMCID: PMC8616814 DOI: 10.1002/prot.26222] [Show More Authors] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70-75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70-80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.
Collapse
Affiliation(s)
- Marc F Lensink
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Guillaume Brysbaert
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Théo Mauri
- CNRS UMR8576 UGSF, Institute for Structural and Functional Glycobiology, University of Lille, Lille, France
| | - Nurul Nadzirin
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | | | - Tereza Clarence
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Bin Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Guangbo Yang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Ming Liu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hang Shi
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xufeng Lu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Raj S Roy
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Farhan Quadir
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Jian Liu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Anna Antoniak
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Artur Giełdoń
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Mateusz Kogut
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adam Liwo
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Emilia A Lubecka
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | | | | | - Rafał Ślusarz
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Patryk A Wesołowski
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Karolina Zięba
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Eiichiro Ichiishi
- International University of Health and Welfare Hospital (IUHW Hospital), Nasushiobara City, Japan
| | - Ameya Harmalkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey J Gray
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexandre M J J Bonvin
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rodrigo Vargas Honorato
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Zuzana Jandova
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Brian Jiménez-García
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Panagiotis I Koukos
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Siri Van Keulen
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte W Van Noort
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Manon Réau
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Computational Structural Biology Group, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Innopolis University, Russia
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Kathryn A Porter
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Andrey Alekseenko
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
- Institute of Computer-Aided Design of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Ignatov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Israel Desta
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Ryota Ashizawa
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Zhuyezi Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Usman Ghani
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Nasser Hashemi
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Mireia Rosell
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Luis A Rodríguez-Lumbreras
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Juan Fernandez-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de la Rioja - Gobierno de La Rioja, Logrono, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Sergei Grudinin
- Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tunde Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tsukasa Nakamura
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yuya Hanazono
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Tokai, Ibaraki, Japan
| | - Ragul Gowthaman
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Johnathan D Guest
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Rui Yin
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Ghazaleh Taherzadeh
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland, USA
| | | | - Zhen Cao
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Romina Oliva
- University of Naples "Parthenope", Napoli, Italy
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Shaowen Zhu
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
| | - Taeyong Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeonuk Woo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jinsol Yang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jonghun Won
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yasuomi Kiyota
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | | | - Yoshiki Harada
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | | | - Petras J Kundrotas
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Amar Singh
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Ilya A Vakser
- Computational Biology Program and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Justas Dapkūnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Kliment Olechnovič
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rui Duan
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Liming Qiu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Xianjin Xu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Shuang Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Xiaoqin Zou
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri, USA
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
32
|
Abstract
The biological significance of proteins attracted the scientific community in exploring their characteristics. The studies shed light on the interaction patterns and functions of proteins in a living body. Due to their practical difficulties, reliable experimental techniques pave the way for introducing computational methods in the interaction prediction. Automated methods reduced the difficulties but could not yet replace experimental studies as the field is still evolving. Interaction prediction problem being critical needs highly accurate results, but none of the existing methods could offer reliable performance that can parallel with experimental results yet. This article aims to assess the existing computational docking algorithms, their challenges, and future scope. Blind docking techniques are quite helpful when no information other than the individual structures are available. As more and more complex structures are being added to different databases, information-driven approaches can be a good alternative. Artificial intelligence, ruling over the major fields, is expected to take over this domain very shortly.
Collapse
|
33
|
Xie Z, Xu J. Deep graph learning of inter-protein contacts. Bioinformatics 2021; 38:947-953. [PMID: 34755837 PMCID: PMC8796373 DOI: 10.1093/bioinformatics/btab761] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Inter-protein (interfacial) contact prediction is very useful for in silico structural characterization of protein-protein interactions. Although deep learning has been applied to this problem, its accuracy is not as good as intra-protein contact prediction. RESULTS We propose a new deep learning method GLINTER (Graph Learning of INTER-protein contacts) for interfacial contact prediction of dimers, leveraging a rotational invariant representation of protein tertiary structures and a pretrained language model of multiple sequence alignments. Tested on the 13th and 14th CASP-CAPRI datasets, the average top L/10 precision achieved by GLINTER is 54% on the homodimers and 52% on all the dimers, much higher than 30% obtained by the latest deep learning method DeepHomo on the homodimers and 15% obtained by BIPSPI on all the dimers. Our experiments show that GLINTER-predicted contacts help improve selection of docking decoys. AVAILABILITY AND IMPLEMENTATION The software is available at https://github.com/zw2x/glinter. The datasets are available at https://github.com/zw2x/glinter/data. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ziwei Xie
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA
| | - Jinbo Xu
- To whom correspondence should be addressed.
