1
|
Wei CH, Allot A, Lai PT, Leaman R, Tian S, Luo L, Jin Q, Wang Z, Chen Q, Lu Z. PubTator 3.0: an AI-powered literature resource for unlocking biomedical knowledge. Nucleic Acids Res 2024; 52:W540-W546. [PMID: 38572754 PMCID: PMC11223843 DOI: 10.1093/nar/gkae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
PubTator 3.0 (https://www.ncbi.nlm.nih.gov/research/pubtator3/) is a biomedical literature resource using state-of-the-art AI techniques to offer semantic and relation searches for key concepts like proteins, genetic variants, diseases and chemicals. It currently provides over one billion entity and relation annotations across approximately 36 million PubMed abstracts and 6 million full-text articles from the PMC open access subset, updated weekly. PubTator 3.0's online interface and API utilize these precomputed entity relations and synonyms to provide advanced search capabilities and enable large-scale analyses, streamlining many complex information needs. We showcase the retrieval quality of PubTator 3.0 using a series of entity pair queries, demonstrating that PubTator 3.0 retrieves a greater number of articles than either PubMed or Google Scholar, with higher precision in the top 20 results. We further show that integrating ChatGPT (GPT-4) with PubTator APIs dramatically improves the factuality and verifiability of its responses. In summary, PubTator 3.0 offers a comprehensive set of features and tools that allow researchers to navigate the ever-expanding wealth of biomedical literature, expediting research and unlocking valuable insights for scientific discovery.
Collapse
Affiliation(s)
- Chih-Hsuan Wei
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Alexis Allot
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Po-Ting Lai
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Robert Leaman
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Shubo Tian
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Ling Luo
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Qiao Jin
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Zhizheng Wang
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Qingyu Chen
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD 20894, USA
| |
Collapse
|
2
|
Moosavi S, Jablonka KM, Smit B. The Role of Machine Learning in the Understanding and Design of Materials. J Am Chem Soc 2020; 142:20273-20287. [PMID: 33170678 PMCID: PMC7716341 DOI: 10.1021/jacs.0c09105] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Developing algorithmic approaches for the rational design and discovery of materials can enable us to systematically find novel materials, which can have huge technological and social impact. However, such rational design requires a holistic perspective over the full multistage design process, which involves exploring immense materials spaces, their properties, and process design and engineering as well as a techno-economic assessment. The complexity of exploring all of these options using conventional scientific approaches seems intractable. Instead, novel tools from the field of machine learning can potentially solve some of our challenges on the way to rational materials design. Here we review some of the chief advancements of these methods and their applications in rational materials design, followed by a discussion on some of the main challenges and opportunities we currently face together with our perspective on the future of rational materials design and discovery.
Collapse
Affiliation(s)
- Seyed
Mohamad Moosavi
- Laboratory of Molecular Simulation,
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Valais, Switzerland
| | - Kevin Maik Jablonka
- Laboratory of Molecular Simulation,
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Valais, Switzerland
| | - Berend Smit
- Laboratory of Molecular Simulation,
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Valais, Switzerland
| |
Collapse
|