1
|
Zhang W, Ding Y, Wei L, Guo X, Ni F. Therapeutic peptides identification via kernel risk sensitive loss-based k-nearest neighbor model and multi-Laplacian regularization. Brief Bioinform 2024; 25:bbae534. [PMID: 39438076 PMCID: PMC11495874 DOI: 10.1093/bib/bbae534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Therapeutic peptides are therapeutic agents synthesized from natural amino acids, which can be used as carriers for precisely transporting drugs and can activate the immune system for preventing and treating various diseases. However, screening therapeutic peptides using biochemical assays is expensive, time-consuming, and limited by experimental conditions and biological samples, and there may be ethical considerations in the clinical stage. In contrast, screening therapeutic peptides using machine learning and computational methods is efficient, automated, and can accurately predict potential therapeutic peptides. In this study, a k-nearest neighbor model based on multi-Laplacian and kernel risk sensitive loss was proposed, which introduces a kernel risk loss function derived from the K-local hyperplane distance nearest neighbor model as well as combining the Laplacian regularization method to predict therapeutic peptides. The findings indicated that the suggested approach achieved satisfactory results and could effectively predict therapeutic peptide sequences.
Collapse
Affiliation(s)
- Wenyu Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, High tech Zone, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, No.1 Chengdian Road, Kecheng District, Quzhou 324000, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, No.1 Chengdian Road, Kecheng District, Quzhou 324000, China
| | - Leyi Wei
- Macao Polytechnic University, Gomes Street, Macau Peninsula, Macau 999078, China
| | - Xiaoyi Guo
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, No.1 Chengdian Road, Kecheng District, Quzhou 324000, China
| | - Fengming Ni
- Department of Gastroenterology, The First Hospital of Jilin University, No. 71 Xinmin Street, Chaoyang District, Changchun 130021, China
| |
Collapse
|
2
|
Rahimzadeh F, Mohammad Khanli L, Salehpoor P, Golabi F, PourBahrami S. Unveiling the evolution of policies for enhancing protein structure predictions: A comprehensive analysis. Comput Biol Med 2024; 179:108815. [PMID: 38986287 DOI: 10.1016/j.compbiomed.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Predicting protein structure is both fascinating and formidable, playing a crucial role in structure-based drug discovery and unraveling diseases with elusive origins. The Critical Assessment of Protein Structure Prediction (CASP) serves as a biannual battleground where global scientists converge to untangle the intricate relationships within amino acid chains. Two primary methods, Template-Based Modeling (TBM) and Template-Free (TF) strategies, dominate protein structure prediction. The trend has shifted towards Template-Free predictions due to their broader sequence coverage with fewer templates. The predictive process can be broadly classified into contact map, binned-distance, and real-valued distance predictions, each with distinctive strengths and limitations manifested through tailored loss functions. We have also introduced revolutionary end-to-end, and all-atom diffusion-based techniques that have transformed protein structure predictions. Recent advancements in deep learning techniques have significantly improved prediction accuracy, although the effectiveness is contingent upon the quality of input features derived from natural bio-physiochemical attributes and Multiple Sequence Alignments (MSA). Hence, the generation of high-quality MSA data holds paramount importance in harnessing informative input features for enhanced prediction outcomes. Remarkable successes have been achieved in protein structure prediction accuracy, however not enough for what structural knowledge was intended to, which implies need for development in some other aspects of the predictions. In this regard, scientists have opened other frontiers for protein structural prediction. The utilization of subsampling in multiple sequence alignment (MSA) and protein language modeling appears to be particularly promising in enhancing the accuracy and efficiency of predictions, ultimately aiding in drug discovery efforts. The exploration of predicting protein complex structure also opens up exciting opportunities to deepen our knowledge of molecular interactions and design therapeutics that are more effective. In this article, we have discussed the vicissitudes that the scientists have gone through to improve prediction accuracy, and examined the effective policies in predicting from different aspects, including the construction of high quality MSA, providing informative input features, and progresses in deep learning approaches. We have also briefly touched upon transitioning from predicting single-chain protein structures to predicting protein complex structures. Our findings point towards promoting open research environments to support the objectives of protein structure prediction.