| |
Collapse
|
34
|
Tam C, Kumar A, Zhang KYJ. NbX: Machine Learning-Guided Re-Ranking of Nanobody-Antigen Binding Poses. Pharmaceuticals (Basel) 2021; 14:ph14100968. [PMID: 34681192 PMCID: PMC8537642 DOI: 10.3390/ph14100968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/02/2022] Open
Abstract
Modeling the binding pose of an antibody is a prerequisite to structure-based affinity maturation and design. Without knowing a reliable binding pose, the subsequent structural simulation is largely futile. In this study, we have developed a method of machine learning-guided re-ranking of antigen binding poses of nanobodies, the single-domain antibody which has drawn much interest recently in antibody drug development. We performed a large-scale self-docking experiment of nanobody–antigen complexes. By training a decision tree classifier through mapping a feature set consisting of energy, contact and interface property descriptors to a measure of their docking quality of the refined poses, significant improvement in the median ranking of native-like nanobody poses by was achieved eightfold compared with ClusPro and an established deep 3D CNN classifier of native protein–protein interaction. We further interpreted our model by identifying features that showed relatively important contributions to the prediction performance. This study demonstrated a useful method in improving our current ability in pose prediction of nanobodies.
Collapse
Affiliation(s)
- Chunlai Tam
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; (C.T.); (A.K.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; (C.T.); (A.K.)
| | - Kam Y. J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan; (C.T.); (A.K.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
- Correspondence:
| |
Collapse
|
35
|
Jandova Z, Vargiu AV, Bonvin AMJJ. Native or Non-Native Protein-Protein Docking Models? Molecular Dynamics to the Rescue. J Chem Theory Comput 2021; 17:5944-5954. [PMID: 34342983 PMCID: PMC8444332 DOI: 10.1021/acs.jctc.1c00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Molecular docking excels at creating a plethora of potential models of protein-protein complexes. To correctly distinguish the favorable, native-like models from the remaining ones remains, however, a challenge. We assessed here if a protocol based on molecular dynamics (MD) simulations would allow distinguishing native from non-native models to complement scoring functions used in docking. To this end, the first models for 25 protein-protein complexes were generated using HADDOCK. Next, MD simulations complemented with machine learning were used to discriminate between native and non-native complexes based on a combination of metrics reporting on the stability of the initial models. Native models showed higher stability in almost all measured properties, including the key ones used for scoring in the Critical Assessment of PRedicted Interaction (CAPRI) competition, namely the positional root mean square deviations and fraction of native contacts from the initial docked model. A random forest classifier was trained, reaching a 0.85 accuracy in correctly distinguishing native from non-native complexes. Reasonably modest simulation lengths of the order of 50-100 ns are sufficient to reach this accuracy, which makes this approach applicable in practice.
Collapse
Affiliation(s)
- Zuzana Jandova
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Attilio Vittorio Vargiu
- Physics
Department, University of Cagliari, Cittadella
Universitaria, S.P. 8 km 0.700, 09042 Monserrato, Italy
| | - Alexandre M. J. J. Bonvin
- Computational
Structural Biology Group, Bijvoet Centre for Biomolecular Research,
Faculty of Science—Chemistry, Utrecht
University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
36
|
Han Y, He F, Chen Y, Qin W, Yu H, Xu D. Quality Assessment of Protein Docking Models Based on Graph Neural Network. FRONTIERS IN BIOINFORMATICS 2021; 1:693211. [PMID: 36303780 PMCID: PMC9581034 DOI: 10.3389/fbinf.2021.693211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022] Open
Abstract
Protein docking provides a structural basis for the design of drugs and vaccines. Among the processes of protein docking, quality assessment (QA) is utilized to pick near-native models from numerous protein docking candidate conformations, and it directly determines the final docking results. Although extensive efforts have been made to improve QA accuracy, it is still the bottleneck of current protein docking systems. In this paper, we presented a Deep Graph Attention Neural Network (DGANN) to evaluate and rank protein docking candidate models. DGANN learns inter-residue physio-chemical properties and structural fitness across the two protein monomers in a docking model and generates their probabilities of near-native models. On the ZDOCK decoy benchmark, our DGANN outperformed the ranking provided by ZDOCK in terms of ranking good models into the top selections. Furthermore, we conducted comparative experiments on an independent testing dataset, and the results also demonstrated the superiority and generalization of our proposed method.
