1
|
Holzapfel R, Prell A, Schumacher F, Perschin V, Friedmann Angeli JP, Kleuser B, Stigloher C, Fazeli G. Degradation of hexosylceramides is required for timely corpse clearance via formation of cargo-containing phagolysosomal vesicles. Eur J Cell Biol 2024; 103:151411. [PMID: 38582051 DOI: 10.1016/j.ejcb.2024.151411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024] Open
Abstract
Efficient degradation of phagocytic cargo in lysosomes is crucial to maintain cellular homeostasis and defending cells against pathogens. However, the mechanisms underlying the degradation and recycling of macromolecular cargo within the phagolysosome remain incompletely understood. We previously reported that the phagolysosome containing the corpse of the polar body in C. elegans tubulates into small vesicles to facilitate corpse clearance, a process that requires cargo protein degradation and amino acid export. Here we show that degradation of hexosylceramides by the prosaposin ortholog SPP-10 and glucosylceramidases is required for timely corpse clearance. We observed accumulation of membranous structures inside endolysosomes of spp-10-deficient worms, which are likely caused by increased hexosylceramide species. spp-10 deficiency also caused alteration of additional sphingolipid subclasses, like dihydroceramides, 2-OH-ceramides, and dihydrosphingomyelins. While corpse engulfment, initial breakdown of corpse membrane inside the phagolysosome and lumen acidification proceeded normally in spp-10-deficient worms, formation of the cargo-containing vesicles from the corpse phagolysosome was reduced, resulting in delayed cargo degradation and phagolysosome resolution. Thus, by combining ultrastructural studies and sphingolipidomic analysis with observing single phagolysosomes over time, we identified a role of prosaposin/SPP-10 in maintaining phagolysosomal structure, which promotes efficient resolution of phagocytic cargos.
Collapse
Affiliation(s)
- Rebecca Holzapfel
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany; Core-Facility BioSupraMol, Pharma-MS subunit, Freie Universität Berlin, Germany
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Gholamreza Fazeli
- Chair of Translational Cell Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Blumenkamp P, Pfister M, Diedrich S, Brinkrolf K, Jaenicke S, Goesmann A. Curare and GenExVis: a versatile toolkit for analyzing and visualizing RNA-Seq data. BMC Bioinformatics 2024; 25:138. [PMID: 38553675 PMCID: PMC10979593 DOI: 10.1186/s12859-024-05761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Even though high-throughput transcriptome sequencing is routinely performed in many laboratories, computational analysis of such data remains a cumbersome process often executed manually, hence error-prone and lacking reproducibility. For corresponding data processing, we introduce Curare, an easy-to-use yet versatile workflow builder for analyzing high-throughput RNA-Seq data focusing on differential gene expression experiments. Data analysis with Curare is customizable and subdivided into preprocessing, quality control, mapping, and downstream analysis stages, providing multiple options for each step while ensuring the reproducibility of the workflow. For a fast and straightforward exploration and visualization of differential gene expression results, we provide the gene expression visualizer software GenExVis. GenExVis can create various charts and tables from simple gene expression tables and DESeq2 results without the requirement to upload data or install software packages. In combination, Curare and GenExVis provide a comprehensive software environment that supports the entire data analysis process, from the initial handling of raw RNA-Seq data to the final DGE analyses and result visualizations, thereby significantly easing data processing and subsequent interpretation.
Collapse
Affiliation(s)
- Patrick Blumenkamp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.
| | - Max Pfister
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sonja Diedrich
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Sebastian Jaenicke
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| |
Collapse
|
3
|
Zhang P, Medwig-Kinney TN, Goldstein B. Architecture of the cortical actomyosin network driving apical constriction in C. elegans. J Cell Biol 2023; 222:e202302102. [PMID: 37351566 PMCID: PMC10289891 DOI: 10.1083/jcb.202302102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Apical constriction is a cell shape change that drives key morphogenetic events during development, including gastrulation and neural tube formation. The forces driving apical constriction are primarily generated through the contraction of apicolateral and/or medioapical actomyosin networks. In the Drosophila ventral furrow, the medioapical actomyosin network has a sarcomere-like architecture, with radially polarized actin filaments and centrally enriched non-muscle myosin II and myosin activating kinase. To determine if this is a broadly conserved actin architecture driving apical constriction, we examined actomyosin architecture during C. elegans gastrulation, in which two endodermal precursor cells internalize from the surface of the embryo. Quantification of protein localization showed that neither the non-muscle myosin II NMY-2 nor the myosin-activating kinase MRCK-1 is enriched at the center of the apex. Further, visualization of barbed- and pointed-end capping proteins revealed that actin filaments do not exhibit radial polarization at the apex. Our results demonstrate that C. elegans endodermal precursor cells apically constrict using a mixed-polarity actin filament network and with myosin and a myosin activator distributed throughout the network. Taken together with observations made in other organisms, our results demonstrate that diverse actomyosin architectures are used in animal cells to accomplish apical constriction.
