1
|
Gosomji IJ, Bello UM, Dzenda T, Baso A, Arukwe A, Aire TA. Influence of photoperiod and exogenous melatonin on testis morpho-physiology of sexually mature guinea fowl (Numida meleagris). Anim Reprod Sci 2024; 263:107410. [PMID: 38402776 DOI: 10.1016/j.anireprosci.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/06/2024] [Indexed: 02/27/2024]
Abstract
The biological effects of simulated photoperiod and melatonin on the control of reproduction of guinea fowls (Numida meleagris) are not well understood. Herein, thirty (30) sexually mature guinea fowl cocks were randomly assigned to 1-6 groups (n = 5) and subjected to different photoperiodic regimes in the presence or absence of exogenous melatonin (Mel; 1 mg/kgBW/day, i/m) for eight weeks. Testes of the euthanized cocks were processed for gross morphology, histological, histochemical, and oxidative stress markers. Testosterone concentration was determined in serum samples using the enzyme-linked immunosorbent assay (ELISA) technique. We observed an increase in testicular size in the Mel and Non-Mel groups under long-day (LD) photoperiods, and in the Non-Mel group under short-day (SD) photoperiod. Conversely, the testicular size was drastically reduced in the Mel group for SD. Seminiferous tubules in the Mel and Non-Mel groups of the SD showed cytomorphological changes, including degenerated cells, focal vacuolations, and depletion of germinal epithelium. However, the germinal epithelium appeared to be complete and active in both the Mel and Non-Mel groups for the LD. In all groups, the testes showed positive staining for PAS with varying intensities. There was a significant difference in PAS-staining intensity between different photoperiodic regimes and exogenous melatonin. The study observed the interaction between photoperiods and exogenous melatonin on glutathione reductase (GSH), malondialdehyde (MDA), and serum testosterone. Overall, the results indicated that a long-day (LD) photoperiod, combined with exogenous melatonin, enhanced reproductive activity in male guinea fowl by increasing testicular size and serum testosterone concentration.
Collapse
Affiliation(s)
- Innocent J Gosomji
- Laboratory of Cell Biology and Histology, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria; Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Jos, Nigeria
| | - Umar M Bello
- Laboratory of Cell Biology and Histology, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.
| | - Tavershima Dzenda
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Abdullahi Baso
- Laboratory of Cell Biology and Histology, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria; Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Bayero University, Kano, Nigeria
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Tom A Aire
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, True Blue, Grenada
| |
Collapse
|
2
|
Xu H, Pu J, Teng Y, Zhu Q, Guo L, Zhao J, Ding H, Fang Y, Ma X, Liu H, Guo J, Lu W, Wang J. Melatonin Inhibits Testosterone Synthesis in Rooster Leydig Cells by Targeting CXCL14 through miR-7481-3p. Int J Mol Sci 2023; 24:16552. [PMID: 38068875 PMCID: PMC10706588 DOI: 10.3390/ijms242316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Melatonin has been proved to be involved in testosterone synthesis, but whether melatonin participates in testosterone synthesis by regulating miRNA in Leydig cells is still unclear. The purpose of this study is to clarify the mechanism of melatonin on Leydig cells testosterone synthesis from the perspective of miRNA. Our results showed that melatonin could significantly inhibit testosterone synthesis in rooster Leydig cells. miR-7481-3p and CXCL14 were selected as the target of melatonin based on RNA-seq and miRNA sequencing. The results of dual-luciferase reporter assays showed that miR-7481-3p targeted the 3'-UTR of CXCL14. The overexpression of miR-7481-3p significantly inhibited the expression of CXCL14 and restored the inhibitory role of melatonin testosterone synthesis and the expression of StAR, CYP11A1, and 3β-HSD in rooster Leydig cells. Similarly, interference with CXCL14 could reverse the inhibitory effect of melatonin on the level of testosterone synthesis and the expression of StAR, CYP11A1, and 3β-HSD in rooster Leydig cells. The RNA-seq results showed that melatonin could activate the PI3K/AKT signal pathway. Interference with CXCL14 significantly inhibited the phosphorylation level of PI3K and AKT, and the inhibited PI3K/AKT signal pathway could reverse the inhibitory effect of CXCL14 on testosterone synthesis and the expression of StAR, CYP11A1 and 3β-HSD in rooster Leydig cells. Our results indicated that melatonin inhibits testosterone synthesis by targeting miR-7481-3p/CXCL14 and inhibiting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Haoran Xu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jingxin Pu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunkun Teng
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qingyu Zhu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Lewei Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi Fang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Ma
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (H.X.); (J.P.); (Y.T.); (Q.Z.); (L.G.); (J.Z.); (H.D.); (Y.F.); (X.M.); (H.L.); (J.G.)
