1
|
Cole JB, Baes CF, Eaglen SAE, Lawlor TJ, Maltecca C, Ortega MS, VanRaden PM. Invited review: Management of genetic defects in dairy cattle populations. J Dairy Sci 2025; 108:3045-3067. [PMID: 39986462 DOI: 10.3168/jds.2024-26035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 02/24/2025]
Abstract
When related animals are mated to one another, genetic defects may become apparent if recessive mutations are inherited from both sides of the pedigree. The widespread availability of high-density DNA genotypes for millions of animals has made it possible to identify and track known defects as well as to identify and track previously unknown defects that cause early embryonic losses. Although the number of known defects has increased over time, the availability of carrier information has been used to dramatically reduce the frequency of many disorders. The economic impact of known genetic defects in the US dairy cattle population has decreased by ∼2/3 since 2016, due largely to the avoidance of carrier-to-carrier matings. Effective population management requires robust systems for reporting new defects, identification of causal mechanisms, and development of commercially available tests. The United States and Canada depend on informal cooperation among many groups, including farmers, purebred cattle associations, genetics companies, and researchers, to identify emerging and causal defects. The structure of a collaborative system including all key sectors of the dairy cattle industry to support long-term population management is described. This review provides a comprehensive overview of the landscape surrounding genetic defects in dairy cattle. Topics covered include current defects of relevance to commercial dairy producers, trends in carrier frequencies over time, how best to manage these defects, strategies for detecting emerging diseases, and marketing and trade considerations.
Collapse
Affiliation(s)
- John B Cole
- Council on Dairy Cattle Breeding, Bowie, MD 20716; Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and the Genetics Institute, University of Florida, Gainesville, FL 32611; Department of Animal Science, North Carolina State University, Raleigh, NC 27695.
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON N1G 2W1, Canada; Institute of Genetics Vetsuisse, University of Bern, Bern 3012, Switzerland
| | | | | | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695
| | - M Sofía Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul M VanRaden
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, MD 20705
| |
Collapse
|
2
|
Xiao Y, Wang Y, Zhang M, Zhang Y, Ju Z, Wang J, Zhang Y, Yang C, Wang X, Jiang Q, Gao Y, Wei X, Liu W, Gao Y, Hu P, Huang J. Tankyrase inhibitor IWR-1 modulates HIPPO and Transforming Growth Factor β signaling in primed bovine embryonic stem cells cultured on mouse embryonic fibroblasts. Theriogenology 2025; 233:100-111. [PMID: 39613494 DOI: 10.1016/j.theriogenology.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/17/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
The use of tankyrase inhibitors is essential for capturing livestock embryonic stem cells (ESC), yet their mechanisms of action remain largely uncharacterized. Previous studies indicate that their roles extend beyond the suppression of canonical WNT signaling. This study investigates the effects of the tankyrase inhibitor IWR-1 on maintaining the pluripotency of bovine embryonic stem cells (bESC) cultured on mitotically inactivated mouse embryonic fibroblasts (MEF). Notably, bESC exhibited significant differentiation after one month of IWR-1 withdrawal, without a clear bias toward any specific germ layer. IWR-1 effectively inhibited TNKS2 activity in bESC, whereas it suppressed TNKS1 protein level in growth-arrested MEF. Early differentiation upon IWR-1 removal induced more substantial transcriptomic changes in MEF than in bESC. Furthermore, cell communication analysis predicted that IWR-1 influenced several paracrine and autocrine signals within the culture system. We also observed that IWR-1 repressed protein abundance of the HIPPO pathway components including TEAD4 and YAP1 in bESC and decreased transcription of HIPPO targeted genes CYR61. Protein analysis in growth-arrested MEF suggested that IWR-1 modulated MEF function by impeding TGF-β1 activation and activin A secretion which mitigated nuclear localization of SMAD2/3 in the bESC. This study underscores the role of tankyrase inhibitors in ESC self-renewal by modulating key signaling pathways and orchestrating cell-cell interactions, which may be meaningful in understanding the delicate signaling control of pluripotency in livestock and improving the culture system.
