1
|
Hongyu L, Nan Y, Kaiying L, Zhenning Z, Lili Z, Jing M, Huisheng M. Assessment of Electroacupuncture Therapy with Distant-Approximal Acupoints Based on the HPT Axis in Rats with Oligoasthenospermia Through Transcriptomic Analysis. Reprod Sci 2025; 32:1228-1240. [PMID: 40016484 PMCID: PMC11978543 DOI: 10.1007/s43032-025-01821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
The transcriptomic analysis was used to explore the effect of electroacupuncture therapy with distant-approximal acupoints based on the hypothalamic-pituitary-testicular (HPT) on gene expression patterns and pathways in oligoasthenospermia (OAT) rats. In this study, the rat model of OAT after intragastric administration of adenine was selected as the research object, and randomly divided into a blank group (C), a model group (M), and a electroacupuncture therapy with distant-approximal acupoints group (D). After electroacupuncture intervention, the epididymal sperm quality and serum sex hormone levels of rats was detected and three tissue samples of HPT axis were taken, and differentially expressed genes (DEGs) were screened by transcriptome sequencing technology. GO functional annotation and KEGG pathway enrichment analysis were performed on the DEGs. The oxidative stress related indicators in serum and HPT axis were also detected to verify the transcriptomic analysis results. Compared with group C, group M rats showed a decrease in sperm count (p < 0.001), sperm survival rate (p < 0.001), and sperm motility rate (p < 0.001); the serum levels of GnRH in the group M rats decreased (p < 0.001), FSH increased (p < 0.001), LH increased (p < 0.001), and T decreased (p < 0.001). Compared with group M, group D rats showed an increase in sperm count (p < 0.01), sperm survival rate (p < 0.001), sperm motility rate (p < 0.001), an increase in GnRH levels (p < 0.001), a decrease in FSH levels (p < 0.01), a decrease in LH levels (p < 0.001), and an increase in T levels (p < 0.001). In bioinformatics analysis, compared with group M, we identified 1656, 518, 530 DEGs in the hypothalamus, pituitary, and testis in group D, respectively. Combining the go and KEGG analysis results, three oxidative stress signaling pathways that may be related to electroacupuncture intervention in OAT rats were screened. It mainly involves the glutamatergic synaptic pathway, the MAPK signaling pathway and the glutathione metabolism pathway. Six key genes (Gng12、Grin1、Gng7、Jun、Nf1 and Gstp1) were identified as key candidate genes regulating epididymal sperm quality on the HPT axis, which may affect the reproductive function of rats by affecting the process of oxidative stress in vivo. No matter in serum or in three tissues of HPT axis, GPX4 level in group M was decreased compared with Group K (p < 0.0001), while GPX4 level in group D was increased compared with group M (p < 0.0001). This study found that the effect of electroacupuncture therapy with distant-approximal acupoints based on the HPT axis in rats with OAT is related to the process of oxidative stress. And the main genes involved in the oxidative stress pathway were identified, which provided directions and ideas for subsequent research. But these results are only the preliminary results of transcriptomics, and relevant experiments need to be designed to further verify the mechanism of electroacupuncture therapy in rats with OAT.
Collapse
Affiliation(s)
- Li Hongyu
- Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yang Nan
- Ningxia Health Vocational and Technical College, Shizuishan, 753000, Ningxia Hui Autonomous Region, China
| | - Li Kaiying
- Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Zhao Zhenning
- Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Zhao Lili
- Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Mu Jing
- Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ma Huisheng
- Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Regional High Incidence Disease, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
2
|
Ji XR, Wang RJ, Huang ZH, Wu HL, Huang XH, Bo H, Lin G, Zhu WB, Huang C. Sperm tRNA-derived fragments expression is potentially linked to abstinence-related improvement of sperm quality. Asian J Androl 2025:00129336-990000000-00295. [PMID: 40101124 DOI: 10.4103/aja2024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/06/2025] [Indexed: 03/20/2025] Open
Abstract
ABSTRACT Recent studies have shown that shorter periods of ejaculatory abstinence may enhance certain sperm parameters, but the molecular mechanisms underlying these improvements are still unclear. This study explored whether reduced abstinence periods could improve semen quality, particularly for use in assisted reproductive technologies (ART). We analyzed semen samples from men with normal sperm counts (n = 101) and those with low sperm motility or concentration (n = 53) after 3-7 days of abstinence and then after 1-3 h of abstinence, obtained from the Reproductive & Genetic Hospital of CITIC-Xiangya (Changsha, China). Physiological and biochemical sperm parameters were evaluated, and the dynamics of transfer RNA (tRNA)-derived fragments (tRFs) were analyzed using deep RNA sequencing in five consecutive samples from men with normal sperm counts. Our results revealed significant improvement in sperm motility and a decrease in the DNA fragmentation index after the 1- to 3-h abstinence period. Additionally, we identified 245 differentially expressed tRFs, and the mitogen-activated protein kinase (MAPK) signaling pathway was the most enriched. Further investigations showed significant changes in tRF-Lys-TTT and its target gene mitogen-activated protein kinase kinase 2 (MAP2K2), which indicates a role of tRFs in improving sperm function. These findings provide new insights into how shorter abstinence periods influence sperm quality and suggest that tRFs may serve as biomarkers for male fertility. This research highlights the potential for optimizing ART protocols and improving reproductive outcomes through molecular approaches that target sperm function.
Collapse
Affiliation(s)
- Xi-Ren Ji
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Rui-Jun Wang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
| | - Zeng-Hui Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Hui-Lan Wu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Xiu-Hai Huang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Hao Bo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Ge Lin
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Wen-Bing Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| | - Chuan Huang
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha 41008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 41008, China
| |
Collapse
|
3
|
Lymbery RA, Garcia-Gonzalez F, Evans JP. Silent cells? Potential for context-dependent gene expression in mature sperm. Proc Biol Sci 2025; 292:20241516. [PMID: 39772960 PMCID: PMC11706646 DOI: 10.1098/rspb.2024.1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/02/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Sperm are traditionally viewed as transcriptionally and translationally silent cells. However, observations that components of the cellular machinery of gene expression are maintained in ejaculated sperm are increasingly cited as challenges to this fundamental assumption. Here, we critically evaluate these arguments and present three lines of evidence from both model and non-model systems that collectively raise the question of whether ejaculated sperm may be capable of active gene expression. First, and critical for arguments surrounding the possibility of differential gene expression, we review recent evidence that spermatozoa may retain the capacity to transcribe and translate their genomes. Second, we highlight how sperm cells can exhibit differential transcript quantities across different post-ejaculation environments. Third, we ask whether the accumulating evidence of remarkable phenotypic plasticity in post-ejaculatory sperm phenotypes could be mechanistically underpinned by changes in sperm gene expression. While these lines of evidence are indirect and do not definitively show transcription of sperm genomes, we highlight how emerging technologies may enable us to test this hypothesis explicitly. Our review advocates for progress in this field and highlights several important evolutionary, ecological and practical implications that will probably transcend disciplines to the clinical and applied reproductive sectors.
Collapse
Affiliation(s)
- Rowan A. Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
- Department of Biodiversity, Conservation and Attractions, Kensington, Australia
| | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
- Doñana Biological Station (EBD-CSIC), Isla de la Cartuja, Sevilla, Spain
| | - Jonathan P. Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Australia
| |
Collapse
|
4
|
Wang Z, Qi Y, Xiao N, She L, Zhang Y, Lu J, Jiang Q, Luo C. Identification of crucial LncRNAs associated with testicular development and LOC108635509 as a potential regulator in black goat spermatogenesis. BMC Genomics 2024; 25:1195. [PMID: 39695400 PMCID: PMC11654314 DOI: 10.1186/s12864-024-11094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
The establishment and maintenance of spermatogenesis is a complex process involving a vast of regulatory pathways. There is growing evidence revealing that long noncoding RNAs (lncRNA) play important roles in regulating testicular development and spermatogenesis in a stage-specific way. However, our understanding of how lncRNA regulates testicular development and spermatogenesis in black goats is quite limited. In the current study, we screened the transcriptomes (lncRNA and mRNA) of testicular from Guangxi black goats before puberty (3 days old, D3; 30 days old, D30), puberty (90 days old, D90) and postpuberty (180 days old, D180), in order to identify the lncRNA interaction with mRNAs contributes to goat spermatogenesis. The RNA-sequencing (RNA-seq) analysis showed that there were 1211, 12,180, 834 differential lncRNAs and 1196, 8838,269 differential mRNAs at the ages of D30 vs. D3, D90 vs. D30, and D180 vs. D90. The lncRNAs showed the most significantly changes from D30 to D90, which indicated that D90 was a key node of lncRNAs participated in the regulation of testicular development and spermatogenesis in black goat. According to functional enrichment analysis of GO and KEGG, we found that differentially expressed lncRNAs (DE lncRNAs) and their target genes regulated spermatogenesis through signal pathways including MAPK, Ras, and PI3K-Akt. Using cis- and trans-acting, 39 DE lncRNAs-targeted genes were found to be enriched for male reproduction. Of these, LOC108635509, which specific expressed in testis and upregulated the expression levels at D90, was found participated in the regulation of testicular development through promoting the proliferation of Sertoli cells (SCs). Overall, this study provides new insight into the regulatory mechanisms that support spermatogenesis and testicular development in black goats.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Yunjia Qi
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Nan Xiao
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Liu She
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Yunchuang Zhang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Junzhi Lu
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China
| | - Qinyang Jiang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| | - Chan Luo
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, 75 Xiuling Road, Nanning, 530005, China.
| |
Collapse
|
5
|
Viitaniemi HM, Leder EH, Kauzál O, Stopková R, Stopka P, Lifjeld JT, Albrecht T. Impact of Z chromosome inversions on gene expression in testis and liver tissues in the zebra finch. Mol Ecol 2024; 33:e17236. [PMID: 38126688 PMCID: PMC11628666 DOI: 10.1111/mec.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Abstract
Chromosomal inversions have been identified in many natural populations and can be responsible for novel traits and rapid adaptation. In zebra finch, a large region on the Z chromosome has been subject to multiple inversions, which have pleiotropic effects on multiple traits but especially on sperm phenotypes, such as midpiece and flagellum length. To understand the effect, the Z inversion has on these traits, we examined testis and liver transcriptomes of young males at different maturation times. We compared gene expression differences among three inversion karyotypes: AA, B*B* and AB*, where B* denotes the inverted regions on Z with respect to A. In testis, 794 differentially expressed genes were found and most of them were located on chromosome Z. They were functionally enriched for sperm-related traits. We also identified clusters of co-expressed genes that matched with the inversion-related sperm phenotypes. In liver, there were some enriched functions and some overrepresentation on chromosome Z with similar location as in testis. In both tissues, the overrepresented genes were located near the distal end of Z but also in the middle of the chromosome. For the heterokaryotype, we observed several genes with one allele being dominantly expressed, similar to expression patterns in one or the other homokaryotype. This was confirmed with SNPs for three genes, and interestingly one gene, DMGDH, had allele-specific expression originating mainly from one inversion haplotype in the testis, yet both inversion haplotypes were expressed equally in the liver. This karyotype-specific difference in tissue-specific expression suggests a pleiotropic effect of the inversion and thus suggests a mechanism for divergent phenotypic effects resulting from an inversion.