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
He M, Liu K, Cao J, Chen Q. An update on the role and potential mechanisms of clock genes regulating spermatogenesis: A systematic review of human and animal experimental studies. Rev Endocr Metab Disord 2023; 24:585-610. [PMID: 36792803 DOI: 10.1007/s11154-022-09783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/25/2022] [Indexed: 02/17/2023]
Abstract
Circadian clocks can be traced in nearly all life kingdoms, with the male reproductive system no exception. However, our understanding of the circadian clock in spermatogenesis seems to fall behind other scenarios. The present review aims to summarize the current knowledge about the role and especially the potential mechanisms of clock genes in spermatogenesis regulation. Accumulating studies have revealed rhythmic oscillation in semen parameters and some physiological events of spermatogenesis. Disturbing the clock gene expression by genetic mutations or environmental changes will also notably damage spermatogenesis. On the other hand, the mechanisms of spermatogenetic regulation by clock genes remain largely unclear. Some recent studies, although not revealing the entire mechanisms, indeed attempted to shed light on this issue. Emerging clues hinted that gonadal hormones, retinoic acid signaling, homologous recombination, and the chromatoid body might be involved in the regulation of spermatogenesis by clock genes. Then we highlight the challenges and the promising directions for future studies so as to stimulate attention to this critical field which has not gained adequate concern.
Collapse
Affiliation(s)
- Mengchao He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Kun Liu
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, 510630, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Chu X, Javed A, Ashraf MF, Gao X, Jiang S. Primary culture and endocrine functional analysis of Leydig cells in ducks ( Anas platyrhynchos). Front Endocrinol (Lausanne) 2023; 14:1195618. [PMID: 37347106 PMCID: PMC10280297 DOI: 10.3389/fendo.2023.1195618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Testicular Leydig cells (LCs) are the primary known source of testosterone, which is necessary for maintaining spermatogenesis and male fertility. However, the isolation, identification, and functional analysis of testosterone in duck LCs are still ambiguous. The aim of the present study was to establish a feasible method for isolating highly purified primary duck LCs. The highly purified primary duck LCs were isolated from the fresh testes of 2-month-old ducks via the digestion of collagenase IV and Percoll density gradient centrifugation; hematoxylin and eosin (H&E), immunohistochemistry (IHC) staining, ELISA, and radioimmunoassay were performed. Results revealed that the LCs were prominently noticeable in the testicular interstitium of 2-month-old ducks as compared to 6-month-old and 1-year-old ducks. Furthermore, IHC demonstrated that the cultured LCs occupied 90% area of the petri dish and highly expressed 3β-HSD 24 h after culture (hac) as compared to 48 and 72 hac. Additionally, ELISA and radioimmunoassay indicate that the testosterone level in cellular supernatant was highly expressed in 24 and 48 hac, whereas the testosterone level gradually decreased in 72 and 96 hac, indicating the primary duck LCs secrete testosterone at an early stage. Based on the above results, the present study has effectively developed a technique for isolating highly purified primary duck LCs and identified its biological function in synthesizing testosterone.
Collapse
Affiliation(s)
- Xiaoya Chu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Aiman Javed
- Department of Psychiatry & Behavioral Sciences, King Edward Medical University, Lahore, Punjab, Pakistan
| | - Muhammad Faizan Ashraf
- Department of Basic Sciences, Fatima Memorial Hospital (FMH) College of Medicine & Dentistry, Lahore, Pakistan
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Natural Astaxanthin Improves Testosterone Synthesis and Sperm Mitochondrial Function in Aging Roosters. Antioxidants (Basel) 2022; 11:antiox11091684. [PMID: 36139758 PMCID: PMC9495865 DOI: 10.3390/antiox11091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogenesis, sperm motility, and apoptosis are dependent on the regulation of glandular hormones and mitochondria. Natural astaxanthin (ASTA) has antioxidant, anti-inflammatory, and anti-apoptotic properties. The present study evaluates the effects of ASTA on testosterone synthesis and mitochondrial function in aging roosters. Jinghong No. 1 layer breeder roosters (n = 96, 53-week old) were fed a corn−soybean meal basal diet containing 0, 25, 50, or 100 mg/kg ASTA for 6 weeks. The levels of plasma reproductive hormones and the mRNA and protein levels of molecules related to testosterone synthesis were significantly improved (p < 0.05) in the testes of the ASTA group roosters. In addition, antioxidant activities and free radical scavenging abilities in roosters of the ASTA groups were higher than those of the control group (p < 0.05). Mitochondrial electron transport chain complexes activities and mitochondrial membrane potential in sperm increased linearly with dietary ASTA supplementation (p < 0.05). The levels of reactive oxygen species and apoptosis factors decreased in roosters of the ASTA groups (p < 0.05). Collectively, these results suggest that dietary ASTA may improve testosterone levels and reduce sperm apoptosis, which may be related to the upregulation of the testosterone synthesis pathway and the enhancement of mitochondrial function in aging roosters.