Collapse
Affiliation(s)
- Ye Han
- School of Information Technology, Jilin Agricultural University, Changchun, China
- Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Fei He
- Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| | - Yongbing Chen
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| | - Wenyuan Qin
- School of Information Science and Technology, Northeast Normal University, Changchun, China
| | - Helong Yu
- School of Information Technology, Jilin Agricultural University, Changchun, China
- *Correspondence: Helong Yu, ; Dong Xu,
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- *Correspondence: Helong Yu, ; Dong Xu,
| |
Collapse
|
37
|
Kurcinski M, Kmiecik S, Zalewski M, Kolinski A. Protein-Protein Docking with Large-Scale Backbone Flexibility Using Coarse-Grained Monte-Carlo Simulations. Int J Mol Sci 2021; 22:7341. [PMID: 34298961 PMCID: PMC8306105 DOI: 10.3390/ijms22147341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 12/21/2022] Open
Abstract
Most of the protein-protein docking methods treat proteins as almost rigid objects. Only the side-chains flexibility is usually taken into account. The few approaches enabling docking with a flexible backbone typically work in two steps, in which the search for protein-protein orientations and structure flexibility are simulated separately. In this work, we propose a new straightforward approach for docking sampling. It consists of a single simulation step during which a protein undergoes large-scale backbone rearrangements, rotations, and translations. Simultaneously, the other protein exhibits small backbone fluctuations. Such extensive sampling was possible using the CABS coarse-grained protein model and Replica Exchange Monte Carlo dynamics at a reasonable computational cost. In our proof-of-concept simulations of 62 protein-protein complexes, we obtained acceptable quality models for a significant number of cases.
Collapse
Affiliation(s)
- Mateusz Kurcinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland; (M.Z.); (A.K.)
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland; (M.Z.); (A.K.)
| | | | | |
Collapse
|
38
|
van Noort CW, Honorato RV, Bonvin AMJJ. Information-driven modeling of biomolecular complexes. Curr Opin Struct Biol 2021; 70:70-77. [PMID: 34139639 DOI: 10.1016/j.sbi.2021.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/10/2021] [Indexed: 11/15/2022]
Abstract
Proteins play crucial roles in every cellular process by interacting with each other, nucleic acids, metabolites, and other molecules. The resulting assemblies can be very large and intricate and pose challenges to experimental methods. In the current era of integrative modeling, it is often only by a combination of various experimental techniques and computations that three-dimensional models of those molecular machines can be obtained. Among the various computational approaches available, molecular docking is often the method of choice when it comes to predicting three-dimensional structures of complexes. Docking can generate particularly accurate models when taking into account the available information on the complex of interest. We review here the use of experimental and bioinformatics data in protein-protein docking, describing recent software developments and highlighting applications for the modeling of antibody-antigen complexes and membrane protein complexes, and the use of evolutionary and shape information.
Collapse
Affiliation(s)
- Charlotte W van Noort
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584CH, Netherlands
| | - Rodrigo V Honorato
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584CH, Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht, 3584CH, Netherlands.
| |
Collapse
|
39
|
Wang X, Flannery ST, Kihara D. Protein Docking Model Evaluation by Graph Neural Networks. Front Mol Biosci 2021; 8:647915. [PMID: 34113650 PMCID: PMC8185212 DOI: 10.3389/fmolb.2021.647915] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/26/2021] [Indexed: 12/03/2022] Open
Abstract
Physical interactions of proteins play key functional roles in many important cellular processes. To understand molecular mechanisms of such functions, it is crucial to determine the structure of protein complexes. To complement experimental approaches, which usually take a considerable amount of time and resources, various computational methods have been developed for predicting the structures of protein complexes. In computational modeling, one of the challenges is to identify near-native structures from a large pool of generated models. Here, we developed a deep learning-based approach named Graph Neural Network-based DOcking decoy eValuation scorE (GNN-DOVE). To evaluate a protein docking model, GNN-DOVE extracts the interface area and represents it as a graph. The chemical properties of atoms and the inter-atom distances are used as features of nodes and edges in the graph, respectively. GNN-DOVE was trained, validated, and tested on docking models in the Dockground database and further tested on a combined dataset of Dockground and ZDOCK benchmark as well as a CAPRI scoring dataset. GNN-DOVE performed better than existing methods, including DOVE, which is our previous development that uses a convolutional neural network on voxelized structure models.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Sean T. Flannery
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
40
|