Collapse
Affiliation(s)
- Heidi M. Viitaniemi
- Institute of Vertebrate Biology, Czech Academy of SciencesBrnoCzech Republic
- Section of Ecology and Evolution, Department of BiologyUniversity of TurkuTurkuFinland
| | - Erica H. Leder
- Section of Ecology and Evolution, Department of BiologyUniversity of TurkuTurkuFinland
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
- Natural History MuseumUniversity of OsloOsloNorway
| | - Ondřej Kauzál
- Institute of Vertebrate Biology, Czech Academy of SciencesBrnoCzech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of SciencesBrnoCzech Republic
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
6
|
Huang T, Zhong S, Sun J, Shen D, Zhang X, Zhao Q. Whole transcriptome analysis identifies differentially expressed mRNA, miRNA and lncRNA associated with male sterility in the silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101280. [PMID: 38964195 DOI: 10.1016/j.cbd.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Insect sterility technology is gradually being applied to the control of lepidoptera pests, and the target gene for male sterility is the core of this technology. JMS is a mutant silkworm that exhibits male sterility, and to elucidate its formation mechanism, this study conducted a full transcriptome analysis of the testes of JMS and its wild-type silkworms 48 h after pupation, identifying 205 DElncRNAs, 913 mRNAs, and 92 DEmiRNAs. The KEGG pathway enrichment analysis of the DEmRNAs revealed that they were involved in the biosynthesis of amino acids and ECM-receptor interactions. Combined with ceRNA regulatory network KEGG analysis suggests that pathways from amino acid biosynthesis to hydrolytic processes of protein synthesis may play a crucial role in the formation of JMS mutant variants. Our study deepens our understanding of the regulatory network of male sterility genes in silkworms; it also provides a new perspective for insect sterility technology.
Collapse
Affiliation(s)
- Tianchen Huang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Shanshan Zhong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| | - Juan Sun
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dongxu Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xuelian Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Qiaoling Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
7
|
Zhang LX, Mao J, Zhou YD, Mao GY, Guo RF, Ge HS, Chen X. Evaluation of microRNA expression profiles in human sperm frozen using permeable cryoprotectant-free droplet vitrification and conventional methods. Asian J Androl 2024; 26:366-376. [PMID: 38738948 PMCID: PMC11280198 DOI: 10.4103/aja202390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/18/2024] [Indexed: 05/14/2024] Open
Abstract
For sperm cryopreservation, the conventional method, which requires glycerol, has been used for a long time. In addition, the permeable cryoprotectant-free vitrification method has been continuously studied. Although the differences of cryopreservation effects between the two methods have being studied, differences in microRNA (miRNA) profiles between them remain unclear. In this study, we investigated the differences in miRNA expression profiles among conventional freezing sperm, droplet vitrification freezing sperm and fresh human sperm. We also analyzed the differences between these methods in terms of differentially expressed miRNAs (DEmiRs) related to early embryonic development and paternal epigenetics. Our results showed no significant differences between the cryopreservation methods in terms of sperm motility ratio, plasma membrane integrity, DNA integrity, mitochondrial membrane potential, acrosome integrity, and ultrastructural damage. However, sperm miRNA-sequencing showed differences between the two methods in terms of the numbers of DEmiRs (28 and 19 with vitrification using a nonpermeable cryoprotectant and the conventional method, respectively) in postthaw and fresh sperm specimens. DEmiRs related to early embryonic development and paternal epigenetics mainly included common DEmiRs between the groups. Our results showed that the differences between conventional freezing and droplet vitrification were minimal in terms of miRNA expression related to embryonic development and epigenetics. Changes in sperm miRNA expression due to freezing are not always detrimental to embryonic development. This study compared differences in miRNA expression profiles before and after cryopreservation between cryopreservation by conventional and vitrification methods. It offers a new perspective to evaluate various methods of sperm cryopreservation.
Collapse
Affiliation(s)
- Li-Xin Zhang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Jing Mao
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Yan-Dong Zhou
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Guang-Yao Mao
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Run-Fa Guo
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Hong-Shan Ge
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Hosseini M, Khalafiyan A, Zare M, Karimzadeh H, Bahrami B, Hammami B, Kazemi M. Sperm epigenetics and male infertility: unraveling the molecular puzzle. Hum Genomics 2024; 18:57. [PMID: 38835100 PMCID: PMC11149391 DOI: 10.1186/s40246-024-00626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The prevalence of infertility among couples is estimated to range from 8 to 12%. A paradigm shift has occurred in understanding of infertility, challenging the notion that it predominantly affects women. It is now acknowledged that a significant proportion, if not the majority, of infertility cases can be attributed to male-related factors. Various elements contribute to male reproductive impairments, including aberrant sperm production caused by pituitary malfunction, testicular malignancies, aplastic germ cells, varicocele, and environmental factors. MAIN BODY The epigenetic profile of mammalian sperm is distinctive and specialized. Various epigenetic factors regulate genes across different levels in sperm, thereby affecting its function. Changes in sperm epigenetics, potentially influenced by factors such as environmental exposures, could contribute to the development of male infertility. CONCLUSION In conclusion, this review investigates the latest studies pertaining to the mechanisms of epigenetic changes that occur in sperm cells and their association with male reproductive issues.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Zare
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniye Karimzadeh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Basireh Bahrami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Hammami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Wang P, Liu Z, Zhang X, Huo H, Wang L, Dai H, Yang F, Zhao G, Huo J. Integrated analysis of lncRNA, miRNA and mRNA expression profiles reveals regulatory pathways associated with pig testis function. Genomics 2024; 116:110819. [PMID: 38432498 DOI: 10.1016/j.ygeno.2024.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Long noncoding RNA (lncRNA) and microRNA (miRNA) are known to play pivotal roles in mammalian testicular function and spermatogenesis. However, their impact on porcine male reproduction has yet to be well unraveled. Here, we sequenced and identified lncRNA and miRNA expressed in the testes of Chinese indigenous Banna mini-pig inbred line (BMI) and introduced Western Duroc (DU) and Large White (LW) pigs. By pairwise comparison (BMI vs DU, BMI vs LW, and DU vs LW), we found the gene expression differences in the testes between Chinese local pigs and introduced Western commercial breeds were more striking than those between introduced commercial breeds. Furthermore, we found 1622 co-differentially expressed genes (co-DEGs), 122 co-differentially expressed lncRNAs (co-DELs), 39 co-differentially expressed miRNAs (co-DEMs) in BMI vs introduced commercial breeds (DU and LW). Functional analysis revealed that these co-DEGs and co-DELs/co-DEMs target genes were enriched in male sexual function pathways, including MAPK, AMPK, TGF-β/Smad, Hippo, NF-kappa B, and PI3K/Akt signaling pathways. Additionally, we established 10,536 lncRNA-mRNA, 11,248 miRNA-mRNA pairs, and 62 ceRNA (lncRNA-miRNA-mRNA) networks. The ssc-miR-1343 had the most interactive factors in the ceRNA network, including 20 mRNAs and 3 lncRNAs, consisting of 56 ceRNA pairs. These factors played extremely important roles in the regulation of testis function as key nodes in the interactive regulatory network. Our results provide insight into the functional roles of lncRNAs and miRNAs in porcine testis and offer a valuable resource for understanding the differences between Chinese indigenous and introduced Western pigs.
Collapse
Affiliation(s)
- Pei Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Zhang
- College of Life Science, Lyuliang University, Lvliang 033001, China
| | - Hailong Huo
- Yunnan Open University, Kunming 650500, China
| | - Lina Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongmei Dai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Fuhua Yang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
10
|
Zhang L, Sun H, Chen X. Long noncoding RNAs in human reproductive processes and diseases. Mol Reprod Dev 2024; 91:e23728. [PMID: 38282314 DOI: 10.1002/mrd.23728] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Infertility has become a global disease burden. Although assisted reproductive technologies are widely used, the assisted reproduction birth rate is no more than 30% worldwide. Therefore, understanding the mechanisms of reproduction can provide new strategies to improve live birth rates and clinical outcomes of enhanced implantation. Long noncoding RNAs (lncRNAs) have been reported to exert regulatory roles in various biological processes and diseases in many species. In this review, we especially focus on the role of lncRNAs in human reproduction. We summarize the function and mechanisms of lncRNAs in processes vital to reproduction, such as spermatogenesis and maturation, sperm motility and morphology, follicle development and maturation, embryo development and implantation. Then, we highlight the importance and diverse potential of lncRNAs as good diagnostic molecular biomarkers and therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hailong Sun
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiujuan Chen
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
11
|
Asl AJ, Sharifi M, Dashti A, Dashti GR. Relationship between long non-coding RNA MALAT1 and HOTAIR expression with sperm parameters, DNA and malondialdehyde levels in male infertility. Tissue Cell 2023; 85:102248. [PMID: 37879289 DOI: 10.1016/j.tice.2023.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Sperm quality is a complex index used to evaluate the fertility potential of men. The long non-coding RNA (lncRNA) MALAT1 participate in sperm development and HOTAIR have critical roles in the regulation of oxidative stress responses. This study aimed to evaluate the relationship of lncRNA MALAT1 and HOTAIR expression with sperm parameters, DNA fragmentation and malondialdehyde (MDA)levels in sperm fertility. METHODS In this experimental study, semen samples (n = 30 fertile, n = 30 infertile) men were collected and evaluated for sperm parameters by computer-aided sperm analysis(CASA). Sperm DNA integrity quality was assessed by the Acridine orange(AO) test. MDA levels were determined by the Thiobarbituric acid reaction method. The expression of MALAT1 and HOTAIR was detected by RT-PCR. RESULTS We observed a decreased level of MALAT1and HOTAIR expression in the infertile men (p < 0.001). The relative expression level of MALAT1and HOTAIR showed a positive correlation with motility and morphology (p < 0.001). Subsequently, we found the DNA damage and MDA levels was negatively correlated with expression level of genes of sperm (p < 0.001). CONCLUSION In this study the low expression of MALATI and HOTAIR resulted in the high level of MDA, DNA damage, and reduced motility of sperm. This study suggests the therapeutic opportunities in respect to MALATI and HOTAIR expression in the sperm function.