Collapse
Affiliation(s)
- Pu Zhang
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Hulett RE, Kimura JO, Bolaños DM, Luo YJ, Rivera-López C, Ricci L, Srivastava M. Acoel single-cell atlas reveals expression dynamics and heterogeneity of adult pluripotent stem cells. Nat Commun 2023; 14:2612. [PMID: 37147314 PMCID: PMC10163032 DOI: 10.1038/s41467-023-38016-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Adult pluripotent stem cell (aPSC) populations underlie whole-body regeneration in many distantly-related animal lineages, but how the underlying cellular and molecular mechanisms compare across species is unknown. Here, we apply single-cell RNA sequencing to profile transcriptional cell states of the acoel worm Hofstenia miamia during postembryonic development and regeneration. We identify cell types shared across stages and their associated gene expression dynamics during regeneration. Functional studies confirm that the aPSCs, also known as neoblasts, are the source of differentiated cells and reveal transcription factors needed for differentiation. Subclustering of neoblasts recovers transcriptionally distinct subpopulations, the majority of which are likely specialized to differentiated lineages. One neoblast subset, showing enriched expression of the histone variant H3.3, appears to lack specialization. Altogether, the cell states identified in this study facilitate comparisons to other species and enable future studies of stem cell fate potentials.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - D Marcela Bolaños
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Yi-Jyun Luo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Zhang P, Medwig-Kinney TN, Goldstein B. Architecture of the cortical actomyosin network driving apical constriction in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526280. [PMID: 36778218 PMCID: PMC9915510 DOI: 10.1101/2023.01.30.526280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Apical constriction is a cell shape change that drives key morphogenetic events during development, including gastrulation and neural tube formation. The forces driving apical constriction are primarily generated through the contraction of apicolateral and/or medioapical actomyosin networks. In the Drosophila ventral furrow, the medioapical actomyosin network has a sarcomere-like architecture, with radially polarized actin filaments and centrally enriched non-muscle myosin II and myosin activating kinase. To determine if this is a broadly conserved actin architecture driving apical constriction, we examined actomyosin architecture during C. elegans gastrulation, in which two endodermal precursor cells internalize from the surface of the embryo. Quantification of protein localization showed that neither the non-muscle myosin II NMY-2 nor the myosin-activating kinase MRCK-1 is enriched at the center of the apex. Further, visualization of barbed- and pointed-end capping proteins revealed that actin filaments do not exhibit radial polarization at the apex. Taken together with observations made in other organisms, our results demonstrate that diverse actomyosin architectures are used in animal cells to accomplish apical constriction. Summary Through live-cell imaging of endogenously-tagged proteins, Zhang, Medwig-Kinney, and Goldstein show that the medioapical actomyosin network driving apical constriction during C. elegans gastrulation is organized diffusely, in contrast to the sarcomere-like architecture previously observed in the Drosophila ventral furrow.
Collapse
Affiliation(s)
- Pu Zhang
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Taylor N. Medwig-Kinney
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
6
|
Marini F, Linke J, Binder H. ideal: an R/Bioconductor package for interactive differential expression analysis. BMC Bioinformatics 2020; 21:565. [PMID: 33297942 PMCID: PMC7724894 DOI: 10.1186/s12859-020-03819-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND RNA sequencing (RNA-seq) is an ever increasingly popular tool for transcriptome profiling. A key point to make the best use of the available data is to provide software tools that are easy to use but still provide flexibility and transparency in the adopted methods. Despite the availability of many packages focused on detecting differential expression, a method to streamline this type of bioinformatics analysis in a comprehensive, accessible, and reproducible way is lacking. RESULTS We developed the ideal software package, which serves as a web application for interactive and reproducible RNA-seq analysis, while producing a wealth of visualizations to facilitate data interpretation. ideal is implemented in R using the Shiny framework, and is fully integrated with the existing core structures of the Bioconductor project. Users can perform the essential steps of the differential expression analysis workflow in an assisted way, and generate a broad spectrum of publication-ready outputs, including diagnostic and summary visualizations in each module, all the way down to functional analysis. ideal also offers the possibility to seamlessly generate a full HTML report for storing and sharing results together with code for reproducibility. CONCLUSION ideal is distributed as an R package in the Bioconductor project ( http://bioconductor.org/packages/ideal/ ), and provides a solution for performing interactive and reproducible analyses of summarized RNA-seq expression data, empowering researchers with many different profiles (life scientists, clinicians, but also experienced bioinformaticians) to make the ideal use of the data at hand.
Collapse
Affiliation(s)
- Federico Marini
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany
| | - Jan Linke
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Li Q, Marcu DC, Palazzo O, Turner F, King D, Spires-Jones TL, Stefan MI, Busch KE. High neural activity accelerates the decline of cognitive plasticity with age in Caenorhabditis elegans. eLife 2020; 9:59711. [PMID: 33228848 PMCID: PMC7685709 DOI: 10.7554/elife.59711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/18/2020] [Indexed: 12/11/2022] Open
Abstract
The ability to learn progressively declines with age. Neural hyperactivity has been implicated in impairing cognitive plasticity with age, but the molecular mechanisms remain elusive. Here, we show that chronic excitation of the Caenorhabditis elegans O2-sensing neurons during ageing causes a rapid decline of experience-dependent plasticity in response to environmental O2 concentration, whereas sustaining lower activity of O2-sensing neurons retains plasticity with age. We demonstrate that neural activity alters the ageing trajectory in the transcriptome of O2-sensing neurons, and our data suggest that high-activity neurons redirect resources from maintaining plasticity to sustaining continuous firing. Sustaining plasticity with age requires the K+-dependent Na+/Ca2+ (NCKX) exchanger, whereas the decline of plasticity with age in high-activity neurons acts through calmodulin and the scaffold protein Kidins220. Our findings demonstrate directly that the activity of neurons alters neuronal homeostasis to govern the age-related decline of neural plasticity and throw light on the mechanisms involved.
Collapse
Affiliation(s)
- Qiaochu Li
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Daniel-Cosmin Marcu
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ottavia Palazzo
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Frances Turner
- Edinburgh Genomics (Genome Science), Ashworth Laboratories, The University of Edinburgh, Edinburgh, United Kingdom
| | - Declan King
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Melanie I Stefan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,ZJU-UoE Institute, Zhejiang University, Haining, China
| | - Karl Emanuel Busch
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|