1
|
Kablan T, Biyikli E, Bozdemir N, Uysal F. A narrative review of the histone acetylation and deacetylation during mammalian spermatogenesis. Biochimie 2025; 230:147-155. [PMID: 39566815 DOI: 10.1016/j.biochi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Dynamic epigenetic control is essential for proper spermatogenesis. Spermatogenesis is a unique mechanism that includes recombination, meiosis, and the conversion of histones to protamines. Epigenetics refers to the ability to modify gene expression without affecting DNA strands directly and helps to regulate the dynamic gene expression throughout the differentiation process of spermatogonium stem cells. Histone alterations and DNA methylation control the epigenome. While histone modifications can result in either expression or repression depending on the type of modification, the type of histone protein, and its specific residue, histone acetylation is one of the changes that typically results in gene expression. Histone acetyltransferases (HATs) add an acetyl group to the amino-terminal of the core histone proteins, causing histone acetylation. On the other hand, histone deacetylases (HDACs) catalyze histone deacetylation, which is linked to the suppression of gene expression. This review highlights the significance of HATs and HDACs during mammalian spermatogenesis and focuses on what is known about changes in their expression.
Collapse
Affiliation(s)
- Tuba Kablan
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Efe Biyikli
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Nazlican Bozdemir
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Fatma Uysal
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| |
Collapse
|
2
|
Li Z, Liu X, Zhang Y, Li Y, Zhou L, Yuan S. FBXO24 modulates mRNA alternative splicing and MIWI degradation and is required for normal sperm formation and male fertility. eLife 2024; 12:RP91666. [PMID: 38470475 DOI: 10.7554/elife.91666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Spermiogenesis is a critical, post-meiotic phase of male gametogenesis, in which the proper gene expression is essential for sperm maturation. However, the underFlying molecular mechanism that controls mRNA expression in the round spermatids remains elusive. Here, we identify that FBXO24, an orphan F-box protein, is highly expressed in the testis of humans and mice and interacts with the splicing factors (SRSF2, SRSF3, and SRSF9) to modulate the gene alternative splicing in the round spermatids. Genetic mutation of FBXO24 in mice causes many abnormal splicing events in round spermatids, thus affecting a large number of critical genes related to sperm formation that were dysregulated. Further molecular and phenotypical analyses revealed that FBXO24 deficiency results in aberrant histone retention, incomplete axonemes, oversized chromatoid body, and abnormal mitochondrial coiling along sperm flagella, ultimately leading to male sterility. In addition, we discovered that FBXO24 interacts with MIWI and SCF subunits and mediates the degradation of MIWI via K48-linked polyubiquitination. Furthermore, we show that FBXO24 depletion could lead to aberrant piRNA production in testes, which suggests FBXO24 is required for normal piRNA counts. Collectively, these data demonstrate that FBXO24 is essential for sperm formation by regulating mRNA alternative splicing and MIWI degradation during spermiogenesis.
Collapse
Affiliation(s)
- Zhiming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingping Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liquan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Moritz L, Schon SB, Rabbani M, Sheng Y, Agrawal R, Glass-Klaiber J, Sultan C, Camarillo JM, Clements J, Baldwin MR, Diehl AG, Boyle AP, O'Brien PJ, Ragunathan K, Hu YC, Kelleher NL, Nandakumar J, Li JZ, Orwig KE, Redding S, Hammoud SS. Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine 1. Nat Struct Mol Biol 2023; 30:1077-1091. [PMID: 37460896 PMCID: PMC10833441 DOI: 10.1038/s41594-023-01033-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/12/2023] [Indexed: 08/11/2023]
Abstract
Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.
Collapse
Affiliation(s)
- Lindsay Moritz
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samantha B Schon
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ritvija Agrawal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Juniper Glass-Klaiber
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Caleb Sultan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeannie M Camarillo
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jourdan Clements
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Baldwin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Diehl
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sy Redding
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Saher Sue Hammoud
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Lin H, Cossu IG, Leu NA, Deshpande AJ, Bernt KM, Luo M, Wang PJ. The DOT1L-MLLT10 complex regulates male fertility and promotes histone removal during spermiogenesis. Development 2023; 150:dev201501. [PMID: 37082953 PMCID: PMC10259658 DOI: 10.1242/dev.201501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Histone modifications regulate chromatin remodeling and gene expression in development and diseases. DOT1L, the sole histone H3K79 methyltransferase, is essential for embryonic development. Here, we report that DOT1L regulates male fertility in mouse. DOT1L associates with MLLT10 in testis. DOT1L and MLLT10 localize to the sex chromatin in meiotic and post-meiotic germ cells in an inter-dependent manner. Loss of either DOT1L or MLLT10 leads to reduced testis weight, decreased sperm count and male subfertility. H3K79me2 is abundant in elongating spermatids, which undergo the dramatic histone-to-protamine transition. Both DOT1L and MLLT10 are essential for H3K79me2 modification in germ cells. Strikingly, histones are substantially retained in epididymal sperm from either DOT1L- or MLLT10-deficient mice. These results demonstrate that H3K79 methylation promotes histone replacement during spermiogenesis.