Collapse
Affiliation(s)
- Afsaneh-Jaberi Asl
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Abolfazl Dashti
- School of Veterinary Medicine, Islamic Azad University, Shahrekord, Charhar Mahal Bakhtiyari, Iran.
| | - Gholam Reza Dashti
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Saint Maryam Fertility and Infertility center, Shahid Beheshti hospital, Isfahan, Iran.
| |
Collapse
|
12
|
Zhu X, Chen C, Song J, Dong S, Zeng X, Niu Z, Sha Y, Zhang X. A novel homozygous splice variant in DNAAF4 is associated with asthenozoospermia. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1689-1692. [PMID: 37674365 PMCID: PMC10577477 DOI: 10.3724/abbs.2023147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/25/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Xiaobin Zhu
- Department of Gynecology and ObstetricsReproductive Medical CenterShanghai Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chen Chen
- Institute of Reproductive MedicineSchool of MedicineNantong UniversityNantong226019China
| | - Jian Song
- Institute of Reproductive MedicineSchool of MedicineNantong UniversityNantong226019China
| | - Shijue Dong
- Institute of Reproductive MedicineSchool of MedicineNantong UniversityNantong226019China
| | - Xuhui Zeng
- Institute of Reproductive MedicineSchool of MedicineNantong UniversityNantong226019China
| | - Zhihong Niu
- Department of Gynecology and ObstetricsReproductive Medical CenterShanghai Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yanwei Sha
- of AndrologyWomen and Children’s HospitalSchool of MedicineXiamen UniversityXiamen361005China
| | - Xiaoning Zhang
- Institute of Reproductive MedicineSchool of MedicineNantong UniversityNantong226019China
| |
Collapse
|
13
|
Hashemi Karoii D, Azizi H. Functions and mechanism of noncoding RNA in regulation and differentiation of male mammalian reproduction. Cell Biochem Funct 2023; 41:767-778. [PMID: 37583312 DOI: 10.1002/cbf.3838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Noncoding RNAs (ncRNAs) are active regulators of a wide range of biological and physiological processes, including the majority of mammalian reproductive events. Knowledge of the biological activities of ncRNAs in the context of mammalian reproduction will allow for a more comprehensive and comparative understanding of male sterility and fertility. In this review, we describe recent advances in ncRNA-mediated control of mammalian reproduction and emphasize the importance of ncRNAs in several aspects of mammalian reproduction, such as germ cell biogenesis and reproductive organ activity. Furthermore, we focus on gene expression regulatory feedback loops including hormones and ncRNA expression to better understand germ cell commitment and reproductive organ function. Finally, this study shows the role of ncRNAs in male reproductive failure and provides suggestions for further research.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
14
|
Sahoo B, Gupta MK. Effect of arginine-induced motility and capacitation on RNA population in goat spermatozoa. Vet Res Commun 2023; 47:1427-1444. [PMID: 37162640 DOI: 10.1007/s11259-023-10092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/26/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION In vitro capacitation is essential in assisted reproductive technologies (ART) for embryo production. Recently, arginine has been proven to enhance capacitation in mammalian spermatozoa. However, the detailed mechanism of action of arginine remains elusive. AIM This study investigated the effect of arginine-induced capacitation and motility enhancement on the spermatozoal RNA (spRNA) population in goats. MATERIAL AND METHODS Goat spermatozoa were treated with arginine for up to six hours and compared with non-treated or PHE (penicillamine, hypotaurine, and epinephrine)-treated spermatozoa at different intervals (0, 1, 2, 4, and 6 hours). Sperm parameters, including viability, individual motility, capacitation, acrosome reaction, and ROS production, were evaluated. The spRNA population was analyzed by short-read RNA sequencing (RNA-seq). RESULTS The percentage of capacitated (73.21 ± 4.22%) and acrosome reacted (18.35 ± 0.56%) spermatozoa was highest in arginine treatment, while PHE treatment showed the highest percentage (79.82 ± 4.31%) of motile spermatozoa from 0 to 4 hours of incubation. RNA-seq analysis identified 1,321 differentially expressed genes (DEGs) in arginine-treated spermatozoa compared to the control. The PGK2, RNASE10, ODF1, and ROPN1L genes involved in sperm motility and ACR, DKKL1, KCNJ11, and PRND genes involved in the capacitation process were upregulated in arginine-treated spermatozoa. The DEGs regulate sperm capacitation-related cAMP-PKA, PI3-Akt, calcium, and MAPK signaling pathways. CONCLUSION The arginine-induced capacitation and enhanced sperm motility were associated with the upregulation of several genes involved in sperm motility and capacitation pathways. The comparative study also suggests that arginine may be used in lieu of PHE for motility enhancement and in vitro capacitation of goat spermatozoa.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Gene Manipulation Laboratory, Centre for Bioinformatics and Computational Biology, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Centre for Bioinformatics and Computational Biology, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
15
|
Investigation of the mechanisms leading to human sperm DNA damage based on transcriptome analysis by RNA-seq techniques. Reprod Biomed Online 2023; 46:11-19. [PMID: 36272896 DOI: 10.1016/j.rbmo.2022.08.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
RESEARCH QUESTION What are the molecular mechanisms leading to human sperm DNA damage? DESIGN Semen samples were collected and the sperm DNA fragmentation index (DFI) was assessed. Differentially expressed RNA in spermatozoa with a high (DFI ≥30%, experimental group) or normal (DFI <30%, control group) DFI were identified by RNA-sequencing (RNA-seq) technology, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed. Three differentially expressed RNA related to sperm DNA damage and repair, namely PMS1, TP53BP1 and TLK2, were validated using real-time quantitative (RT-qPCR). RESULTS A total of 19,970 expressed RNA were detected in the two groups. Compared with the control group, the expression levels of 189 RNA in the experimental group were significantly increased and those of 163 genes decreased. Gene Ontology enrichment analysis showed that these RNA were mainly concentrated in the ATPase-dependent transmembrane transport complex, extracellular exosome, somatic cell DNA recombination, protein binding, cytoplasm and regulation of localization. KEGG pathway analysis showed that these RNA were mainly related to the PI3K-Akt signalling pathway, endocytosis, p53 signalling pathway and cGMP-PKG signalling pathway. The RT-qPCR results showed that the expression levels of PMS1, TP53BP1 and TLK2 in the experimental group were significantly lower than in the control group (P = 0.01, 0.015 and 0.004, respectively), which was identical to the results of RNA sequencing. CONCLUSIONS Differentially expressed RNA related to sperm DNA damage and repair may be identified by RNA-seq technology, which provides new insights into the understanding of sperm DNA damage and repair, and will help to discover new biomarkers related to sperm DNA damage.
Collapse
|
16
|
Zou C, Xu S, Geng H, Li E, Sun W, Yu D. Bioinformatics analysis identifies potential hub genes and crucial pathways in the pathogenesis of asthenozoospermia. BMC Med Genomics 2022; 15:252. [PMID: 36471356 PMCID: PMC9724253 DOI: 10.1186/s12920-022-01407-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Asthenozoospermia is a troublesome disease experienced by men in their reproductive years, but its exact etiology remains unclear. To address this problem, this study aims to identify the hub genes and crucial pathways in asthenozoospermia. METHODS We screened two Gene Expression Omnibus (GEO) datasets (GSE92578 and GSE22331) to extract the differentially expressed genes (DEGs) between normozoospermic and asthenozoospermic men using the "Limma" package. Gene enrichment analyses of the DEGs were conducted using the "clusterProfiler" R package. The protein-protein interaction (PPI) network was then established using the STRING database. A miRNA-transcription factor-gene network was constructed based on the predicted results of hub genes using the RegNetwork database. The expression of four hub genes in asthenozoospermia and normal samples were verified using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting. RESULTS We identified 271 DEGs, which included 218 upregulated and 53 downregulated in two asthenozoospermia datasets. These DEGs were observed to be markedly enriched in pathways with cell growth and embryonic organ development, phospholipase D signaling pathway, cGMP-PKG signaling pathway, and Wnt signaling pathway. The most significant genes were identified, including COPS7A, CUL3, KLHL7, NEDD4. We then constructed regulatory networks of these genes, miRNAs, and transcription factors. Finally, we found that the COPS7A was significantly upregulated in patients with asthenozoospermia, but CUL3, KLHL7 and NEDD4 were significantly downregulated compared with normal samples. CONCLUSION We applied bioinformatics methods to analyze the DEGs of asthenozoospermia based on the GEO database and identified the novel crucial genes and pathways in this disease. Our findings may provide novel insights into asthenozoospermia and identify new clues for the potential treatment of this disease.