Quignot C, Granger P, Chacón P, Guerois R, Andreani J. Atomic-level evolutionary information improves protein-protein interface scoring. Bioinformatics 2021; 37:3175-3181. [PMID: 33901284 DOI: 10.1093/bioinformatics/btab254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/20/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION The crucial role of protein interactions and the difficulty in characterising them experimentally strongly motivates the development of computational approaches for structural prediction. Even when protein-protein docking samples correct models, current scoring functions struggle to discriminate them from incorrect decoys. The previous incorporation of conservation and coevolution information has shown promise for improving protein-protein scoring. Here, we present a novel strategy to integrate atomic-level evolutionary information into different types of scoring functions to improve their docking discrimination. RESULTS : We applied this general strategy to our residue-level statistical potential from InterEvScore and to two atomic-level scores, SOAP-PP and Rosetta interface score (ISC). Including evolutionary information from as few as ten homologous sequences improves the top 10 success rates of individual atomic-level scores SOAP-PP and Rosetta ISC by respectively 6 and 13.5 percentage points, on a large benchmark of 752 docking cases. The best individual homology-enriched score reaches a top 10 success rate of 34.4%. A consensus approach based on the complementarity between different homology-enriched scores further increases the top 10 success rate to 40%. AVAILABILITY All data used for benchmarking and scoring results, as well as a Singularity container of the pipeline, are available at http://biodev.cea.fr/interevol/interevdata/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chloé Quignot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pierre Granger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pablo Chacón
- Department of Biological Chemical Physics, Rocasolano Institute of Physical Chemistry C.S.I.C, Madrid, Spain
| | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
41
|
Eismann S, Townshend RJL, Thomas N, Jagota M, Jing B, Dror RO. Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes. Proteins 2020; 89:493-501. [PMID: 33289162 DOI: 10.1002/prot.26033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/10/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022]
Abstract
Predicting the structure of multi-protein complexes is a grand challenge in biochemistry, with major implications for basic science and drug discovery. Computational structure prediction methods generally leverage predefined structural features to distinguish accurate structural models from less accurate ones. This raises the question of whether it is possible to learn characteristics of accurate models directly from atomic coordinates of protein complexes, with no prior assumptions. Here we introduce a machine learning method that learns directly from the 3D positions of all atoms to identify accurate models of protein complexes, without using any precomputed physics-inspired or statistical terms. Our neural network architecture combines multiple ingredients that together enable end-to-end learning from molecular structures containing tens of thousands of atoms: a point-based representation of atoms, equivariance with respect to rotation and translation, local convolutions, and hierarchical subsampling operations. When used in combination with previously developed scoring functions, our network substantially improves the identification of accurate structural models among a large set of possible models. Our network can also be used to predict the accuracy of a given structural model in absolute terms. The architecture we present is readily applicable to other tasks involving learning on 3D structures of large atomic systems.
Collapse
Affiliation(s)
- Stephan Eismann
- Department of Applied Physics, Stanford University, Stanford, California, USA.,Department of Computer Science, Stanford University, Stanford, California, USA
| | | | - Nathaniel Thomas
- Department of Physics, Stanford University, Stanford, California, USA
| | - Milind Jagota
- Department of Computer Science, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Bowen Jing
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, California, USA.,Department of Structural Biology, Stanford University, Stanford, California, USA.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
42
|
Harmalkar A, Gray JJ. Advances to tackle backbone flexibility in protein docking. Curr Opin Struct Biol 2020; 67:178-186. [PMID: 33360497 DOI: 10.1016/j.sbi.2020.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Computational docking methods can provide structural models of protein-protein complexes, but protein backbone flexibility upon association often thwarts accurate predictions. In recent blind challenges, medium or high accuracy models were submitted in less than 20% of the 'difficult' targets (with significant backbone change or uncertainty). Here, we describe recent developments in protein-protein docking and highlight advances that tackle backbone flexibility. In molecular dynamics and Monte Carlo approaches, enhanced sampling techniques have reduced time-scale limitations. Internal coordinate formulations can now capture realistic motions of monomers and complexes using harmonic dynamics. And machine learning approaches adaptively guide docking trajectories or generate novel binding site predictions from deep neural networks trained on protein interfaces. These tools poise the field to break through the longstanding challenge of correctly predicting complex structures with significant conformational change.