Collapse
Affiliation(s)
- Faezeh Rahimzadeh
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | | | - Pedram Salehpoor
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Faegheh Golabi
- Department of Biomedical Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin PourBahrami
- Department of Computer Engineering, Technical and Vocational University (TVU), Tehran, Iran
| |
Collapse
|
3
|
Jisna VA, Ajay AP, Jayaraj PB. Using Attention-UNet Models to Predict Protein Contact Maps. J Comput Biol 2024; 31:691-702. [PMID: 38979621 DOI: 10.1089/cmb.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Proteins are essential to life, and understanding their intrinsic roles requires determining their structure. The field of proteomics has opened up new opportunities by applying deep learning algorithms to large databases of solved protein structures. With the availability of large data sets and advanced machine learning methods, the prediction of protein residue interactions has greatly improved. Protein contact maps provide empirical evidence of the interacting residue pairs within a protein sequence. Template-free protein structure prediction systems rely heavily on this information. This article proposes UNet-CON, an attention-integrated UNet architecture, trained to predict residue-residue contacts in protein sequences. With the predicted contacts being more accurate than state-of-the-art methods on the PDB25 test set, the model paves the way for the development of more powerful deep learning algorithms for predicting protein residue interactions.
Collapse
Affiliation(s)
- V A Jisna
- Department of Computer Science and Engineering, Indian Institute of Information Technology Design and Manufacturing, Kurnool, India
| | | | - P B Jayaraj
- Department of Computer Science and Engineering, NIT Calicut, Calicut, India
| |
Collapse
|
4
|
Zhao C, Wang S. AttCON: With better MSAs and attention mechanism for accurate protein contact map prediction. Comput Biol Med 2024; 169:107822. [PMID: 38091726 DOI: 10.1016/j.compbiomed.2023.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Protein contact map prediction is a critical and vital step in protein structure prediction, and its accuracy is highly contingent upon the feature representations of protein sequence information and the efficacy of deep learning models. In this paper, we propose an algorithm, DeepMSA+, to generate protein multiple sequence alignments (MSAs) and to construct feature representations based on co-evolutionary information and sequence information derived from MSAs. We also propose an improved deep learning model, AttCON, for training input features to predict protein contact map. The model incorporates an attention module, and by comparing different attention modules, we find a parameter-free attention module suitable for contact map prediction. Additionally, we use the Focal Loss function to better address the data imbalance issue in protein contact map. We also developed a weighted evaluation index (W score) for model evaluation, which takes into account a wide range of metrics. W score is comprehensive in its scope, with a particular focus on the precision of predictions for medium-range and long-range contacts. Experimental results show that AttCON achieves good precision results on datasets from CASP11 to CASP15. Compared to some state-of-the-art methods, it achieves an average improvement of over 5% in both medium-range and long-range predictions, and W score is improved by an average of 2 points.
Collapse
Affiliation(s)
- Che Zhao
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China; Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming, 650504, Yunnan, China.
| |
Collapse
|
5
|
Mufassirin MMM, Newton MAH, Sattar A. Artificial intelligence for template-free protein structure prediction: a comprehensive review. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Barger J, Adhikari B. New Labeling Methods for Deep Learning Real-Valued Inter-Residue Distance Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3586-3594. [PMID: 34559660 DOI: 10.1109/tcbb.2021.3115053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Much of the recent success in protein structure prediction has been a result of accurate protein contact prediction-a binary classification problem. Dozens of methods, built from various types of machine learning and deep learning algorithms, have been published over the last two decades for predicting contacts. Recently, many groups, including Google DeepMind, have demonstrated that reformulating the problem as a multi-class classification problem is a more promising direction to pursue. As an alternative approach, we recently proposed real-valued distance predictions, formulating the problem as a regression problem. The nuances of protein 3D structures make this formulation appropriate, allowing predictions to reflect inter-residue distances in nature. Despite these promises, the accurate prediction of real-valued distances remains relatively unexplored; possibly due to classification being better suited to machine and deep learning algorithms. METHODS Can regression methods be designed to predict real-valued distances as precise as binary contacts? To investigate this, we propose multiple novel methods of input label engineering, which is different from feature engineering, with the goal of optimizing the distribution of distances to cater to the loss function of the deep-learning model. Since an important utility of predicted contacts or distances is to build three-dimensional models, we also tested if predicted distances can reconstruct more accurate models than contacts. RESULTS Our results demonstrate, for the first time, that deep learning methods for real-valued protein distance prediction can deliver distances as precise as binary classification methods. When using an optimal distance transformation function on the standard PSICOV dataset consisting of 150 representative proteins, the precision of 'top-all' long-range contacts improves from 60.9% to 61.4% when predicting real-valued distances instead of contacts. When building three-dimensional models we observed an average TM-score increase from 0.61 to 0.72, highlighting the advantage of predicting real-valued distances.