Collapse
Affiliation(s)
- Ci Zou
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Shen Xu
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Hao Geng
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Enlai Li
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Wei Sun
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China
| | - Dexin Yu
- grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical of University, 230601 Hefei, China ,grid.452696.a0000 0004 7533 3408Department of Urology, The Second Affiliated Hospital of Anhui Medical University, NO.678 Furong Road, 230601 Hefei, China
| |
Collapse
|
17
|
Kyrgiafini MA, Sarafidou T, Mamuris Z. The Role of Long Noncoding RNAs on Male Infertility: A Systematic Review and In Silico Analysis. BIOLOGY 2022; 11:biology11101510. [PMID: 36290414 PMCID: PMC9598197 DOI: 10.3390/biology11101510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Male infertility is a complex disorder affecting many couples worldwide. Long noncoding RNAs (lncRNAs) regulate important cellular processes; however, a comprehensive understanding of their role in male infertility is limited. This systematic review investigates the differential expressions of lncRNAs in male infertility or variations in lncRNA regions associated with it. The PRISMA guidelines were used to search Pubmed and Web of Science (1 June 2022). Inclusion criteria were human participants, patients diagnosed with male infertility, and English language speakers. We also performed an in silico analysis investigating lncRNAs that are reported in many subtypes of male infertility. A total of 625 articles were found, and after the screening and eligibility stages, 20 studies were included in the final sample. Many lncRNAs are deregulated in male infertility, and interactions between lncRNAs and miRNAs play an important role. However, there is a knowledge gap regarding the impact of variants found in lncRNA regions. Furthermore, eight lncRNAs were identified as differentially expressed in many subtypes of male infertility. After in silico analysis, gene ontology (GO) and KEGG enrichment analysis of the genes targeted by them revealed their association with bladder and prostate cancer. However, pathways involved in general in tumorigenesis and cancer development of all types, such as p53 pathways, apoptosis, and cell death, were also enriched, indicating a link between cancer and male infertility. This evidence, however, is preliminary. Future research is needed to explore the exact mechanism of action of the identified lncRNAs and investigate the association between male infertility and cancer.
Collapse
|
18
|
Botezatu A, Vladoiu S, Fudulu A, Albulescu A, Plesa A, Muresan A, Stancu C, Iancu IV, Diaconu CC, Velicu A, Popa OM, Badiu C, Dinu-Draganescu D. Advanced molecular approaches in male infertility diagnosis†. Biol Reprod 2022; 107:684-704. [PMID: 35594455 DOI: 10.1093/biolre/ioac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent years a special attention has been given to a major health concern namely to male infertility, defined as the inability to conceive after 12 months of regular unprotected sexual intercourse, taken into account the statistics that highlight that sperm counts have dropped by 50-60% in recent decades. According to the WHO, infertility affects approximately 9% of couples globally, and the male factor is believed to be present in roughly 50% of cases, with exclusive responsibility in 30%. The aim of this article is to present an evidence-based approach for diagnosing male infertility that includes finding new solutions for diagnosis and critical outcomes, retrieving up-to-date studies and existing guidelines. The diverse factors that induce male infertility generated in a vast amount of data that needed to be analyzed by a clinician before a decision could be made for each individual. Modern medicine faces numerous obstacles as a result of the massive amount of data generated by the molecular biology discipline. To address complex clinical problems, vast data must be collected, analyzed, and used, which can be very challenging. The use of artificial intelligence (AI) methods to create a decision support system can help predict the diagnosis and guide treatment for infertile men, based on analysis of different data as environmental and lifestyle, clinical (sperm count, morphology, hormone testing, karyotype, etc.), and "omics" bigdata. Ultimately, the development of AI algorithms will assist clinicians in formulating diagnosis, making treatment decisions, and predicting outcomes for assisted reproduction techniques.
Collapse
Affiliation(s)
- A Botezatu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - S Vladoiu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - A Fudulu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Albulescu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
- Pharmacology Department, National Institute for Chemical Pharmaceutical Research & Development, Bucharest, Romania
| | - A Plesa
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Muresan
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Stancu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - I V Iancu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - C C Diaconu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Velicu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - O M Popa
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Badiu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
- Endocrinology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - D Dinu-Draganescu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| |
Collapse
|
19
|
Castro-Arnau J, Chauvigné F, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Finn RN, Cerdà J. Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis. Sci Rep 2022; 12:14162. [PMID: 35986060 PMCID: PMC9391476 DOI: 10.1038/s41598-022-18422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractIn non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.
Collapse
|
20
|
Pang WK, Amjad S, Ryu DY, Adegoke EO, Rahman MS, Park YJ, Pang MG. Establishment of a male fertility prediction model with sperm RNA markers in pigs as a translational animal model. J Anim Sci Biotechnol 2022; 13:84. [PMID: 35794675 PMCID: PMC9261079 DOI: 10.1186/s40104-022-00729-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Male infertility is an important issue that causes low production in the animal industry. To solve the male fertility crisis in the animal industry, the prediction of sperm quality is the most important step. Sperm RNA is the potential marker for male fertility prediction. We hypothesized that the expression of functional genes related to fertilization will be the best target for male fertility prediction markers. To investigate optimum male fertility prediction marker, we compared target genes expression level and a wide range of field data acquired from artificial insemination of boar semen. RESULTS Among the genes related to acrosomal vesicle exocytosis and sperm-oocyte fusion, equatorin (EQTN), zona pellucida sperm-binding protein 4 (ZP4), and sperm acrosome membrane-associated protein 3 exhibited high accuracy (70%, 90%, and 70%, respectively) as markers to evaluate male fertility. Combinations of EQTN-ZP4, ZP4-protein unc-13 homolog B, and ZP4-regulating synaptic membrane exocytosis protein 1 (RIMS1) showed the highest prediction value, and all these markers are involved in the acrosome reaction. CONCLUSION The EQTN-ZP4 model was efficient in clustering the high-fertility group and may be useful for selection of animal that has superior fertility in the livestock industry. Compared to the EQTN-ZP4 model, the ZP4-RIMS1 model was more efficient in clustering the low-fertility group and may be useful in the diagnosis of male infertility in humans and other animals. The appointed translational animal model and established biomarker combination can be widely used in various scientific fields such as biomedical science.
Collapse
Affiliation(s)
- Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Shehreen Amjad
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
21
|
Hernández-Silva G, Caballero-Campo P, Chirinos M. Sperm mRNAs as potential markers of male fertility. Reprod Biol 2022; 22:100636. [PMID: 35338912 DOI: 10.1016/j.repbio.2022.100636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Advances in transcriptomic technologies are contributing to an increased understanding of the role of spermatozoal RNA in sperm physiology. Although sperm transcriptomic studies have delivered large amounts of valuable information, no new male fertility biomarkers have emerged from such studies to date. This review summarizes current knowledge about the potential relevance of certain mRNA as biomarkers, focusing on comparative studies of human spermatozoa transcriptomic profiles from fertile and pathological semen samples. Asthenozoospermia is the semen aberrant condition that has been most exhaustively investigated to date. We cross-analyzed findings from three different studies on the transcriptome of asthenozoospermic semen samples and identified 100 transcripts that were consistently differentially expressed and that consequently are candidates for characterizing the molecular source of this sperm anomaly. The potential use of sperm mRNAs as predictors of outcomes of assisted reproductive technologies (ART) is also reviewed. Improving the understanding of the human spermatozoa mRNA content is expected to improve the evaluation and diagnosis of infertile men, and ultimately facilitate the selection of the best treatment to overcome infertility.
Collapse
Affiliation(s)
- Gabriela Hernández-Silva
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Pedro Caballero-Campo
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| |
Collapse
|
22
|
Omics and Male Infertility: Highlighting the Application of Transcriptomic Data. Life (Basel) 2022; 12:life12020280. [PMID: 35207567 PMCID: PMC8875138 DOI: 10.3390/life12020280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the “omics” perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases.
Collapse
|
23
|
Li M, Li J, Zhang C, Hou S, Weng B. MIR210HG is aberrantly expressed in the seminal plasma of varicocele patients and associated with varicocele-related dyszoospermia. Andrologia 2022; 54:e14277. [PMID: 35146790 DOI: 10.1111/and.14277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to confirm the expression of the seminal plasma long noncoding RNAs (lncRNAs) microRNA210 host gene (MIR210HG) in varicocele (VC) patients, to further explore the association between MIR210HG and VC severity and to evaluate whether MIR210HG can predict VC-related dyszoospermia. Semen samples from 188 VC patients and 92 healthy men were collected. Quantitative reverse transcriptase PCR detected seminal plasma MIR210HG levels. Receiver operating characteristic analysis assessed the ability of MIR210HG to screen patients with VC, or to screen VC patients with abnormal semen quality. Logistic analysis assessed the value of MIR210HG in predicting dyszoospermia in VC patients. The levels of MIR210HG in seminal plasma of VC patients were upregulated, which could screen VC patients. In addition, the levels of seminal plasma MIR210HG were upregulated with VC severity and were downregulated at 6 months after surgery in VC patients. Moreover, elevated MIR210HG levels in VC patients with abnormal semen quality could screen patients with abnormal semen quality and could independently predict the occurrence of dyszoospermia in VC patients. Seminal plasma MIR210HG expression is upregulated in VC patients, is associated with the severity of VC and may function as an independent predictor of VC-related dyszoospermia.
Collapse
Affiliation(s)
- Monong Li
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Jinli Li
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Changcun Zhang
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Sichuan Hou
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Bowen Weng
- Urology Surgery, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
24
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
25
|
Long Noncoding RNAs: Recent Insights into Their Role in Male Infertility and Their Potential as Biomarkers and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222413579. [PMID: 34948376 PMCID: PMC8708977 DOI: 10.3390/ijms222413579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are composed of nucleotides located in the nucleus and cytoplasm; these are transcribed by RNA polymerase II and are greater than 200 nt in length. LncRNAs fulfill important functions in a variety of biological processes, including genome imprinting, cell differentiation, apoptosis, stem cell pluripotency, X chromosome inactivation and nuclear transport. As high throughput sequencing technology develops, a substantial number of lncRNAs have been found to be related to a variety of biological processes, such as development of the testes, maintaining the self-renewal and differentiation of spermatogonial stem cells, and regulating spermatocyte meiosis. These indicate that lncRNAs can be used as biomarkers and potential therapeutic targets for male infertility. However, only a few comprehensive reviews have described the role of lncRNAs in male reproduction. In this paper, we summarize recent findings relating to the role of lncRNAs in spermatogenesis, their potential as biomarkers for male infertility and the relationship between reproductive arrest and transgenerational effects. Finally, we suggest specific targets for the treatment of male infertility from the perspective of lncRNAs.
