1
|
Spatio-temporal distribution and habitat preference of necrophagous Calliphoridae based on 160 real cases from Switzerland. Int J Legal Med 2022; 136:923-934. [PMID: 35064810 PMCID: PMC9005434 DOI: 10.1007/s00414-021-02769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Necrophagous blowflies (Diptera: Calliphoridae) are of great importance particularly during investigations of suspicious deaths. Many studies have analyzed the distribution of blowflies based on pig experiments and baited trapping; however, data from real case scenarios are rarely used. In this article, the distribution of blowflies found during investigations of 160 real cases during 1993–2007 in Switzerland is evaluated based on habitat, altitude, and season. Ten species of blowflies were present in 145 out of the 160 cases. The most common species was Calliphora vicina, which occurs throughout the year and was present in 69 % of all cases. Lucilia sericata, Calliphora vomitoria, and L. caesar were identified among the rest of the flies as species of great forensic importance mainly due to their distributional patterns. After a comparison with a similar dataset from Frankfurt, Germany, some surprising differences were determined and discussed. The biggest discrepancies between our dataset and the German dataset were in the occurrences of L. sericata (30 % vs. 86 %, respectively), Phormia regina (5 % vs. 43 %), and L. ampullacea (1 % vs. 45 %). The life-history strategies and intraspecific behavioral variability of blowflies remain understudied, although they can be essential for an unbiased approach during a death investigation. Further research and comparison of occurrence patterns across the area of distribution of blowflies are therefore needed and recommended.
Collapse
|
2
|
Moraiti CA, Köppler K, Vogt H, Papadopoulos NT. Effects of photoperiod and relative humidity on diapause termination and post-winter development of Rhagoletis cerasi pupae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:588-596. [PMID: 32160932 DOI: 10.1017/s0007485320000073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), is a univoltine species that undergoes obligatory summer-winter diapause at pupal stage in the soil (2-5 cm) beneath host trees. To study the effects of photoperiod and relative humidity on diapause termination and post-winter developmental duration of R. cerasi, pupae collected from Dossenheim (Germany) were exposed to different photoperiod or relative humidity regimes during a chilling period ranging from 2 to 8.5 months. Specifically, pupae were exposed to four photoperiod regimes: (a) light conditions (24L:00D), (b) dark conditions (00L:24D), (c) short photoperiod (08L:16D) and (d) long photoperiod (16L:08D), as well as to three relative humidity regimes: (a) low (40% RH), (b) medium (60% RH) and (c) high (70-80% RH). Data revealed that relative humidity is not a significant predictor of diapause termination, but it affects the post-winter developmental period. Higher relative humidity promotes post-winter pupae development. On the other hand, photoperiod significantly affected both diapause termination and post-winter development of R. cerasi pupae. Light conditions (24L:00D) accelerate adult emergence, particularly for females. Regardless of the photoperiod (24L:00D, 00L:24D, 08L:16D), rates of adult emergence were high (>75%) for chilling intervals longer than 6.5 months. Nonetheless, exposure to a long day photoperiod (16L:08D), during chilling, dramatically reduced the proportion of adult emergence following 6 months exposure to chilling. Our findings broaden the understanding of factors regulating diapause responses in European cherry fruit fly, local adaptation and synchronization of adult emergence with the ripening period of major hosts.
Collapse
Affiliation(s)
- Cleopatra A Moraiti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou ST., Volos, 384 46Magnesia, Greece
| | - Kirsten Köppler
- Centre for Agricultural Technology Augustenberg (LTZ), Neßlerstr. 25, 76227Karlsruhe, Germany
| | - Heidrun Vogt
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Straße 101, 69221Dossenheim, Germany
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou ST., Volos, 384 46Magnesia, Greece
| |
Collapse
|
3
|
Augustinos AA, Moraiti CA, Drosopoulou E, Kounatidis I, Mavragani-Tsipidou P, Bourtzis K, Papadopoulos NT. Old residents and new arrivals of Rhagoletis species in Europe. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:701-712. [PMID: 30744707 DOI: 10.1017/s0007485319000063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The genus Rhagoletis (Diptera: Tephritidae) comprises more than 65 species distributed throughout Europe, Asia and America, including many species of high economic importance. Currently, there are three Rhagoletis species that infest fruits and nuts in Europe. The European cherry fruit fly, Rhagoletis cerasi (may have invaded Europe a long time ago from the Caucasian area of West Asia), and two invasive species (recently introduced from North America): the eastern American cherry fruit fly, R. cingulata, and the walnut husk fly, R. completa. The presence of different Rhagoletis species may enhance population dynamics and establish an unpredictable economic risk for several fruit and nut crops in Europe. Despite their excessive economic importance, little is known on population dynamics, genetics and symbiotic associations for making sound pest control decisions in terms of species-specific, environmental friendly pest control methods. To this end, the current paper (a) summarizes recently accumulated genetic and population data for the European Rhagoletis species and their association with the endosymbiont Wolbachia pipientis, and (b) explores the possibility of using the current knowledge for implementing the innovative biological control methods of sterile insect technique and incompatible insect technique.