Collapse
|
7
|
Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function. Comput Struct Biotechnol J 2022; 20:6138-6148. [DOI: 10.1016/j.csbj.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
8
|
Missing Data Estimation in Temporal Multilayer Position-Aware Graph Neural Network (TMP-GNN). MACHINE LEARNING AND KNOWLEDGE EXTRACTION 2022. [DOI: 10.3390/make4020017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
GNNs have been proven to perform highly effectively in various node-level, edge-level, and graph-level prediction tasks in several domains. Existing approaches mainly focus on static graphs. However, many graphs change over time and their edge may disappear, or the node/edge attribute may alter from one time to the other. It is essential to consider such evolution in the representation learning of nodes in time-varying graphs. In this paper, we propose a Temporal Multilayer Position-Aware Graph Neural Network (TMP-GNN), a node embedding approach for dynamic graphs that incorporates the interdependence of temporal relations into embedding computation. We evaluate the performance of TMP-GNN on two different representations of temporal multilayered graphs. The performance is assessed against the most popular GNNs on a node-level prediction task. Then, we incorporate TMP-GNN into a deep learning framework to estimate missing data and compare the performance with their corresponding competent GNNs from our former experiment, and a baseline method. Experimental results on four real-world datasets yield up to 58% lower ROCAUC for the pair-wise node classification task, and 96% lower MAE in missing feature estimation, particularly for graphs with a relatively high number of nodes and lower mean degree of connectivity.
Collapse
|
9
|
Lee D, Xiong D, Wierbowski S, Li L, Liang S, Yu H. Deep learning methods for 3D structural proteome and interactome modeling. Curr Opin Struct Biol 2022; 73:102329. [PMID: 35139457 PMCID: PMC8957610 DOI: 10.1016/j.sbi.2022.102329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/05/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Bolstered by recent methodological and hardware advances, deep learning has increasingly been applied to biological problems and structural proteomics. Such approaches have achieved remarkable improvements over traditional machine learning methods in tasks ranging from protein contact map prediction to protein folding, prediction of protein-protein interaction interfaces, and characterization of protein-drug binding pockets. In particular, emergence of ab initio protein structure prediction methods including AlphaFold2 has revolutionized protein structural modeling. From a protein function perspective, numerous deep learning methods have facilitated deconvolution of the exact amino acid residues and protein surface regions responsible for binding other proteins or small molecule drugs. In this review, we provide a comprehensive overview of recent deep learning methods applied in structural proteomics.
Collapse
Affiliation(s)
- Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shayne Wierbowski
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Le Li
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Si Y, Yan C. Improved protein contact prediction using dimensional hybrid residual networks and singularity enhanced loss function. Brief Bioinform 2021; 22:6357883. [PMID: 34448830 DOI: 10.1093/bib/bbab341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/10/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022] Open
Abstract
Deep residual learning has shown great success in protein contact prediction. In this study, a new deep residual learning-based protein contact prediction model was developed. Comparing with previous models, a new type of residual block hybridizing 1D and 2D convolutions was designed to increase the effective receptive field of the residual network, and a new loss function emphasizing the easily misclassified residue pairs was proposed to enhance the model training. The developed protein contact prediction model referred to as DRN-1D2D was first evaluated on 105 CASP11 targets, 76 CAMEO hard targets and 398 membrane proteins together with two in house-developed reference models based on either the standard 2D residual block or the traditional BCE loss function, from which we confirmed that both the dimensional hybrid residual block and the singularity enhanced loss function can be employed to improve the model performance for protein contact prediction. DRN-1D2D was further evaluated on 39 CASP13 and CASP14 free modeling targets together with the two reference models and six state-of-the-art protein contact prediction models including DeepCov, DeepCon, DeepConPred2, SPOT-Contact, RaptorX-Contact and TripleRes. The result shows that DRN-1D2D consistently achieved the best performance among all these models.