Collapse
Affiliation(s)
- Ameya Harmalkar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Program in Molecular Biophysics, Institute for Nanobiotechnology, and Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
43
|
Dhawanjewar AS, Roy AA, Madhusudhan MS. A knowledge-based scoring function to assess quaternary associations of proteins. Bioinformatics 2020; 36:3739-3748. [PMID: 32246820 DOI: 10.1093/bioinformatics/btaa207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION The elucidation of all inter-protein interactions would significantly enhance our knowledge of cellular processes at a molecular level. Given the enormity of the problem, the expenses and limitations of experimental methods, it is imperative that this problem is tackled computationally. In silico predictions of protein interactions entail sampling different conformations of the purported complex and then scoring these to assess for interaction viability. In this study, we have devised a new scheme for scoring protein-protein interactions. RESULTS Our method, PIZSA (Protein Interaction Z-Score Assessment), is a binary classification scheme for identification of native protein quaternary assemblies (binders/nonbinders) based on statistical potentials. The scoring scheme incorporates residue-residue contact preference on the interface with per residue-pair atomic contributions and accounts for clashes. PIZSA can accurately discriminate between native and non-native structural conformations from protein docking experiments and outperform other contact-based potential scoring functions. The method has been extensively benchmarked and is among the top 6 methods, outperforming 31 other statistical, physics based and machine learning scoring schemes. The PIZSA potentials can also distinguish crystallization artifacts from biological interactions. AVAILABILITY AND IMPLEMENTATION PIZSA is implemented as a web server at http://cospi.iiserpune.ac.in/pizsa and can be downloaded as a standalone package from http://cospi.iiserpune.ac.in/pizsa/Download/Download.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abhilesh S Dhawanjewar
- Indian Institute of Science Education and Research, Pashan, Pune 411008, India.,School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Ankit A Roy
- Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | | |
Collapse
|
44
|
Integrative modeling of membrane-associated protein assemblies. Nat Commun 2020; 11:6210. [PMID: 33277503 PMCID: PMC7718903 DOI: 10.1038/s41467-020-20076-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2023] Open
Abstract
Membrane proteins are among the most challenging systems to study with experimental structural biology techniques. The increased number of deposited structures of membrane proteins has opened the route to modeling their complexes by methods such as docking. Here, we present an integrative computational protocol for the modeling of membrane-associated protein assemblies. The information encoded by the membrane is represented by artificial beads, which allow targeting of the docking toward the binding-competent regions. It combines efficient, artificial intelligence-based rigid-body docking by LightDock with a flexible final refinement with HADDOCK to remove potential clashes at the interface. We demonstrate the performance of this protocol on eighteen membrane-associated complexes, whose interface lies between the membrane and either the cytosolic or periplasmic regions. In addition, we provide a comparison to another state-of-the-art docking software, ZDOCK. This protocol should shed light on the still dark fraction of the interactome consisting of membrane proteins.
Collapse
|
45
|
Andreani J, Quignot C, Guerois R. Structural prediction of protein interactions and docking using conservation and coevolution. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Andreani
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Chloé Quignot
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Raphael Guerois
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| |
Collapse
|
46
|
Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG. Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Front Chem 2020; 8:343. [PMID: 32411671 PMCID: PMC7200080 DOI: 10.3389/fchem.2020.00343] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The drug development process is a major challenge in the pharmaceutical industry since it takes a substantial amount of time and money to move through all the phases of developing of a new drug. One extensively used method to minimize the cost and time for the drug development process is computer-aided drug design (CADD). CADD allows better focusing on experiments, which can reduce the time and cost involved in researching new drugs. In this context, structure-based virtual screening (SBVS) is robust and useful and is one of the most promising in silico techniques for drug design. SBVS attempts to predict the best interaction mode between two molecules to form a stable complex, and it uses scoring functions to estimate the force of non-covalent interactions between a ligand and molecular target. Thus, scoring functions are the main reason for the success or failure of SBVS software. Many software programs are used to perform SBVS, and since they use different algorithms, it is possible to obtain different results from different software using the same input. In the last decade, a new technique of SBVS called consensus virtual screening (CVS) has been used in some studies to increase the accuracy of SBVS and to reduce the false positives obtained in these experiments. An indispensable condition to be able to utilize SBVS is the availability of a 3D structure of the target protein. Some virtual databases, such as the Protein Data Bank, have been created to store the 3D structures of molecules. However, sometimes it is not possible to experimentally obtain the 3D structure. In this situation, the homology modeling methodology allows the prediction of the 3D structure of a protein from its amino acid sequence. This review presents an overview of the challenges involved in the use of CADD to perform SBVS, the areas where CADD tools support SBVS, a comparison between the most commonly used tools, and the techniques currently used in an attempt to reduce the time and cost in the drug development process. Finally, the final considerations demonstrate the importance of using SBVS in the drug development process.