Collapse
Affiliation(s)
- Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Histoembryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - Isabella G. Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Aniruddha J. Deshpande
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kathrin M. Bernt
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA 19104, USA
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Department of Histoembryology, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430072, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Nozawa K, Fujihara Y, Devlin DJ, Deras RE, Kent K, Larina IV, Umezu K, Yu Z, Sutton CM, Ye Q, Dean LK, Emori C, Ikawa M, Garcia TX, Matzuk MM. The testis-specific E3 ubiquitin ligase RNF133 is required for fecundity in mice. BMC Biol 2022; 20:161. [PMID: 35831855 PMCID: PMC9277888 DOI: 10.1186/s12915-022-01368-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 07/05/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Ubiquitination is a post-translational modification required for a number of physiological functions regulating protein homeostasis, such as protein degradation. The endoplasmic reticulum (ER) quality control system recognizes and degrades proteins no longer needed in the ER through the ubiquitin-proteasome pathway. E2 and E3 enzymes containing a transmembrane domain have been shown to function in ER quality control. The ER transmembrane protein UBE2J1 is a E2 ubiquitin-conjugating enzyme reported to be essential for spermiogenesis at the elongating spermatid stage. Spermatids from Ube2j1 KO male mice are believed to have defects in the dislocation step of ER quality control. However, associated E3 ubiquitin-protein ligases that function during spermatogenesis remain unknown. RESULTS We identified four evolutionarily conserved testis-specific E3 ubiquitin-protein ligases [RING finger protein 133 (Rnf133); RING finger protein 148 (Rnf148); RING finger protein 151 (Rnf151); and Zinc finger SWIM-type containing 2 (Zswim2)]. Using the CRISPR/Cas9 system, we generated and analyzed the fertility of mutant mice with null alleles for each of these E3-encoding genes, as well as double and triple knockout (KO) mice. Male fertility, male reproductive organ, and sperm-associated parameters were analyzed in detail. Fecundity remained largely unaffected in Rnf148, Rnf151, and Zswim2 KO males; however, Rnf133 KO males displayed severe subfertility. Additionally, Rnf133 KO sperm exhibited abnormal morphology and reduced motility. Ultrastructural analysis demonstrated that cytoplasmic droplets were retained in Rnf133 KO spermatozoa. Although Rnf133 and Rnf148 encode paralogous genes that are chromosomally linked and encode putative ER transmembrane E3 ubiquitin-protein ligases based on their protein structures, there was limited functional redundancy of these proteins. In addition, we identified UBE2J1 as an E2 ubiquitin-conjugating protein that interacts with RNF133. CONCLUSIONS Our studies reveal that RNF133 is a testis-expressed E3 ubiquitin-protein ligase that plays a critical role for sperm function during spermiogenesis. Based on the presence of a transmembrane domain in RNF133 and its interaction with the ER containing E2 protein UBE2J1, we hypothesize that these ubiquitin-regulatory proteins function together in ER quality control during spermatogenesis.
Collapse
Affiliation(s)
- Kaori Nozawa
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yoshitaka Fujihara
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, 564-8565, Japan
| | - Darius J Devlin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ricardo E Deras
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Katarzyna Kent
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irina V Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kohei Umezu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhifeng Yu
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Courtney M Sutton
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Qiuji Ye
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Laura K Dean
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Thomas X Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Okada Y. Sperm chromatin condensation: epigenetic mechanisms to compact the genome and spatiotemporal regulation from inside and outside the nucleus. Gene 2022; 97:41-53. [PMID: 35491100 DOI: 10.1266/ggs.21-00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sperm chromatin condensation is a critical step in mammalian spermatogenesis to protect the paternal DNA from external damaging factors and to acquire fertility. During chromatin condensation, various events proceed in a chronological order, independently or in sequence, interacting with each other both inside and outside the nucleus to support the dramatic chromatin changes. Among these events, histone-protamine replacement, which is concomitant with acrosome biogenesis and cytoskeletal alteration, is the most critical step associated with nuclear elongation. Failures of not only intranuclear events but also extra-nuclear events severely affect sperm shape and chromatin state and are subsequently linked to infertility. This review focuses on nuclear and non-nuclear factors that affect sperm chromatin condensation and its effects, and further discusses the possible utility of sperm chromatin for clinical applications.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo
| |
Collapse
|