Collapse
Affiliation(s)
- Yunda Si
- School of Physics, Huazhong University of Science and Technology, China
| | - Chengfei Yan
- School of Physics, Huazhong University of Science and Technology, China
| |
Collapse
|
11
|
Laine E, Eismann S, Elofsson A, Grudinin S. Protein sequence-to-structure learning: Is this the end(-to-end revolution)? Proteins 2021; 89:1770-1786. [PMID: 34519095 DOI: 10.1002/prot.26235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023]
Abstract
The potential of deep learning has been recognized in the protein structure prediction community for some time, and became indisputable after CASP13. In CASP14, deep learning has boosted the field to unanticipated levels reaching near-experimental accuracy. This success comes from advances transferred from other machine learning areas, as well as methods specifically designed to deal with protein sequences and structures, and their abstractions. Novel emerging approaches include (i) geometric learning, that is, learning on representations such as graphs, three-dimensional (3D) Voronoi tessellations, and point clouds; (ii) pretrained protein language models leveraging attention; (iii) equivariant architectures preserving the symmetry of 3D space; (iv) use of large meta-genome databases; (v) combinations of protein representations; and (vi) finally truly end-to-end architectures, that is, differentiable models starting from a sequence and returning a 3D structure. Here, we provide an overview and our opinion of the novel deep learning approaches developed in the last 2 years and widely used in CASP14.
Collapse
Affiliation(s)
- Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Stephan Eismann
- Department of Computer Science and Applied Physics, Stanford University, Stanford, California, USA
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sergei Grudinin
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, Grenoble, France
| |
Collapse
|
12
|
Geethu S, Vimina ER. Improved 3-D Protein Structure Predictions using Deep ResNet Model. Protein J 2021; 40:669-681. [PMID: 34510309 DOI: 10.1007/s10930-021-10016-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Protein Structure Prediction (PSP) is considered to be a complicated problem in computational biology. In spite of, the remarkable progress made by the co-evolution-based method in PSP, it is still a challenging and unresolved problem. Recently, along with co-evolutionary relationships, deep learning approaches have been introduced in PSP that lead to significant progress. In this paper a novel methodology using deep ResNet architecture for predicting inter-residue distance and dihedral angles is proposed, that aims to generate 125 homologous sequences in an average from a set of customized sequence database. These sequences are used to generate input features. As an outcome of neural networks, a pool of structures is generated from which the lowest potential structure is chosen as the final predicted 3-D protein structure. The proposed method is trained using 6521 protein sequences extracted from Protein Data Bank (PDB). For testing 48 protein sequences whose residue length is less than 400 residues are chosen from the 13th Critical Assessment of protein Structure Prediction (CASP 13) dataset are used. The model is compared with Alphafold, Zhang, and RaptorX. The template modeling (TM) score is used to evaluate the accuracy of the estimated structure. The proposed method produces better performances for 52% of the target sequences while that of Alphafold, Zhang, RaptorX were 10%, 22.9%, and 6% respectively. Additionally, for 37.5% target sequences, the proposed method was able to achieve accuracy greater than or equal to 0.80. The TM score obtained for the sequences under consideration were 0.69, 0.67, 0.65, and 0.58 respectively for the proposed method, Alphafold, Zhang, and RaptorX.
Collapse
Affiliation(s)
- S Geethu
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, Ernakulam, India.
