1
|
Ammar A, Smith JD, Aslan U, Balan V, Robertson ML, Karim A. Pressure Indicator Composite Films via Compressive Deformation of a Translucent Matrix Containing a Contrasting Filler. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19432-19441. [PMID: 38588483 DOI: 10.1021/acsami.3c18380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A neglected mechanism for pressure-responsive color change is demonstrated using cellulose acetate composites prepared by direct (solvent) immersion annealing (DIA), with different loadings of activated charcoal filler. Namely, compressive plastic deformation of the translucent cellulose acetate leads to a decrease in the optical path length and a concomitant increase in the visibility of the opaque contrasting filler. Composites bearing 1-7 wt% activated charcoal exhibited a linear relationship between applied pressure and resulting pressure mark brightness in the range of 12-56 MPa. Comparison of pressure mark patterns with cross-sectional scanning electron microscopy (SEM) supports the importance of the porous morphology arising from DIA for the tuning of the pressure indicator sensitivity. A simple ball drop test is used to illustrate the robustness and utility of these indicators in optical impact assessment.
Collapse
Affiliation(s)
- Ali Ammar
- William A. Brookshire Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, United States
| | - Justin D Smith
- William A. Brookshire Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ugur Aslan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, United States
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, Texas 77479, United States
| | - Megan L Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, United States
| | - Alamgir Karim
- William A. Brookshire Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
2
|
Guidetti G, Kim T, Dutcher A, Presti ML, Ovstrovsky-Snider N, Omenetto FG. Co-modulation of structural and pigmentary coloration in Lyropteryx apollonia butterfly. OPTICS EXPRESS 2023; 31:43712-43721. [PMID: 38178461 DOI: 10.1364/oe.500130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/09/2023] [Indexed: 01/06/2024]
Abstract
Nature produces some of the most striking optical effects through the combination of structural and chemical principles to give rise to a wide range of colors. However, creating non-spectral colors that extend beyond the color spectrum is a challenging task, as it requires meeting the requirements of both structural and pigmentary coloration. In this study, we investigate the magenta non-spectral color found in the scales of the ventral spots of the Lyropteryx apollonia butterfly. By employing correlated optical and electron microscopy, as well as pigment extraction techniques, we reveal how this color arises from the co-modulation of pigmentary and structural coloration. Specifically, the angle-dependent blue coloration results from the interference of visible light with chitin-based nanostructures, while the diffused red coloration is generated by an ommochrome pigment. The ability to produce such highly conspicuous non-spectral colors provides insights for the development of hierarchical structures with precise control over their optical response. These structures can be used to create hierarchically-arranged systems with a broadened color palette.
Collapse
|
3
|
Justyn NM, Heine KB, Hood WR, Peteya JA, Vanthournout B, Debruyn G, Shawkey MD, Weaver RJ, Hill GE. A combination of red structural and pigmentary coloration in the eyespot of a copepod. J R Soc Interface 2022; 19:20220169. [PMID: 35611618 DOI: 10.1098/rsif.2022.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While the specific mechanisms of colour production in biological systems are diverse, the mechanics of colour production are straightforward and universal. Colour is produced through the selective absorption of light by pigments, the scattering of light by nanostructures or a combination of both. When Tigriopus californicus copepods were fed a carotenoid-limited diet of yeast, their orange-red body coloration became faint, but their eyespots remained unexpectedly bright red. Raman spectroscopy indicated a clear signature of the red carotenoid pigment astaxanthin in eyespots; however, refractive index matching experiments showed that eyespot colour disappeared when placed in ethyl cinnamate, suggesting a structural origin for the red coloration. We used transmission electron microscopy to identify consecutive nanolayers of spherical air pockets that, when modelled as a single thin film layer, possess the correct periodicity to coherently scatter red light. We then performed microspectrophotometry to quantify eyespot coloration and confirmed a distinct colour difference between the eyespot and the body. The observed spectral reflectance from the eyespot matched the reflectance predicted from our models when considering the additional absorption by astaxanthin. Together, this evidence suggests the persistence of red eyespots in copepods is the result of a combination of structural and pigmentary coloration.
Collapse
Affiliation(s)
- Nicholas M Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kyle B Heine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer A Peteya
- Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Bram Vanthournout
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Gerben Debruyn
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent, Belgium
| | - Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|