Collapse
Affiliation(s)
- Eduardo Habib Bechelane Maia
- Laboratory of Pharmaceutical Medicinal Chemistry, Federal University of São João Del Rei, Divinópolis, Brazil.,Federal Center for Technological Education of Minas Gerais-CEFET-MG, Belo Horizonte, Brazil
| | - Letícia Cristina Assis
- Laboratory of Pharmaceutical Medicinal Chemistry, Federal University of São João Del Rei, Divinópolis, Brazil
| | | | | | - Alex Gutterres Taranto
- Laboratory of Pharmaceutical Medicinal Chemistry, Federal University of São João Del Rei, Divinópolis, Brazil
| |
Collapse
|
47
|
Cao Y, Shen Y. Energy-based graph convolutional networks for scoring protein docking models. Proteins 2020; 88:1091-1099. [PMID: 32144844 DOI: 10.1002/prot.25888] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/15/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Structural information about protein-protein interactions, often missing at the interactome scale, is important for mechanistic understanding of cells and rational discovery of therapeutics. Protein docking provides a computational alternative for such information. However, ranking near-native docked models high among a large number of candidates, often known as the scoring problem, remains a critical challenge. Moreover, estimating model quality, also known as the quality assessment problem, is rarely addressed in protein docking. In this study, the two challenging problems in protein docking are regarded as relative and absolute scoring, respectively, and addressed in one physics-inspired deep learning framework. We represent protein and complex structures as intra- and inter-molecular residue contact graphs with atom-resolution node and edge features. And we propose a novel graph convolutional kernel that aggregates interacting nodes' features through edges so that generalized interaction energies can be learned directly from 3D data. The resulting energy-based graph convolutional networks (EGCN) with multihead attention are trained to predict intra- and inter-molecular energies, binding affinities, and quality measures (interface RMSD) for encounter complexes. Compared to a state-of-the-art scoring function for model ranking, EGCN significantly improves ranking for a critical assessment of predicted interactions (CAPRI) test set involving homology docking; and is comparable or slightly better for Score_set, a CAPRI benchmark set generated by diverse community-wide docking protocols not known to training data. For Score_set quality assessment, EGCN shows about 27% improvement to our previous efforts. Directly learning from 3D structure data in graph representation, EGCN represents the first successful development of graph convolutional networks for protein docking.
Collapse
Affiliation(s)
- Yue Cao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas
| |
Collapse
|
48
|
Renaud N, Jung Y, Honavar V, Geng C, Bonvin AM, Xue LC. iScore: An MPI supported software for ranking protein-protein docking models based on a random walk graph kernel and support vector machines. SOFTWAREX 2020; 11:100462. [PMID: 35419466 PMCID: PMC9005067 DOI: 10.1016/j.softx.2020.100462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Computational docking is a promising tool to model three-dimensional (3D) structures of protein-protein complexes, which provides fundamental insights of protein functions in the cellular life. Singling out near-native models from the huge pool of generated docking models (referred to as the scoring problem) remains as a major challenge in computational docking. We recently published iScore, a novel graph kernel based scoring function. iScore ranks docking models based on their interface graph similarities to the training interface graph set. iScore uses a support vector machine approach with random-walk graph kernels to classify and rank protein-protein interfaces. Here, we present the software for iScore. The software provides executable scripts that fully automate the computational workflow. In addition, the creation and analysis of the interface graph can be distributed across different processes using Message Passing interface (MPI) and can be offloaded to GPUs thanks to dedicated CUDA kernels.
Collapse
Affiliation(s)
- Nicolas Renaud
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
| | - Yong Jung
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
| | - Vasant Honavar
- Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA
- College of Information Science & Technology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cunliang Geng
- Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands
- Bijvoet Centre for Biomolecular Research Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre M.J.J. Bonvin
- Bijvoet Centre for Biomolecular Research Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Li C. Xue
- Bijvoet Centre for Biomolecular Research Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Center for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Perthold JW, Oostenbrink C. GroScore: Accurate Scoring of Protein–Protein Binding Poses Using Explicit-Solvent Free-Energy Calculations. J Chem Inf Model 2019; 59:5074-5085. [DOI: 10.1021/acs.jcim.9b00687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Walther Perthold
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|