Collapse
|
6
|
The aphrodisiac potential of β-cyclodextrin-curcumin via stimulating cAMP-PKA pathway in testicular Leydig cells. Sci Rep 2022; 12:14263. [PMID: 35995927 PMCID: PMC9395524 DOI: 10.1038/s41598-022-18065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
The water-soluble β-cyclodextrin–curcumin (CDC) is used in pharmaceutical applications and as a natural food colorant. The previous study revealed that curcumin potentially impacted the reproductive system. The present study investigated the possible roles of the CDC in testosterone secretion in Leydig cells and mice. Primary Leydig cells were treated with the CDC to determine their effect on cell proliferation, testosterone levels, the protein and mRNA expression of the transcription factor, and steroidogenic enzymes. Our data showed that CDC stimulated testosterone production via upregulating transcription factor steroidogenic factor-1 (NR5A1), cAMP-response element-binding protein (CREB), and steroidogenic enzymes steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (CYP11A1), 17-alpha-hydroxylase/17,20-lyase (CYP17A1), 3β-/17β-hydroxysteroid dehydrogenase type 1 (3β/17β-HSD, HSD3b1/HSD17b1). CDC could significantly stimulate H89-suppressed StAR and CREB expression but not reverse melatonin-suppressed StAR expression. We further detected the hormonal activity with transgenic yeast, and CDC showed potential androgenic antagonistic activity. Meanwhile, we investigated its aphrodisiac effect on hydrocortisone-induced mice. Exposure to hydrocortisone decreased the mating ability, reproductive organs, and testosterone level and disrupted testicular histology. However, all of these effects were significantly improved by CDC treatment. In conclusion, these results indicated that mechanisms of CDC in stimulating testosterone production involve upregulating the cAMP-PKA pathway.
Collapse
|
7
|
Zhu Q, Guo L, An W, Huang Z, Liu H, Zhao J, Lu W, Wang J. Melatonin inhibits testosterone synthesis in Roosters Leydig cells by regulating lipolysis of lipid droplets. Theriogenology 2022; 189:118-126. [PMID: 35753225 DOI: 10.1016/j.theriogenology.2022.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Leydig cells are important component of testis cells, which can synthesize testosterone with free cholesterol derived from lipid droplets (LDs). It is well known that melatonin could regulate synthesis of testosterone. However, it is still unclear whether melatonin participates in the synthesis of testosterone by regulating the lipolysis of LDs in Leydig cells. The purpose of this study was to elucidate the effect of melatonin on synthesis of testosterone in roosters Leydig cells by regulating lipolysis of LDs. The results showed that melatonin decreased synthesis of testosterone and intracellular free cholesterol in roosters Leydig cells. Exogenous addition of 22-OH-Cholesterol counteracted the inhibitory effect of melatonin on synthesis of testosterone. Furthermore, melatonin increased the LDs content and expression of perilipin 1 (PLIN1), and decreased expression of hormone-sensitive lipase (HSL) and triacylglycerol hydrolase (ATGL) in roosters Leydig cells. In addition, silencing PLIN1 reversed the inhibitory effect of melatonin on synthesis of testosterone in roosters Leydig cells by increasing free cholesterol content and expression of HSL and ATGL, and decreasing the lipid droplet content. Activation of cAMP/PKA pathway by using the pathway activators Forskolin and 8-Bromo-cAMP attenuated the inhibitory effect of melatonin on synthesis of testosterone accompanied by increasing level of free cholesterol content and expression of HSL and ATGL, and decreasing level of lipid droplet content and expression of PLIN1 in roosters Leydig cells. These results suggested that melatonin could inhibit the synthesis of testosterone in roosters Leydig cells by reducing the content of intracellular free cholesterol in which expression of PLIN1 and cAMP/PKA pathway were inhibited to reduce the lipolysis of LDs.
Collapse
Affiliation(s)
- Qingyu Zhu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Lewei Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Wen An
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhuncheng Huang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Jun Wang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin, Changchun, 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|