| | - E R Vimina
- Department of Computer Science and IT, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Kochi Campus, Ernakulam, India
| |
Collapse
|
13
|
Bottino GF, Ferrari AJR, Gozzo FC, Martínez L. Structural discrimination analysis for constraint selection in protein modeling. Bioinformatics 2021; 37:3766-3773. [PMID: 34086840 DOI: 10.1093/bioinformatics/btab425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Protein structure modeling can be improved by the use of distance constraints between amino acid residues, provided such data reflects-at least partially-the native tertiary structure of the target system. In fact, only a small subset of the native contact map is necessary to successfully drive the model conformational search, so one important goal is to obtain the set of constraints with the highest true-positive rate, lowest redundancy, and greatest amount of information. In this work, we introduce a constraint evaluation and selection method based on the point-biserial correlation coefficient, which utilizes structural information from an ensemble of models to indirectly measure the power of each constraint in biasing the conformational search towards consensus structures. RESULTS Residue contact maps obtained by direct coupling analysis are systematically improved by means of discriminant analysis, reaching in some cases accuracies often seen only in modern deep-learning based approaches. When combined with an iterative modeling workflow, the proposed constraint classification optimizes the selection of the constraint set and maximizes the probability of obtaining successful models. The use of discriminant analysis for the valorization of the information of constraint data sets is a general concept with possible applications to other constraint types and modeling problems. AVAILABILITY AND IMPLEMENTATION scripts and procedures to implement the methodology presented herein are available at https://github.com/m3g/2021_Bottino_Biserial. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Guilherme F Bottino
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.,Center for Computational Engineering & Science, University of Campinas, Campinas, SP, Brazil
| | - Allan J R Ferrari
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.,Center for Computational Engineering & Science, University of Campinas, Campinas, SP, Brazil
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | - Leandro Martínez
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.,Center for Computational Engineering & Science, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
14
|
Song W, Ko J, Choi YH, Hwang NS. Recent advancements in enzyme-mediated crosslinkable hydrogels: In vivo-mimicking strategies. APL Bioeng 2021; 5:021502. [PMID: 33834154 PMCID: PMC8018798 DOI: 10.1063/5.0037793] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Enzymes play a central role in fundamental biological processes and have been traditionally used to trigger various processes. In recent years, enzymes have been used to tune biomaterial responses and modify the chemical structures at desired sites. These chemical modifications have allowed the fabrication of various hydrogels for tissue engineering and therapeutic applications. This review provides a comprehensive overview of recent advancements in the use of enzymes for hydrogel fabrication. Strategies to enhance the enzyme function and improve biocompatibility are described. In addition, we describe future opportunities and challenges for the production of enzyme-mediated crosslinkable hydrogels.
Collapse
Affiliation(s)
- Wonmoon Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S. Hwang
- Author to whom correspondence should be addressed:. Tel.: 82-2-880-1635. Fax: 82-2-880-7295
| |
Collapse
|
15
|
Protein Structure Prediction: Conventional and Deep Learning Perspectives. Protein J 2021; 40:522-544. [PMID: 34050498 DOI: 10.1007/s10930-021-10003-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Protein structure prediction is a way to bridge the sequence-structure gap, one of the main challenges in computational biology and chemistry. Predicting any protein's accurate structure is of paramount importance for the scientific community, as these structures govern their function. Moreover, this is one of the complicated optimization problems that computational biologists have ever faced. Experimental protein structure determination methods include X-ray crystallography, Nuclear Magnetic Resonance Spectroscopy and Electron Microscopy. All of these are tedious and time-consuming procedures that require expertise. To make the process less cumbersome, scientists use predictive tools as part of computational methods, using data consolidated in the protein repositories. In recent years, machine learning approaches have raised the interest of the structure prediction community. Most of the machine learning approaches for protein structure prediction are centred on co-evolution based methods. The accuracy of these approaches depends on the number of homologous protein sequences available in the databases. The prediction problem becomes challenging for many proteins, especially those without enough sequence homologs. Deep learning methods allow for the extraction of intricate features from protein sequence data without making any intuitions. Accurately predicted protein structures are employed for drug discovery, antibody designs, understanding protein-protein interactions, and interactions with other molecules. This article provides a review of conventional and deep learning approaches in protein structure prediction. We conclude this review by outlining a few publicly available datasets and deep learning architectures currently employed for protein structure prediction tasks.
Collapse
|
16
|
Pakhrin SC, Shrestha B, Adhikari B, KC DB. Deep Learning-Based Advances in Protein Structure Prediction. Int J Mol Sci 2021; 22:5553. [PMID: 34074028 PMCID: PMC8197379 DOI: 10.3390/ijms22115553] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Obtaining an accurate description of protein structure is a fundamental step toward understanding the underpinning of biology. Although recent advances in experimental approaches have greatly enhanced our capabilities to experimentally determine protein structures, the gap between the number of protein sequences and known protein structures is ever increasing. Computational protein structure prediction is one of the ways to fill this gap. Recently, the protein structure prediction field has witnessed a lot of advances due to Deep Learning (DL)-based approaches as evidenced by the success of AlphaFold2 in the most recent Critical Assessment of protein Structure Prediction (CASP14). In this article, we highlight important milestones and progresses in the field of protein structure prediction due to DL-based methods as observed in CASP experiments. We describe advances in various steps of protein structure prediction pipeline viz. protein contact map prediction, protein distogram prediction, protein real-valued distance prediction, and Quality Assessment/refinement. We also highlight some end-to-end DL-based approaches for protein structure prediction approaches. Additionally, as there have been some recent DL-based advances in protein structure determination using Cryo-Electron (Cryo-EM) microscopy based, we also highlight some of the important progress in the field. Finally, we provide an outlook and possible future research directions for DL-based approaches in the protein structure prediction arena.