Collapse
|
26
|
Caballero-Campo P, Lira-Albarrán S, Barrera D, Borja-Cacho E, Godoy-Morales HS, Rangel-Escareño C, Larrea F, Chirinos M. Gene transcription profiling of astheno- and normo-zoospermic sperm subpopulations. Asian J Androl 2021; 22:608-615. [PMID: 32167074 PMCID: PMC7705984 DOI: 10.4103/aja.aja_143_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spermatozoa contain a repertoire of RNAs considered to be potential functional fertility biomarkers. In this study, the gene expression of human sperm subpopulations with high (F1) and low (F2) motility from healthy normozoospermic (N) and asthenozoospermic (A) individuals was evaluated using RNA microarray followed by functional genomic analysis of differentially expressed genes. Results from A–F1 versus N–F1, A–F2 versus N–F2, N–F1 versus N–F2, and A–F1 versus A–F2 comparisons showed a considerably larger set of downregulated genes in tests versus controls. Gene ontology (GO) analysis of A–F1 versus N–F1 identified 507 overrepresented biological processes (BPs), several of which are associated with sperm physiology. In addition, gene set enrichment analysis of the same contrast showed 110 BPs, 36 cellular components, and 31 molecular functions, several of which are involved in sperm motility. A leading-edge analysis of selected GO terms resulted in several downregulated genes encoding to dyneins and kinesins, both related to sperm physiology. Furthermore, the predicted activation state of asthenozoospermia was increased, while fertility, cell movement of sperm, and gametogenesis were decreased. Interestingly, several downregulated genes characteristic of the canonical pathway protein ubiquitination were involved in asthenozoospermia activation. Conversely, GO analysis of A–F2 versus N–F2 did not identify overrepresented BPs, although the gene set enrichment analysis detected six enriched BPs, one cellular component, and two molecular functions. Overall, the results show differences in gene transcription between sperm subpopulations from asthenozoospermic and normozoospermic semen samples and allowed the identification of gene sets relevant to sperm physiology and reproduction.
Collapse
Affiliation(s)
- Pedro Caballero-Campo
- Department of Reproduction Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico.,Tambre Foundation, Madrid 28002, Spain
| | - Saúl Lira-Albarrán
- Department of Reproduction Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico
| | - David Barrera
- Department of Reproduction Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico
| | - Elizabeth Borja-Cacho
- Reproductive Medicine Unit, Angeles del Pedregal Hospital, Mexico City 10700, Mexico
| | | | - Claudia Rangel-Escareño
- Computational Genomic and Integrative Biology Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Fernando Larrea
- Department of Reproduction Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico
| | - Mayel Chirinos
- Department of Reproduction Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
27
|
Zhang B, Yan Z, Wang P, Yang Q, Huang X, Shi H, Tang Y, Ji Y, Zhang J, Gun S. Identification and Characterization of lncRNA and mRNA in Testes of Landrace and Hezuo Boars. Animals (Basel) 2021; 11:ani11082263. [PMID: 34438721 PMCID: PMC8388364 DOI: 10.3390/ani11082263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Precocious puberty is an excellent reproductive trait in domestic animals, which can generate higher breeding benefits in livestock production. However, regulators associated with this sexual maturation process remain largely unknown. Chinese Hezuo (HZ) boars are known for their early sexual maturity. In this work, the characteristics of precocious puberty in HZ pigs were confirmed by histological analysis, and some important long noncoding RNA (lncRNA) and mRNA were identified in the testes of immature (30-day-old) and mature (120-day-old) HZ boars, which could play a key role in precocious puberty. These results will provide a theoretical basis for further research on the regulatory mechanism of precocious puberty, which is important for accelerating the breeding process of highly fertile animals. Abstract Chinese HZ boars are typical plateau miniature boars characterized by precocious puberty, which is closely related to testicular development and spermatogenesis. Accumulating evidence indicates that lncRNA is involved in the testicular development and regulation of spermatogenesis. However, little is known about the lncRNA precocious regulation in testicular development and spermatogenesis on early sexual maturity of HZ boars. Thus, we investigated the expression and characterization of lncRNA and mRNA in 30-day-old and 120-day-old HZ boar testes using transcriptome to explore precocious puberty. Landrace (LC) boar was treated as the control. Histological analyses indicated that HZ boar underwent puberty development at an earlier stage than LC boar and had achieved sexual maturity at 120 days old. RNA-Seq yielded a total of 187 lncRNAs and 984 mRNAs; these molecules were identified as possible candidates for precocious puberty. GO terms and KEGG pathways enrichment analyses revealed that the differentially expressed lncRNA and their targeted genes were involved in metabolic pathways regulating testis development and spermatogenesis, such as the PI3K-Akt, TGF-beta and Wnt pathways. Further screening, some lncRNA (such as LOC102166140, LOC110259451, and MSTRG.15011.2), and mRNA (such as PDCL2, HSD17B4, SHCBP1L, CYP21A2, and SPATA3) were found to be possibly associated with precocious puberty, which would add to our understanding of the molecular regulatory mechanisms of precocious puberty. This study provided valuable information for further study of the role of lncRNA and mRNA in the process of precocious puberty.
Collapse
Affiliation(s)
- Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Yanan Ji
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Juanli Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (Z.Y.); (P.W.); (Q.Y.); (X.H.); (H.S.); (Y.T.); (Y.J.); (J.Z.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1804
| |
Collapse
|
28
|
Cunningham AM, Walker DM, Ramakrishnan A, Doyle MA, Bagot RC, Cates HM, Peña CJ, Issler O, Lardner CK, Browne C, Russo SJ, Shen L, Nestler EJ. Sperm Transcriptional State Associated with Paternal Transmission of Stress Phenotypes. J Neurosci 2021; 41:6202-6216. [PMID: 34099514 PMCID: PMC8287983 DOI: 10.1523/jneurosci.3192-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023] Open
Abstract
Paternal stress can induce long-lasting changes in germ cells potentially propagating heritable changes across generations. To date, no studies have investigated differences in transmission patterns between stress-resilient and stress-susceptible mice. We tested the hypothesis that transcriptional alterations in sperm during chronic social defeat stress (CSDS) transmit increased susceptibility to stress phenotypes to the next generation. We demonstrate differences in offspring from stressed fathers that depend on paternal category (resilient vs susceptible) and offspring sex. Importantly, artificial insemination (AI) reveals that sperm mediates some of the behavioral phenotypes seen in offspring. Using RNA-sequencing (RNA-seq), we report substantial and distinct changes in the transcriptomic profiles of sperm following CSDS in susceptible versus resilient fathers, with alterations in long noncoding RNAs (lncRNAs) predominating especially in susceptibility. Correlation analysis revealed that these alterations were accompanied by a loss of regulation of protein-coding genes by lncRNAs in sperm of susceptible males. We also identify several co-expression gene modules that are enriched in differentially expressed genes (DEGs) in sperm from either resilient or susceptible fathers. Taken together, these studies advance our understanding of intergenerational epigenetic transmission of behavioral experience.SIGNIFICANCE STATEMENT This manuscript contributes to the complex factors that influence the paternal transmission of stress phenotypes. By leveraging the segregation of males exposed to chronic social defeat stress (CSDS) into either resilient or susceptible categories we were able to identify the phenotypic differences in the paternal transmission of stress phenotypes across generations between the two lineages. Importantly, this work also alludes to the significance of both long noncoding RNAs (lncRNAs) and protein coding genes (PCGs) mediating the paternal transmission of stress. The knowledge gained from these data are of particular interest in understanding the risk for the development of psychiatric disorders such as anxiety and depression.
Collapse
Affiliation(s)
- Ashley M Cunningham
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Deena M Walker
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Aarthi Ramakrishnan
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Marie A Doyle
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Rosemary C Bagot
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Hannah M Cates
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Catherine J Peña
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Orna Issler
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Casey K Lardner
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Caleb Browne
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Scott J Russo
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Li Shen
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| | - Eric J Nestler
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience and Friedman Brain Institute, New York, New York 10029
| |
Collapse
|
29
|
Bouska MJ, Bai H. Long noncoding RNA regulation of spermatogenesis via the spectrin cytoskeleton in Drosophila. G3 (BETHESDA, MD.) 2021; 11:jkab080. [PMID: 33720346 PMCID: PMC8104941 DOI: 10.1093/g3journal/jkab080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/07/2021] [Indexed: 11/14/2022]
Abstract
The spectrin cytoskeleton has been shown to be critical in diverse processes such as axon development and degeneration, myoblast fusion, and spermatogenesis. Spectrin can be modulated in a tissue specific manner through junctional protein complexes, however, it has not been shown that long noncoding RNAs (lncRNAs) interact with and modulate spectrin. Here, we provide evidence of a lncRNA CR45362 that interacts with α-Spectrin, is required for spermatid nuclear bundling during Drosophila spermatogenesis. We observed that CR45362 showed high expression in the cyst cells at the basal testis, and CRISPR-mediated knockout of CR45362 led to sterile male, unbundled spermatid nuclei, and disrupted actin cones. Through chromatin isolation by RNA precipitation-mass spectrometry (ChIRP-MS), we identified actin-spectrin cytoskeletal components physically interact with the lncRNA CR45362. Genetic screening on identified cytoskeletal factors revealed that cyst cell-specific knockdown of α-Spectrin phenocopied CR45362 mutants and resulted in spermatid nuclear bundle defects. Consistently, CR45362 knockout disrupted the co-localization of α-Spectrin and spermatid nuclear bundles in the head cyst cells at the basal testis. Thus, we uncovered a novel lncRNA CR45362 that interacts with α-Spectrin to stabilize spermatid nuclear bundles during spermatid maturation.
Collapse
Affiliation(s)
- Mark J Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011-1079, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011-1079, USA
| |
Collapse
|
30
|
Corral-Vazquez C, Blanco J, Aiese Cigliano R, Sarrate Z, Rivera-Egea R, Vidal F, Garrido N, Daub C, Anton E. The RNA content of human sperm reflects prior events in spermatogenesis and potential post-fertilization effects. Mol Hum Reprod 2021; 27:6265603. [PMID: 33950245 DOI: 10.1093/molehr/gaab035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Transcriptome analyses using high-throughput methodologies allow a deeper understanding of biological functions in different cell types/tissues. The present study provides an RNA-seq profiling of human sperm mRNAs and lncRNAs (messenger and long non-coding RNAs) in a well-characterized population of fertile individuals. Sperm RNA was extracted from twelve ejaculate samples under strict quality controls. Poly(A)-transcripts were sequenced and aligned to the human genome. mRNAs and lncRNAs were classified according to their mean expression values (FPKM: Fragments Per Kilobase of transcript per Million mapped reads) and integrity. Gene Ontology analysis of the Expressed and Highly Expressed mRNAs showed an involvement in diverse reproduction processes, while the Ubiquitously Expressed and Highly Stable mRNAs were mainly involved in spermatogenesis. Transcription factor enrichment analyses revealed that the Highly Expressed and Ubiquitously Expressed sperm mRNAs were primarily regulated by zinc-fingers and spermatogenesis-related proteins. Regarding the Expressed lncRNAs, only one-third of their potential targets corresponded to Expressed mRNAs and were enriched in cell-cycle regulation processes. The remaining two-thirds were absent in sperm and were enriched in embryogenesis-related processes. A significant amount of post-testicular sperm mRNAs and lncRNAs was also detected. Even though our study is solely directed to the poly-A fraction of sperm transcripts, results indicate that both sperm mRNAs and lncRNAs constitute a footprint of previous spermatogenesis events and are configured to affect the first stages of embryo development.
