1
|
Harihar B, Saravanan KM, Gromiha MM, Selvaraj S. Importance of Inter-residue Contacts for Understanding Protein Folding and Unfolding Rates, Remote Homology, and Drug Design. Mol Biotechnol 2025; 67:862-884. [PMID: 38498284 DOI: 10.1007/s12033-024-01119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Inter-residue interactions in protein structures provide valuable insights into protein folding and stability. Understanding these interactions can be helpful in many crucial applications, including rational design of therapeutic small molecules and biologics, locating functional protein sites, and predicting protein-protein and protein-ligand interactions. The process of developing machine learning models incorporating inter-residue interactions has been improved recently. This review highlights the theoretical models incorporating inter-residue interactions in predicting folding and unfolding rates of proteins. Utilizing contact maps to depict inter-residue interactions aids researchers in developing computer models for detecting remote homologs and interface residues within protein-protein complexes which, in turn, enhances our knowledge of the relationship between sequence and structure of proteins. Further, the application of contact maps derived from inter-residue interactions is highlighted in the field of drug discovery. Overall, this review presents an extensive assessment of the significant models that use inter-residue interactions to investigate folding rates, unfolding rates, remote homology, and drug development, providing potential future advancements in constructing efficient computational models in structural biology.
Collapse
Affiliation(s)
- Balasubramanian Harihar
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Konda Mani Saravanan
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Michael M Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Samuel Selvaraj
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
2
|
Zhao K, Xia Y, Zhang F, Zhou X, Li SZ, Zhang G. Protein structure and folding pathway prediction based on remote homologs recognition using PAthreader. Commun Biol 2023; 6:243. [PMID: 36871126 PMCID: PMC9985440 DOI: 10.1038/s42003-023-04605-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Recognition of remote homologous structures is a necessary module in AlphaFold2 and is also essential for the exploration of protein folding pathways. Here, we propose a method, PAthreader, to recognize remote templates and explore folding pathways. Firstly, we design a three-track alignment between predicted distance profiles and structure profiles extracted from PDB and AlphaFold DB, to improve the recognition accuracy of remote templates. Secondly, we improve the performance of AlphaFold2 using the templates identified by PAthreader. Thirdly, we explore protein folding pathways based on our conjecture that dynamic folding information of protein is implicitly contained in its remote homologs. The results show that the average accuracy of PAthreader templates is 11.6% higher than that of HHsearch. In terms of structure modelling, PAthreader outperform AlphaFold2 and ranks first on the CAMEO blind test for the latest three months. Furthermore, we predict protein folding pathways for 37 proteins, in which the results of 7 proteins are almost consistent with those of biological experiments, and the other 30 human proteins have yet to be verified by biological experiments, revealing that folding information can be exploited from remote homologous structures.
Collapse
Affiliation(s)
- Kailong Zhao
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Yuhao Xia
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Fujin Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Xiaogen Zhou
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China
| | - Stan Z Li
- AI Lab, Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, Zhejiang, China.
| | - Guijun Zhang
- College of Information Engineering, Zhejiang University of Technology, HangZhou, 310023, China.
| |
Collapse
|
3
|
Bhattacharya S, Roche R, Shuvo MH, Moussad B, Bhattacharya D. Contact-Assisted Threading in Low-Homology Protein Modeling. Methods Mol Biol 2023; 2627:41-59. [PMID: 36959441 DOI: 10.1007/978-1-0716-2974-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The ability to successfully predict the three-dimensional structure of a protein from its amino acid sequence has made considerable progress in the recent past. The progress is propelled by the improved accuracy of deep learning-based inter-residue contact map predictors coupled with the rising growth of protein sequence databases. Contact map encodes interatomic interaction information that can be exploited for highly accurate prediction of protein structures via contact map threading even for the query proteins that are not amenable to direct homology modeling. As such, contact-assisted threading has garnered considerable research effort. In this chapter, we provide an overview of existing contact-assisted threading methods while highlighting the recent advances and discussing some of the current limitations and future prospects in the application of contact-assisted threading for improving the accuracy of low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
| | | | - Md Hossain Shuvo
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
4
|
Molecular mechanism of interaction between fatty acid delta 6 desaturase and acyl-CoA by computational prediction. AMB Express 2022; 12:69. [PMID: 35680699 PMCID: PMC9184693 DOI: 10.1186/s13568-022-01410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Enzyme catalyzed desaturation of intracellular fatty acids plays an important role in various physiological and pathological processes related to lipids. Limited to the multiple transmembrane domains, it is difficult to obtain their three-dimensional structure of fatty acid desaturases. So how they interact with their substrates is unclear. Here, we predicted the complex of Micromonas pusilla delta 6 desaturase (MpFADS6) with the substrate linoleinyl-CoA (ALA-CoA) by trRosetta software and docking poses by Dock 6 software. The potential enzyme–substrate binding sites were anchored by analysis of the complex. Then, site-directed mutagenesis and activity verification clarified that W290, W224, and F352 were critical residues of the substrate tunnel and directly bonded to ALA-CoA. H94 and H69 were indispensable for transporting electrons with heme. H452, N445, and H358 significantly influenced the recognition and attraction of MpFADS6 to the substrate. These findings provide new insights and methods to determine the structure, mechanisms and directed transformation of membrane-bound desaturases. The structure of the Δ6 fatty acid desaturase and substrate complex is modeled. The substrate tunnel and key residues of MpFADS6 catalytic activity are determined. The new insights to determine the mechanism of the membrane-bound desaturases.