Collapse
Affiliation(s)
- Subash C. Pakhrin
- Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS 67260, USA;
| | - Bikash Shrestha
- Department of Computer Science, University of Missouri-St. Louis, St. Louis, MO 63121, USA;
| | - Badri Adhikari
- Department of Computer Science, University of Missouri-St. Louis, St. Louis, MO 63121, USA;
| | - Dukka B. KC
- Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS 67260, USA;
| |
Collapse
|
17
|
Zhang H, Bei Z, Xi W, Hao M, Ju Z, Saravanan KM, Zhang H, Guo N, Wei Y. Evaluation of residue-residue contact prediction methods: From retrospective to prospective. PLoS Comput Biol 2021; 17:e1009027. [PMID: 34029314 PMCID: PMC8177648 DOI: 10.1371/journal.pcbi.1009027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/04/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Sequence-based residue contact prediction plays a crucial role in protein structure reconstruction. In recent years, the combination of evolutionary coupling analysis (ECA) and deep learning (DL) techniques has made tremendous progress for residue contact prediction, thus a comprehensive assessment of current methods based on a large-scale benchmark data set is very needed. In this study, we evaluate 18 contact predictors on 610 non-redundant proteins and 32 CASP13 targets according to a wide range of perspectives. The results show that different methods have different application scenarios: (1) DL methods based on multi-categories of inputs and large training sets are the best choices for low-contact-density proteins such as the intrinsically disordered ones and proteins with shallow multi-sequence alignments (MSAs). (2) With at least 5L (L is sequence length) effective sequences in the MSA, all the methods show the best performance, and methods that rely only on MSA as input can reach comparable achievements as methods that adopt multi-source inputs. (3) For top L/5 and L/2 predictions, DL methods can predict more hydrophobic interactions while ECA methods predict more salt bridges and disulfide bonds. (4) ECA methods can detect more secondary structure interactions, while DL methods can accurately excavate more contact patterns and prune isolated false positives. In general, multi-input DL methods with large training sets dominate current approaches with the best overall performance. Despite the great success of current DL methods must be stated the fact that there is still much room left for further improvement: (1) With shallow MSAs, the performance will be greatly affected. (2) Current methods show lower precisions for inter-domain compared with intra-domain contact predictions, as well as very high imbalances in precisions between intra-domains. (3) Strong prediction similarities between DL methods indicating more feature types and diversified models need to be developed. (4) The runtime of most methods can be further optimized. The amino acid sequence of a protein ultimately determines its tertiary structure, and the tertiary structure determines its function(s) and plays a key role in understanding biological processes and disease pathogenesis. Protein tertiary structure can be determined using experimental techniques such as cryo-electron microscopy, nuclear magnetic resonance and X-ray crystallography, which are very expensive and time-consuming. As an alternative, researchers are trying to use in silico methods to predict the 3D structures. Residue contact-assisted protein folding paves an avenue for sequence-based protein structure prediction and therefore has become one of the most challenging and promising problems in structural bioinformatics. Over the past years, contact prediction has undergone continuous evolution in techniques. Through a retrospective analysis of traditional machine learning /evolutionary coupling analysis methods/ consensus machine learning methods and a multi-perspective study on recently developed deep learning methods, we explore the most advanced contact predictors, pursue application scenarios for different methods, and seek prospective directions for further improvement. We anticipate that our study will serve as a practical and useful guide for the development of future approaches to contact prediction.
Collapse
Affiliation(s)
- Huiling Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhendong Bei
- Cloud Computing Department, Alibaba Group, Hangzhou, China
| | - Wenhui Xi
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Hao
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Zhen Ju
- University of Chinese Academy of Sciences, Beijing, China
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Konda Mani Saravanan
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haiping Zhang
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning Guo
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Wei
- University of Chinese Academy of Sciences, Beijing, China
- Centre for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- * E-mail:
| |
Collapse
|
18
|
Sun J, Frishman D. Improved sequence-based prediction of interaction sites in α-helical transmembrane proteins by deep learning. Comput Struct Biotechnol J 2021; 19:1512-1530. [PMID: 33815689 PMCID: PMC7985279 DOI: 10.1016/j.csbj.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
Fast and accurate prediction of transmembrane protein interaction sites. First ever computational survey of interaction sites in membrane proteins. 10-30% of amino acid positions predicted to be involved in interactions.