Collapse
Affiliation(s)
- C Corral-Vazquez
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - J Blanco
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Z Sarrate
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - R Rivera-Egea
- IVIRMA Valencia, IVI Foundation, Laboratorio de Andrología, Valencia, Spain
| | - F Vidal
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - N Garrido
- IVI Foundation, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - C Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - E Anton
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
31
|
Cerván-Martín M, Bossini-Castillo L, Rivera-Egea R, Garrido N, Luján S, Romeu G, Santos-Ribeiro S, Castilla JA, Gonzalvo MDC, Clavero A, Vicente FJ, Guzmán-Jiménez A, Burgos M, Barrionuevo FJ, Jiménez R, Sánchez-Curbelo J, López-Rodrigo O, Peraza MF, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Carmona FD, Palomino-Morales RJ. Effect and in silico characterization of genetic variants associated with severe spermatogenic disorders in a large Iberian cohort. Andrology 2021; 9:1151-1165. [PMID: 33784440 DOI: 10.1111/andr.13009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe spermatogenic failure (SpF) represents the most extreme manifestation of male infertility, as it decreases drastically the semen quality leading to either severe oligospermia (SO, <5 million spermatozoa/mL semen) or non-obstructive azoospermia (NOA, complete lack of spermatozoa in the ejaculate without obstructive causes). OBJECTIVES The main objective of the present study is to analyze in the Iberian population the effect of 6 single-nucleotide polymorphisms (SNPs) previously associated with NOA in Han Chinese through genome-wide association studies (GWAS) and to establish their possible functional relevance in the development of specific SpF patterns. MATERIALS AND METHODS We genotyped 674 Iberian infertile men (including 480 NOA and 194 SO patients) and 1058 matched unaffected controls for the GWAS-associated variants PRMT6-rs12097821, PEX10-rs2477686, CDC42BPA-rs3000811, IL17A-rs13206743, ABLIM1-rs7099208, and SOX5-rs10842262. Their association with SpF, SO, NOA, and different NOA phenotypes was evaluated by logistic regression models, and their functional relevance was defined by comprehensive interrogation of public resources. RESULTS ABLIM1-rs7099208 was associated with SpF under both additive (OR = 0.86, p = 0.036) and dominant models (OR = 0.78, p = 0.026). The CDC42BPA-rs3000811 minor allele frequency was significantly increased in the subgroup of NOA patients showing maturation arrest (MA) of germ cells compared to the remaining NOA cases under the recessive model (OR = 4.45, p = 0.044). The PEX10-rs2477686 SNP was associated with a negative testicular sperm extraction (TESE) outcome under the additive model (OR = 1.32, p = 0.034). The analysis of functional annotations suggested that these variants affect the testis-specific expression of nearby genes and that lincRNA may play a role in SpF. CONCLUSIONS Our data support the association of three previously reported NOA risk variants in Asians (ABLIM1-rs7099208, CDC42BPA-rs3000811, and PEX10-rs2477686) with different manifestations of SpF in Iberians of European descent, likely by influencing gene expression and lincRNA deregulation.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain.,IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain.,Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain.,CEIFER Biobanco - NextClinics, Granada, Spain
| | - María Del Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain
| | - Francisco Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - María Fernanda Peraza
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patrícia Isabel Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal.,Nova Medical School, ToxOmics - Centro de Toxicogenómica e Saúde Humana, Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alexandra Manuel Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Francisco David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rogelio Jesús Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| |
Collapse
|
32
|
Trace the profile and function of circular RNAs in Sertoli cell only syndrome. Genomics 2021; 113:1845-1854. [PMID: 33865957 DOI: 10.1016/j.ygeno.2021.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 11/23/2022]
Abstract
Studies increasingly show the involvement of circular RNAs (circRNAs) in several diseases. This study aims to explore the circRNA expression pattern in the testicular tissues of patients with Sertoli only cell syndrome (SCOS) and their potential functions. High throughput circRNA microarray analysis indicated that 399 circRNAs were upregulated and 1195 were down-regulated (fold change >2, P < 0.05) in SCOS relative to obstructive azoospermia (OA). The hsa_circRNA_101222, hsa_circRNA_001387, hsa_circRNA_001153, hsa_circRNA_101373 and hsa_circRNA_103864 were validated by qRT-PCR. Furthermore, the hosting genes of the differentially expressed circRNAs (DEcircRNAs) were enriched in biological processes related to cell cycle and intercellular communication. Also, the overlapping genes between the hosting genes of SCOS-related DEcircRNAs and those highly expressed in Sertoli cells of non-obstructive azoospermia (NOA) were enriched in immune cell development and cell communication. Taken together, aberrantly expressed circRNAs likely mediate SCOS development by regulating the function of Sertoli cells and the spermatogenic microenvironment.
Collapse
|
33
|
RNA-sequencing and bioinformatics analysis of long noncoding RNAs and mRNAs in the asthenozoospermia. Biosci Rep 2021; 40:225687. [PMID: 32614449 PMCID: PMC7364483 DOI: 10.1042/bsr20194041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Asthenozoospermia is one of the major causes of human male infertility. Long noncoding RNAs (lncRNAs) play critical roles in the spermatogenesis processes. The present study aims to investigate the intricate regulatory network associated with asthenozoospermia. The lncRNAs expression profile was analyzed in the asthenozoospermia seminal plasma exosomes by RNA-sequencing, and the functions of differentially expressed genes (DEGs) were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and DO (Disease Ontology) enrichment analyses. Pearson’s correlation test was utilized to calculate the correlation coefficients between lncRNA and mRNAs. Moreover, the lncRNA–miRNA–mRNA co-expression network was constructed with bioinformatics. From the co-expression analyses, we identified the cis regulated correlation pairs lncRNA–mRNA. To confirm sequencing results with five of the identified DElncRNAs were verified with quantitative reverse-transcription polymerase chain reaction (qRT-PCR). We identified 4228 significantly DEGs, 995 known DElncRNAs, 2338 DEmRNAs and 11,706 novel DElncRNAs between asthenozoospermia and normal group. GO and KEGG analyses showed that the DEGs were mainly associated with metabolism, transcription, ribosome and channel activity. We found 254,981 positive correlations lncRNA–mRNA pairs through correlation analysis. The detailed lncRNA–miRNA–mRNA regulatory network included 11 lncRNAs, 35 miRNAs and 59 mRNAs. From the co-expression analyses, we identified 7 cis-regulated correlation pairs lncRNA–mRNA. Additionally, the qRT-PCR analysis confirmed our sequencing results. Our study constructed the lncRNA–mRNA–miRNA regulation networks in asthenozoospermia. Therefore, the study findings provide a set of pivotal lncRNAs for future investigation into the molecular mechanisms of asthenozoospermia.
Collapse
|
34
|
Geisinger A, Rodríguez-Casuriaga R, Benavente R. Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol 2021; 9:626020. [PMID: 33748111 PMCID: PMC7973102 DOI: 10.3389/fcell.2021.626020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.
Collapse
Affiliation(s)
- Adriana Geisinger
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
Sahoo B, Guttula PK, Gupta MK. Comparison of spermatozoal RNA extraction methods in goats. Anal Biochem 2021; 614:114059. [PMID: 33285124 DOI: 10.1016/j.ab.2020.114059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/23/2022]
Abstract
RNA sequencing (RNAseq) has divulged newer role of spermatozoal RNA in male fertility. This study aimed to evaluate different sperm purification and RNA extraction methods for long-read RNA sequencing of poly(A) transcriptome in goat spermatozoa. Sperm samples were purified by swim-up separation using different purification medium. Spermatozoal RNA was extracted by seven different methods with additional supplementation of reducing agents in lysis buffer. poly(A) selected RNA was used for cDNA library preparation and long-read RNAseq in Nanopore sequencer. Sperm purification by 1 h swim-up resulted in higher recovery (89.20 ± 1.15%), motility (82.33 ± 1.53%), viability (88.10 ± 5.03%) and plasma membrane integrity (71.33 ± 4.51%) in sperm TALP (sp-TL) medium. A monophasic solution of GITC with phenol and DTT resulted in the highest yield of large sized RNAs (3.89 ± 0.46 ng/million cells) suitable for long-read RNAseq of poly(A) transcripts. RNAseq resulted in reads of length, ranging from 500bp to 2 Kb. A total of 123 transcripts were identified in goat spermatozoa by de novo assembly and included sperm-specific transcripts such as CATSPERG, PRM2, CYLC2, SPATA6, PLCZ1 etc. This study is the first report of long-read RNAseq of poly(A) transcriptome in goat spermatozoa.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769 008, India
| | - Praveen Kumar Guttula
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769 008, India
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769 008, India.