Collapse
|
5
|
Bhattacharya S, Roche R, Moussad B, Bhattacharya D. DisCovER: distance- and orientation-based covariational threading for weakly homologous proteins. Proteins 2022; 90:579-588. [PMID: 34599831 PMCID: PMC8738102 DOI: 10.1002/prot.26254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/03/2023]
Abstract
Threading a query protein sequence onto a library of weakly homologous structural templates remains challenging, even when sequence-based predicted contact or distance information is used. Contact-assisted or distance-assisted threading methods utilize only the spatial proximity of the interacting residue pairs for template selection and alignment, ignoring their orientation. Moreover, existing threading methods fail to consider the neighborhood effect induced by the query-template alignment. We present a new distance- and orientation-based covariational threading method called DisCovER by effectively integrating information from inter-residue distance and orientation along with the topological network neighborhood of a query-template alignment. Our method first selects a subset of templates using standard profile-based threading coupled with topological network similarity terms to account for the neighborhood effect and subsequently performs distance- and orientation-based query-template alignment using an iterative double dynamic programming framework. Multiple large-scale benchmarking results on query proteins classified as weakly homologous from the continuous automated model evaluation experiment and from the current literature show that our method outperforms several existing state-of-the-art threading approaches, and that the integration of the neighborhood effect with the inter-residue distance and orientation information synergistically contributes to the improved performance of DisCovER. DisCovER is freely available at https://github.com/Bhattacharya-Lab/DisCovER.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science, Florida Polytechnic University, Lakeland, FL 33805, USA
| | - Rahmatullah Roche
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bernard Moussad
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | |
Collapse
|
6
|
Tran NH, Xu J, Li M. A tale of solving two computational challenges in protein science: neoantigen prediction and protein structure prediction. Brief Bioinform 2022; 23:bbab493. [PMID: 34891158 PMCID: PMC8769896 DOI: 10.1093/bib/bbab493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
In this article, we review two challenging computational questions in protein science: neoantigen prediction and protein structure prediction. Both topics have seen significant leaps forward by deep learning within the past five years, which immediately unlocked new developments of drugs and immunotherapies. We show that deep learning models offer unique advantages, such as representation learning and multi-layer architecture, which make them an ideal choice to leverage a huge amount of protein sequence and structure data to address those two problems. We also discuss the impact and future possibilities enabled by those two applications, especially how the data-driven approach by deep learning shall accelerate the progress towards personalized biomedicine.
Collapse
Affiliation(s)
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, USA
| | - Ming Li
- University of Waterloo, Canada
| |
Collapse
|
7
|
Su H, Wang W, Du Z, Peng Z, Gao S, Cheng M, Yang J. Improved Protein Structure Prediction Using a New Multi-Scale Network and Homologous Templates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102592. [PMID: 34719864 PMCID: PMC8693034 DOI: 10.1002/advs.202102592] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/12/2021] [Indexed: 06/04/2023]
Abstract
The accuracy of de novo protein structure prediction has been improved considerably in recent years, mostly due to the introduction of deep learning techniques. In this work, trRosettaX, an improved version of trRosetta for protein structure prediction is presented. The major improvement over trRosetta consists of two folds. The first is the application of a new multi-scale network, i.e., Res2Net, for improved prediction of inter-residue geometries, including distance and orientations. The second is an attention-based module to exploit multiple homologous templates to increase the accuracy further. Compared with trRosetta, trRosettaX improves the contact precision by 6% and 8% on the free modeling targets of CASP13 and CASP14, respectively. A preliminary version of trRosettaX is ranked as one of the top server groups in CASP14's blind test. Additional benchmark test on 161 targets from CAMEO (between Jun and Sep 2020) shows that trRosettaX achieves an average TM-score ≈0.8, outperforming the top groups in CAMEO. These data suggest the effectiveness of using the multi-scale network and the benefit of incorporating homologous templates into the network. The trRosettaX algorithm is incorporated into the trRosetta server since Nov 2020. The web server, the training and inference codes are available at: https://yanglab.nankai.edu.cn/trRosetta/.
Collapse
Affiliation(s)
- Hong Su
- School of Mathematical SciencesNankai UniversityTianjin300071China
| | - Wenkai Wang
- School of Mathematical SciencesNankai UniversityTianjin300071China
| | - Zongyang Du
- School of Mathematical SciencesNankai UniversityTianjin300071China
| | - Zhenling Peng
- Research Center for Mathematics and Interdisciplinary SciencesShandong UniversityQingdao266237China
| | - Shang‐Hua Gao
- College of Computer ScienceNankai UniversityTianjin300071China
| | - Ming‐Ming Cheng
- College of Computer ScienceNankai UniversityTianjin300071China
| | - Jianyi Yang
- Research Center for Mathematics and Interdisciplinary SciencesShandong UniversityQingdao266237China
| |
Collapse
|
8
|
Bhattacharya S, Roche R, Shuvo MH, Bhattacharya D. Recent Advances in Protein Homology Detection Propelled by Inter-Residue Interaction Map Threading. Front Mol Biosci 2021; 8:643752. [PMID: 34046429 PMCID: PMC8148041 DOI: 10.3389/fmolb.2021.643752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Sequence-based protein homology detection has emerged as one of the most sensitive and accurate approaches to protein structure prediction. Despite the success, homology detection remains very challenging for weakly homologous proteins with divergent evolutionary profile. Very recently, deep neural network architectures have shown promising progress in mining the coevolutionary signal encoded in multiple sequence alignments, leading to reasonably accurate estimation of inter-residue interaction maps, which serve as a rich source of additional information for improved homology detection. Here, we summarize the latest developments in protein homology detection driven by inter-residue interaction map threading. We highlight the emerging trends in distant-homology protein threading through the alignment of predicted interaction maps at various granularities ranging from binary contact maps to finer-grained distance and orientation maps as well as their combination. We also discuss some of the current limitations and possible future avenues to further enhance the sensitivity of protein homology detection.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Rahmatullah Roche
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Md Hossain Shuvo
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|