Interactions between transmembrane (TM) proteins are fundamental for a wide spectrum of cellular functions, but precise molecular details of these interactions remain largely unknown due to the scarcity of experimentally determined three-dimensional complex structures. Computational techniques are therefore required for a large-scale annotation of interaction sites in TM proteins. Here, we present a novel deep-learning approach, DeepTMInter, for sequence-based prediction of interaction sites in α-helical TM proteins based on their topological, physiochemical, and evolutionary properties. Using a combination of ultra-deep residual neural networks with a stacked generalization ensemble technique DeepTMInter significantly outperforms existing methods, achieving the AUC/AUCPR values of 0.689/0.598. Across the main functional families of human transmembrane proteins, the percentage of amino acid sites predicted to be involved in interactions typically ranges between 10% and 25%, and up to 30% in ion channels. DeepTMInter is available as a standalone package at https://github.com/2003100127/deeptminter. The training and benchmarking datasets are available at https://data.mendeley.com/datasets/2t8kgwzp35.
Collapse
Affiliation(s)
- Jianfeng Sun
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftzentrum Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| |
Collapse
|
19
|
Susanty M, Rajab TE, Hertadi R. A Review of Protein Structure Prediction using Deep Learning. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proteins are macromolecules composed of 20 types of amino acids in a specific order. Understanding how proteins fold is vital because its 3-dimensional structure determines the function of a protein. Prediction of protein structure based on amino acid strands and evolutionary information becomes the basis for other studies such as predicting the function, property or behaviour of a protein and modifying or designing new proteins to perform certain desired functions. Machine learning advances, particularly deep learning, are igniting a paradigm shift in scientific study. In this review, we summarize recent work in applying deep learning techniques to tackle problems in protein structural prediction. We discuss various deep learning approaches used to predict protein structure and future achievements and challenges. This review is expected to help provide perspectives on problems in biochemistry that can take advantage of the deep learning approach. Some of the unanswered challenges with current computational approaches are predicting the location and precision orientation of protein side chains, predicting protein interactions with DNA, RNA and other small molecules and predicting the structure of protein complexes.
Collapse
|
20
|
Adhikari B. A fully open-source framework for deep learning protein real-valued distances. Sci Rep 2020; 10:13374. [PMID: 32770096 PMCID: PMC7414848 DOI: 10.1038/s41598-020-70181-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 11/12/2022] Open
Abstract
As deep learning algorithms drive the progress in protein structure prediction, a lot remains to be studied at this merging superhighway of deep learning and protein structure prediction. Recent findings show that inter-residue distance prediction, a more granular version of the well-known contact prediction problem, is a key to predicting accurate models. However, deep learning methods that predict these distances are still in the early stages of their development. To advance these methods and develop other novel methods, a need exists for a small and representative dataset packaged for faster development and testing. In this work, we introduce protein distance net (PDNET), a framework that consists of one such representative dataset along with the scripts for training and testing deep learning methods. The framework also includes all the scripts that were used to curate the dataset, and generate the input features and distance maps. Deep learning models can also be trained and tested in a web browser using free platforms such as Google Colab. We discuss how PDNET can be used to predict contacts, distance intervals, and real-valued distances.
Collapse
Affiliation(s)
- Badri Adhikari
- Department of Computer Science, University of Missouri-St. Louis, St. Louis, MO, 63132, USA.
| |
Collapse
|
21
|
Bhattacharya S, Bhattacharya D. Evaluating the significance of contact maps in low-homology protein modeling using contact-assisted threading. Sci Rep 2020; 10:2908. [PMID: 32076047 PMCID: PMC7031282 DOI: 10.1038/s41598-020-59834-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/02/2022] Open
Abstract
The development of improved threading algorithms for remote homology modeling is a critical step forward in template-based protein structure prediction. We have recently demonstrated the utility of contact information to boost protein threading by developing a new contact-assisted threading method. However, the nature and extent to which the quality of a predicted contact map impacts the performance of contact-assisted threading remains elusive. Here, we systematically analyze and explore this interdependence by employing our newly-developed contact-assisted threading method over a large-scale benchmark dataset using predicted contact maps from four complementary methods including direct coupling analysis (mfDCA), sparse inverse covariance estimation (PSICOV), classical neural network-based meta approach (MetaPSICOV), and state-of-the-art ultra-deep learning model (RaptorX). Experimental results demonstrate that contact-assisted threading using high-quality contacts having the Matthews Correlation Coefficient (MCC) ≥ 0.5 improves threading performance in nearly 30% cases, while low-quality contacts with MCC <0.35 degrades the performance for 50% cases. This holds true even in CASP13 dataset, where threading using high-quality contacts (MCC ≥ 0.5) significantly improves the performance of 22 instances out of 29. Collectively, our study uncovers the mutual association between the quality of predicted contacts and its possible utility in boosting threading performance for improving low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, USA.