| |
Collapse
|
36
|
Sabetian S, Zarei M, Jahromi BN, Morowvat MH, Tabei SMB, Cava C. Exploring the dysregulated mRNAs-miRNAs-lncRNAs interactions associated to idiopathic non-obstructive azoospermia. J Biomol Struct Dyn 2021; 40:5956-5964. [PMID: 33499760 DOI: 10.1080/07391102.2021.1875879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-obstructive azoospermia (NOA) is the most clinical problem in case of infertility. About 70% of NOA patients are idiopathic with uncharacterized molecular mechanisms. This study aimed to analyze the possible pathogenic miRNA-target gene interaction and lncRNA-miRNA association involved in NOA. In the current study, differentially expressed (DE) nRNAs, miRNAs and lncRNAs were determined using the microarray dataset and statistical software R. miRNAs-mRNA and miRNA-lncRNA interactions were identified and the base-pair binding between the seed region of miRNAs and complementary nucleotides in 3' UTR of mRNAs were analyzed. The influence of the validated single nucleotide polymorphisms (SNPs) was described by calculating the minimum free energy (MFE) of the interaction. A total of 74 mRNAs, 14 miRNAs, and 10 lncRNAs were identified to have significant differential expression in testicular tissue between patients and the fertile group. Four of the DE-mRNAs and all of the reported DE-miRNAs were upregulated. In addition, all of the represented DE-lncRNAs were showed to be downregulated. miR-509-5p and miR-27b-3p were found to interact with target gene polo-like kinase 1 (PLK1) and Cysteine-rich secretory protein2 (CRISP2), respectively. Rs550967205 (A > G) positioned at 3' UTR CRISP2 and rs544604911 (T > C) located at 3' UTR PLK1, with lowest MFE in miRNA-mRNA interaction, were assumed to have possible pathogenic roles linked to spermatogenesis arrest. The results of the study provide new clues to understand the regulatory roles of miRNAs and lncRNAs in the pathogenesis and diagnosis of idiopathic azoospermia. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soudabeh Sabetian
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Zarei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
37
|
Li L, Chen S. Screening, identification and interaction analysis of key MicroRNAs and genes in Asthenozoospermia. Int J Med Sci 2021; 18:1670-1679. [PMID: 33746583 PMCID: PMC7976570 DOI: 10.7150/ijms.54460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Asthenozoospermia, one of the most common causes of male infertility, is a complicate multifactorial pathological condition that genetic factors are involved in. However, the epigenetic signature and mechanism of asthenozoospermia still remain limited. Our study aimed to confirm the key microRNAs (miRNAs) and genes in asthenozoospermia and demonstrate the underlying epigenetic regulatory mechanisms. Methods: We screened out and pooled previous studies to extracted potential differentially expressed miRNAs (DEMs). GSE22331 and a published profile dataset were integrated to identify differentially expressed genes (DEGs). Pathway and gene ontology analysis were performed using DAVID. A protein-protein network (PPI) was constructed using STRING. The target genes of DEMs were predicted using TargetScan and the miRNA-mRNA network was built. Results: We reported 3 DEMs and 423 DEGs by pooling included dataset and published studies. Pathway analysis showed that these DEGs might participate in signaling pathways regulating pluripotency of stem cells, Wnt signaling pathway and Notch signaling pathway. 25 hub genes were identified, and the most significant gene was BDNF. We screened out the overlapped DEGs between the predicted target genes of 3 DEMs and the 423 DEGs. Finally, a potential miRNA-mRNA regulatory network was constructed. Conclusion: This study firstly pooled several published studies and a GEO dataset to determine the significance of potential miRNAs and genes, such as miR-374b, miR-193a, miR-34b, BDNF, NTRK2, HNRNPD and EFTUD2 in regulating asthenozoospermia and underscore their interactions in the pathophysiological mechanism. Our results provided theoretical basis and new clues for potential therapeutic treatment in asthenozoospermia. Validations in vivo and in vitro are required in future studies.
Collapse
Affiliation(s)
- Liman Li
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Song Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Abstract
Within the reproductive tract, distinct cell types must have precisely controlled communication for complex processes such as gamete production, fertilisation and implantation. Intercellular communication in many physiological processes involves extracellular vesicles (EVs). In reproductive systems, EVs have been implicated in many aspects, from gamete maturation to embryo development. Sperm develop within the testis and then exit into the epididymis in an immature form, lacking motility and fertilising capabilities. Due to their small size, compact nature of the nucleus and the lack of specific organelles, sperm are unable to perform de novo protein synthesis, and thus rely on extrinsic signals delivered from the external milieu to gain full function. Mounting evidence points to EVs as being a major provider of these signals, not just within the male reproductive tract but also within the female as the sperm make their way through a seemingly hostile environment to the oocyte. In this chapter, we review the current knowledge on EVs as mediators of sperm maturation and function and highlight their potential roles in male fertility.
Collapse
Affiliation(s)
- Natalie J Foot
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
39
|
Tezerjani MD, Kalantar SM. Unraveling the dark matter, long non-coding RNAs, in male reproductive diseases: A narrative review. Int J Reprod Biomed 2020; 18:921-934. [PMID: 33349800 PMCID: PMC7749978 DOI: 10.18502/ijrm.v13i11.7959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/10/2020] [Accepted: 06/28/2020] [Indexed: 12/09/2022] Open
Abstract
Recent advances in human transcriptome have revealed the fundamental and functional roles of long non-coding RNA in the susceptibility to diverse diseases and pathological conditions. They participate in wide range of biological processes such as the modulating of chromatin structure, transcription, translation, and post-translation modification. In addition, based on their unique expression profiles and their association with clinical abnormalities such as those of related to male reproductive diseases, they can be used to develop therapeutic methods and biomarkers for screening of the diseases. In this study, we will review the identified lncRNAs and their molecular functions in the pathogenesis of male reproductive diseases such as prostate cancer, benign prostatic hyperplasia, prostatitis, testicular cancer, varicocele, and sperm abnormalities.
Collapse
Affiliation(s)
- Masoud Dehghan Tezerjani
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Science, Yazd, Iran.,Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
40
|
IP3R Channels in Male Reproduction. Int J Mol Sci 2020; 21:ijms21239179. [PMID: 33276427 PMCID: PMC7730405 DOI: 10.3390/ijms21239179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
As a second messenger in cellular signal transduction, calcium signaling extensively participates in various physiological activities, including spermatogenesis and the regulation of sperm function. Abnormal calcium signaling is highly correlated with male infertility. Calcium signaling is mainly regulated by both extracellular calcium influx and the release of calcium stores. Inositol 1,4,5-trisphosphate receptor (IP3R) is a widely expressed channel for calcium stores. After being activated by inositol 1,4,5-trisphosphate (IP3) and calcium signaling at a lower concentration, IP3R can regulate the release of Ca2+ from stores into cytoplasm, and eventually trigger downstream events. The closure of the IP3R channel caused by a rise in intracellular calcium signals and the activation of the calcium pump jointly restores the calcium store to a normal level. In this review, we aim to discuss structural features of IP3R channels and the underlying mechanism of IP3R channel-mediated calcium signaling and further focus on the research progress of IP3R expression and function in the male reproductive system. Finally, we propose key directions and strategies for research of IP3R in spermatogenesis and the regulation of sperm function to provide more understanding of the function and mechanism of IP3R channel actions in male reproduction.
Collapse
|
41
|
Zhang X, Kang H, Peng L, Song D, Jiang X, Li Y, Chen H, Zeng X. Pentachlorophenol inhibits CatSper function to compromise progesterone's action on human sperm. CHEMOSPHERE 2020; 259:127493. [PMID: 32622245 DOI: 10.1016/j.chemosphere.2020.127493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Pentachlorophenol (PCP), a highly toxic contaminant of chlorophenols, is common in a variety of environments and presents serious risks to animal and human health. However, the reproductive toxicity and potential actions of PCP have not been investigated thoroughly, especially in humans. Here, human spermatozoa were used to evaluate the effect of PCP on cell function and to explore the underlying mechanisms. PCP had no substantive effects on sperm viability or motility, nor on the ability to penetrate viscous medium, sperm hyperactivation or spontaneous acrosome reactions. However, PCP significantly inhibited these properties induced by progesterone (P4). Consistent with the functional observations, although PCP itself did not affect the basal intracellular Ca2+ concentrations and CatSper current, PCP dose-dependently inhibited increases of intracellular Ca2+ concentrations caused by P4. In addition, the activation of CatSper induced by P4 was largely suppressed by PCP. This is the first report showing that PCP may serves as an antagonist of the P4 membrane receptor to interfere with Ca2+ signaling by compromising the action of P4 on regulating sperm function. These findings suggest that the reproductive toxicity of PCP should also be a matter of concern as a mammalian health risk.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226019, PR China; Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Hang Kang
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Lizhong Peng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226019, PR China
| | - Dandan Song
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Xin Jiang
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Yanting Li
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, PR China
| | - Xuhui Zeng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226019, PR China; Institute of Life Science, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
42
|
Joshi M, Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod Biol Endocrinol 2020; 18:103. [PMID: 33126901 PMCID: PMC7599102 DOI: 10.1186/s12958-020-00660-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have a size of more than 200 bp and are known to regulate a host of crucial cellular processes like proliferation, differentiation and apoptosis by regulating gene expression. While small noncoding RNAs (ncRNAs) such as miRNAs, siRNAs, Piwi-interacting RNAs have been extensively studied in male germ cell development, the role of lncRNAs in spermatogenesis remains largely unknown. OBJECTIVE In this article, we have reviewed the biology and role of lncRNAs in spermatogenesis along with the tools available for data analysis. RESULTS AND CONCLUSIONS Till date, three microarray and four RNA-seq studies have been undertaken to identify lncRNAs in mouse testes or germ cells. These studies were done on pre-natal, post-natal, adult testis, and different germ cells to identify lncRNAs regulating spermatogenesis. In case of humans, five RNA-seq studies on different germ cell populations, including two on sperm, were undertaken. We compared three studies on human germ cells to identify common lncRNAs and found 15 lncRNAs (LINC00635, LINC00521, LINC00174, LINC00654, LINC00710, LINC00226, LINC00326, LINC00494, LINC00535, LINC00616, LINC00662, LINC00668, LINC00467, LINC00608, and LINC00658) to show consistent differential expression across these studies. Some of the targets of these lncRNAs included CENPB, FAM98B, GOLGA6 family, RPGR, TPM2, GNB5, KCNQ10T1, TAZ, LIN28A, CDKN2B, CDKN2A, CDKN1A, CDKN1B, CDKN1C, EZH2, SUZ12, VEGFA genes. A lone study on human male infertility identified 9879 differentially expressed lncRNAs with three (lnc32058, lnc09522, and lnc98497) of them showing specific and high expression in immotile sperm in comparison to normal motile sperm. A few lncRNAs (Mrhl, Drm, Spga-lncRNAs, NLC1-C, HongrES2, Tsx, LncRNA-tcam1, Tug1, Tesra, AK015322, Gm2044, and LncRNA033862) have been functionally validated for their roles in spermatogenesis. Apart from rodents and humans, studies on sheep and bull have also identified lncRNAs potentially important for spermatogenesis. A number of these non-coding RNAs are strong candidates for further research on their roles in spermatogenesis.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