Collapse
Affiliation(s)
- A A Augustinos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - C A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia (Volos), Magnesia, Greece
| | - E Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - I Kounatidis
- Cell Biology, Development, and Genetics Laboratory, Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, UK
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - P Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - N T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, N. Ionia (Volos), Magnesia, Greece
| |
Collapse
|
4
|
Bakovic V, Schuler H, Schebeck M, Feder JL, Stauffer C, Ragland GJ. Host plant-related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi. Mol Ecol 2019; 28:4648-4666. [PMID: 31495015 PMCID: PMC6899720 DOI: 10.1111/mec.15239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
Elucidating the mechanisms and conditions facilitating the formation of biodiversity are central topics in evolutionary biology. A growing number of studies imply that divergent ecological selection may often play a critical role in speciation by counteracting the homogenising effects of gene flow. Several examples involve phytophagous insects, where divergent selection pressures associated with host plant shifts may generate reproductive isolation, promoting speciation. Here, we use ddRADseq to assess the population structure and to test for host‐related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi (L., 1758) (Diptera: Tephritidae). This tephritid is distributed throughout Europe and western Asia, and has adapted to two different genera of host plants, Prunus spp. (cherries) and Lonicera spp. (honeysuckle). Our data imply that geographic distance and geomorphic barriers serve as the primary factors shaping genetic population structure across the species range. Locally, however, flies genetically cluster according to host plant, with consistent allele frequency differences displayed by a subset of loci between Prunus and Lonicera flies across four sites surveyed in Germany and Norway. These 17 loci display significantly higher FST values between host plants than others. They also showed high levels of linkage disequilibrium within and between Prunus and Lonicera flies, supporting host‐related selection and reduced gene flow. Our findings support the existence of sympatric host races in R. cerasi embedded within broader patterns of geographic variation in the fly, similar to the related apple maggot, Rhagoletis pomonella, in North America.
Collapse
Affiliation(s)
- Vid Bakovic
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Department of Biology, IFM, University of Linköping, Linköping, Sweden
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Martin Schebeck
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Christian Stauffer
- Department of Forest and Soil Sciences, BOKU, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO, USA
| |
Collapse
|
5
|
Rull J, Lasa R, Aluja M. The Effect of Seasonal Humidity on Survival and Duration of Dormancy on Diverging Mexican Rhagoletis pomonella (Diptera: Tephritidae) Populations Inhabiting Different Environments. ENVIRONMENTAL ENTOMOLOGY 2019; 48:1121-1128. [PMID: 31283826 DOI: 10.1093/ee/nvz079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Phytophagous insects synchronize emergence with plant phenology by engaging in dormancy during periods of host scarcity and environmental stress. Regulation of dormancy is achieved through response to seasonal cues. While temperature and photoperiod are important cues in temperate latitudes, seasonal humidity, such as the onset of rains, can be a reliable cue to for synchronization of emergence and affects survival of overwintering insects. We compared response of Mexican Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) populations inhabiting subtropical environments differing in humidity patterns, to seasonal humidity regimes. Both populations emerged as adults in high proportions and suffered lower mortality under humidity regimes ending with a humid summer, but the effect was more pronounced for the Eje Volcanico Trans Mexicano (EVTM) population, which inhabits a dryer environment and undergoes longer dormancy. While there were no differences among pupae from the Sierra Madre Oriental (SMO) in percent of non-emerged pupae surviving and engaging in prolonged dormancy after a year, EVTM pupae exposed to an initial humid period engaged in prolonged dormancy in higher proportions than those exposed to other regimes. Seasonal humidity had little effect on the duration of dormancy, but EVTM pupae exposed to consecutive dry periods took longer to emerge than those exposed to other regimes. Our results suggest that rather than being used as a token stimulus, humidity affected survival of overwintering R. pomonella, especially at the end of dormancy when energy reserves are depleted and there is an increase in metabolic rate that renders EVTM pupae more susceptible to desiccation.
Collapse
Affiliation(s)
- Juan Rull
- PROIMI Biotecnología-CONICET, LIEMEN-División Control Biológico de Plagas, San Miguel de Tucumán, Tucumán, Argentina
| | - Rodrigo Lasa
- Instituto de Ecología, A.C., CP Xalapa, Veracruz, México
| | - Martin Aluja
- Instituto de Ecología, A.C., CP Xalapa, Veracruz, México
| |
Collapse
|