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
22
|
Fukuda H, Tomii K. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment. BMC Bioinformatics 2020; 21:10. [PMID: 31918654 PMCID: PMC6953294 DOI: 10.1186/s12859-019-3190-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022] Open
Abstract
Background Recently developed methods of protein contact prediction, a crucially important step for protein structure prediction, depend heavily on deep neural networks (DNNs) and multiple sequence alignments (MSAs) of target proteins. Protein sequences are accumulating to an increasing degree such that abundant sequences to construct an MSA of a target protein are readily obtainable. Nevertheless, many cases present different ends of the number of sequences that can be included in an MSA used for contact prediction. The abundant sequences might degrade prediction results, but opportunities remain for a limited number of sequences to construct an MSA. To resolve these persistent issues, we strove to develop a novel framework using DNNs in an end-to-end manner for contact prediction. Results We developed neural network models to improve precision of both deep and shallow MSAs. Results show that higher prediction accuracy was achieved by assigning weights to sequences in a deep MSA. Moreover, for shallow MSAs, adding a few sequential features was useful to increase the prediction accuracy of long-range contacts in our model. Based on these models, we expanded our model to a multi-task model to achieve higher accuracy by incorporating predictions of secondary structures and solvent-accessible surface areas. Moreover, we demonstrated that ensemble averaging of our models can raise accuracy. Using past CASP target protein domains, we tested our models and demonstrated that our final model is superior to or equivalent to existing meta-predictors. Conclusions The end-to-end learning framework we built can use information derived from either deep or shallow MSAs for contact prediction. Recently, an increasing number of protein sequences have become accessible, including metagenomic sequences, which might degrade contact prediction results. Under such circumstances, our model can provide a means to reduce noise automatically. According to results of tertiary structure prediction based on contacts and secondary structures predicted by our model, more accurate three-dimensional models of a target protein are obtainable than those from existing ECA methods, starting from its MSA. DeepECA is available from https://github.com/tomiilab/DeepECA.
Collapse
Affiliation(s)
- Hiroyuki Fukuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8562, Japan
| | - Kentaro Tomii
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8562, Japan. .,Artificial Intelligence Research Center (AIRC), Biotechnology Research Institute for Drug Discovery, Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
23
|
Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)-Round XIII. Proteins 2019; 87:1011-1020. [PMID: 31589781 DOI: 10.1002/prot.25823] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022]
Abstract
CASP (critical assessment of structure prediction) assesses the state of the art in modeling protein structure from amino acid sequence. The most recent experiment (CASP13 held in 2018) saw dramatic progress in structure modeling without use of structural templates (historically "ab initio" modeling). Progress was driven by the successful application of deep learning techniques to predict inter-residue distances. In turn, these results drove dramatic improvements in three-dimensional structure accuracy: With the proviso that there are an adequate number of sequences known for the protein family, the new methods essentially solve the long-standing problem of predicting the fold topology of monomeric proteins. Further, the number of sequences required in the alignment has fallen substantially. There is also substantial improvement in the accuracy of template-based models. Other areas-model refinement, accuracy estimation, and the structure of protein assemblies-have again yielded interesting results. CASP13 placed increased emphasis on the use of sparse data together with modeling and chemical crosslinking, SAXS, and NMR all yielded more mature results. This paper summarizes the key outcomes of CASP13. The special issue of PROTEINS contains papers describing the CASP13 assessments in each modeling category and contributions from the participants.
Collapse
Affiliation(s)
| | - Torsten Schwede
- Biozentrum & SIB Swiss Institute of Bioinformatics, University of Basel, Basel, Switzerland
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | | | - John Moult
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|