43
|
Saberiyan M, Mirfakhraie R, Gholami D, Dehdehi L, Teimori H. Investigating the regulatory function of the ANO1-AS2 on the ANO1 gene in infertile men with asthenozoospermia and terato-asthenozoospermia. Exp Mol Pathol 2020; 117:104528. [PMID: 32916161 DOI: 10.1016/j.yexmp.2020.104528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs) have a particular expression in the testicular tissue and exhibit a regulatory function on the reproduction system. ANO1-AS2 (linc02584), as an lncRNA is located near the anoctamin1 (ANO1) gene. ANO1 is an important component of the transmembrane system exhibiting expression modifications in the idiopathic infertile men. Therefore, the present study was conducted to investigate the relationship between ANO1-AS2 and ANO1 gene expression with sperm motility and morphology in the patients with asthenozoospermia (AZ) and terato- asthenozoospermia (TAZ). The study population included 32 patients with AZ, 35 patients with TAZ, and 34 people with normozoospermia (NZ, control). The expression levels of ANO1 gene and ANO1-AS2 in the spermatozoa were measured by the quantitative real-time polymerase chain reaction (PCR). Docking analysis was performed to investigate the interactions of the ANO1 gene promoter and intermediate elements with ANO1-AS2. ANO1 gene expression was significantly (P < 0.05) downregulated in the patients however; ANO1-AS2 expression was significantly upregulated (P < 0.05). The subsequent analysis confirmed the inverse correlation between ANO1 and ANO1-AS2. ANO1 gene expression level was significantly positively correlated with sperm motility and morphology (P < 0.05). Moreover, ANO1-AS2 expression showed an inverse correlation with sperm motility and morphology (P < 0.05). Docking analysis confirmed that ANO1-AS2 could stably interact with ANO1 gene promoter. In conclusion, ANO1-AS2 is likely to downregulate the ANO1 gene by interacting with ANO1 gene promoter, which can influence the sperm motility and morphology.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delnya Gholami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Dehdehi
- Clinical Research Developmental Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
44
|
Saberiyan M, Mirfakhraie R, Moghni M, Teimori H. Study of Linc00574 Regulatory Effect on the TCTE3 Expression in Sperm Motility. Reprod Sci 2020; 28:159-165. [PMID: 32749594 DOI: 10.1007/s43032-020-00275-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
We investigated the relationship of t-complex-associated-testis-expressed 3 (TCTE3) and linc00574 expression levels with sperm motility and morphology in patients with asthenozoospermia (AZ) and terato-asthenozoospermia (TAZ). The study population consisted of 31 AZ patients, 31 TAZ patients, and 32 normozoospermia (NZ) as controls. Quantitative real-time PCR was conducted to evaluate the expression levels of TCTE3 and linc00574. Bioinformatics investigations were performed using databases to find molecular pathway. TCTE3 expression was reduced significantly in AZ and TAZ patients (P < 0.05). Linc00574 expression level increased only in the AZ patients (P < 0.05). The subsequent analyses showed a significantly positive correlation between TCTE3 and linc00574 expression levels (P < 0.05). In addition, a significantly positive relationship was observed between TCTE3 expression level and sperm motility and morphology (P < 0.05). The present study suggests that TCTE3 expression is regulated by linc00574 through a negative self-regulating mechanism and therefore may affect the flagella structure and function.
Collapse
Affiliation(s)
- Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh, Shahrekord, 8813833435, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mandana Moghni
- Department of pathology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh, Shahrekord, 8813833435, Iran.
| |
Collapse
|
45
|
Liang M, Wang H, He C, Zhang K, Hu K. LncRNA-Gm2044 is transcriptionally activated by A-MYB and regulates Sycp1 expression as a miR-335-3p sponge in mouse spermatocyte-derived GC-2spd(ts) cells. Differentiation 2020; 114:49-57. [PMID: 32585553 DOI: 10.1016/j.diff.2020.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to execute key roles in spermatogenesis. However, little is known about how lncRNAs gene expression is itself regulated in the germ cells of testis. We previously demonstrated that high expression of lncRNA-Gm2044 exists in spermatocytes and can regulate male germ cell proliferation. Here, the transcriptional regulation of lnRNA-Gm2044 expression in spermatocytes and the downstream signaling were further explored. A bioinformatics assessment predicted two potential binding-sites for the spermatocyte-specific transcription factor A-MYB in the promoter region of lncRNA-Gm2044. Our results proved that the transcription factor A-MYB promotes the expression of lncRNA-Gm2044 in mouse spermatocyte-derived GC-2spd(ts) cells. ChIP and luciferase assays verified that A-MYB mainly binds to the distal promoter region (-819 bp relative to the transcription start site) of lncRNA-Gm2044 and regulates lncRNA-Gm2044 expression through the -819 bp binding-site. In addition, we confirmed that lncRNA-Gm2044 functions as a miR-335-3p sponge to enhance the levels of miR-335-3p's direct target protein, Sycp1. Furthermore, A-MYB can up-regulate Sycp1 expression and down-regulate GC-2spd(ts) cell proliferation by activating its target, lncRNA-Gm2044. Overexpression of lncRNA-Gm2044 or knockdown of miR-335-3p can, at least partially, rescue the effects of A-MYB on Sycp1 expression and GC-2spd(ts) cell proliferation.Taken together, our results provide new information on the mechanistic roles of lncRNA-miRNA in transcription factor A-MYB regulation of spermatocyte function.
Collapse
Affiliation(s)
- Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China.
| | - Haiyan Wang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Kejia Zhang
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, People's Republic of China.
| |
Collapse
|
46
|
Sahlu BW, Zhao S, Wang X, Umer S, Zou H, Huang J, Zhu H. Long noncoding RNAs: new insights in modulating mammalian spermatogenesis. J Anim Sci Biotechnol 2020; 11:16. [PMID: 32128162 PMCID: PMC7047388 DOI: 10.1186/s40104-019-0424-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a complex differentiating developmental process in which undifferentiated spermatogonial germ cells differentiate into spermatocytes, spermatids, and finally, to mature spermatozoa. This multistage developmental process of spermatogenesis involves the expression of many male germ cell-specific long noncoding RNAs (lncRNAs) and highly regulated and specific gene expression. LncRNAs are a recently discovered large class of noncoding cellular transcripts that are still relatively unexplored. Only a few of them have post-meiotic; however, lncRNAs are involved in many cellular biological processes. The expression of lncRNAs is biologically relevant in the highly dynamic and complex program of spermatogenesis and has become a research focus in recent genome studies. This review considers the important roles and novel regulatory functions whereby lncRNAs modulate mammalian spermatogenesis.
Collapse
Affiliation(s)
- Bahlibi Weldegebriall Sahlu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China.,Tigray Agricultural Research Institute, Mekelle Agricultural Research Center, Mekelle, Ethiopia
| | - Shanjiang Zhao
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Xiuge Wang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Saqib Umer
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Huiying Zou
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| | - Jinming Huang
- 3Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250131 People's Republic of China
| | - Huabin Zhu
- 1Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People's Republic of China
| |
Collapse
|
47
|
Zhao Z, Qiao L, Dai Z, He Q, Lan X, Huang S, He L. LncNONO-AS regulates AR expression by mediating NONO. Theriogenology 2019; 145:198-206. [PMID: 31732162 DOI: 10.1016/j.theriogenology.2019.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Spermatogenesis and healthy testicular development are prerequisites for male reproductive function. Androgen receptor (AR), an important receptor in testicular sertoli cells, is involved in androgen specific response and its dysfunction will lead to abnormal sperm development, resulting in male infertility. NONO (non-POU-domain-containing octamer binding protein) can act as a coactivator to enhance the transcription of AR, while AR may be regulated by NONO in testicular sertoli cells. LncRNAs are involved in almost every step of spermatogenesis. However, there are few studies focus on the relationship between lncRNAs and spermatogenesis in goat testis. Therefore, in this research, high throughput sequencing and bioinformatics analysis were performed on testicular tissues of Dazu black goats at different stages of development to obtain the target NONO lncRNA. It's called lncNONO-AS. This study further explored the biological functions of lncRNA through RNA pull down, overexpression, interference, fluorescence quantification, Western blot and other techniques on the basis of in vitro culture of testis sertoli cells, and we got the following results: The gene expression levels of NONO and AR in lncNONO-AS overexpression group were significantly higher than that in the empty vector group (P < 0.01). Compared with the untreated negative control group, the expression of NONO decreased from 1.00 to 0.68 (P < 0.01), and the expression of AR decreased from 1.01 to 0.34 (P < 0.01). The results showed that lncNONO-AS could regulate the expression of AR by mediating the expression of NONO.
Collapse
Affiliation(s)
- Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Lei Qiao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zinuo Dai
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qijie He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Siyi Huang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Lina He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
48
|
Integrated analysis of mRNAs and long noncoding RNAs in the semen from Holstein bulls with high and low sperm motility. Sci Rep 2019; 9:2092. [PMID: 30765858 PMCID: PMC6376035 DOI: 10.1038/s41598-018-38462-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm motility is the main index used to assess the quality of bull semen. It may also be used to evaluate the fertility potential of bulls. Protein-coding mRNA and long noncoding RNA (lncRNA) participate in the regulation of spermatogenesis. Here, we employed strand-specific RNA sequencing to profile the semen transcriptome (mRNA and lncRNA) of six paired full-sibling Holstein bulls with divergent sperm motility and to determine the functions of mRNA and lncRNA in sperm motility. Among 20,875 protein-encoding genes detected in semen, 19 were differentially expressed between the high sperm motility group (H: H1, H2, and H3) and low sperm motility group (L: L1, L2, and L3). Of the 11,561 lncRNAs identified in sperm, 2,517 were differentially expressed between the H and L groups. We found that TCONS_00041733 lncRNA targets the node gene EFNA1 (ephrin A1), involved in male reproductive physiology. Our study provides a global mRNA and lncRNA transcriptome of bull semen, as well as novel insights into the regulation of neighboring protein coding by lncRNAs and the influence of mRNAs on sperm motility.
Collapse
|