Collapse
Affiliation(s)
- Yao Xiao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yujie Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China
| | - Minghao Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yan Zhang
- Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Zhihua Ju
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jinpeng Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaran Zhang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chunhong Yang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiuge Wang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qiang Jiang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yaping Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiaochao Wei
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenhao Liu
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China
| | - Yundong Gao
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; Key Laboratory of Efficient Dairy Cattle Propagation and Germplasm Innovation of Ministry of Agriculture and Rural Affairs, Shandong OX Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Peng Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinming Huang
- Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
3
|
Van Eenennaam AL. Current and future uses of genetic improvement technologies in livestock breeding programs. Anim Front 2025; 15:80-90. [PMID: 40191769 PMCID: PMC11971524 DOI: 10.1093/af/vfae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
|
4
|
Navarro M, Laiz-Quiroga L, Blüguermann C, Mutto A. Livestock embryonic stem cells for reproductive biotechniques and genetic improvement. Anim Reprod 2024; 21:e20240029. [PMID: 39175999 PMCID: PMC11340801 DOI: 10.1590/1984-3143-ar2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/27/2024] [Indexed: 08/24/2024] Open
Abstract
Embryonic stem cells (ESCs) have proven to be a great in vitro model that faithfully recapitulates the events that occur during in vivo embryogenesis, making them a unique tool to study the cellular and molecular mechanisms that define tissue specification during embryonic development. Livestock ESCs are particularly attractive and have broad prospects including drug selection and human disease modeling, improvement of reproductive biotechniques and agriculture-related applications such as production of genetically modified animals. While mice and human ESCs have been established many years ago, no significant advances were made in livestock species until recently. Nowadays, livestock ESCs are available from cattle, pigs, sheep, horses and rabbits with different states of pluripotency. In this review, we summarize the current advances on livestock ESCs establishment and maintenance along with their present and future applications.
Collapse
Affiliation(s)
- Micaela Navarro
- Laboratorio de Biotecnologías aplicadas a la Reproducción Animal, Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | - Lucia Laiz-Quiroga
- Laboratorio de Biotecnologías aplicadas a la Reproducción Animal, Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | - Carolina Blüguermann
- Laboratorio de Biotecnologías aplicadas a la Reproducción Animal, Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | - Adrián Mutto
- Laboratorio de Biotecnologías aplicadas a la Reproducción Animal, Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| |
Collapse
|
5
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
6
|
Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev 2023; 36:133-148. [PMID: 38064189 DOI: 10.1071/rd23164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.
Collapse
Affiliation(s)
- Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
7
|
Velazquez MA. Nutritional Strategies to Promote Bovine Oocyte Quality for In Vitro Embryo Production: Do They Really Work? Vet Sci 2023; 10:604. [PMID: 37888556 PMCID: PMC10611302 DOI: 10.3390/vetsci10100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
The ability of bovine oocytes to reach the blastocyst stage (i.e., embryo with around 150 cells in cattle) in vitro can be affected by technical (e.g., culture medium used) and physiological factors in oocyte donors (e.g., age, breed). As such, the nutritional status of oocyte donors plays a significant role in the efficiency of in vitro embryo production (IVEP), and several nutritional strategies have been investigated in cattle subjected to ovum pick-up (OPU). However, there is no clear consensus on the reliability of nutritional schemes to improve IVEP in cattle. Available evidence suggests that a moderate body condition score (i.e., 3 in a 1-5 scale) in cattle is compatible with a metabolic microenvironment in ovarian follicles that will promote embryo formation in vitro. The usefulness of fatty acid and micronutrient supplementation to improve IVEP in cattle is debatable with the current information available. Overall, the supply of maintenance nutritional requirements according to developmental and productive stage seems to be enough to provide bovine oocyte donors with a good chance of producing embryos in vitro. Future nutrition research in cattle using OPU-IVEP models needs to consider animal well-being aspects (i.e., stress caused by handling and sampling), which could affect the results.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| |
Collapse
|
8
|
Denicol AC, Siqueira LGB. Maternal contributions to pregnancy success: from gamete quality to uterine environment. Anim Reprod 2023; 20:e20230085. [PMID: 37720724 PMCID: PMC10503891 DOI: 10.1590/1984-3143-ar2023-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
The establishment and maintenance of a pregnancy that goes to term is sine qua non for the long-term sustainability of dairy and beef cattle operations. The oocyte plays a critical role in providing the factors necessary for preimplantation embryonic development. Furthermore, the female, or maternal, environment where oocytes and embryos develop is crucial for the establishment and maintenance of a pregnancy to term. During folliculogenesis, the oocyte must sequentially acquire meiotic and developmental competence, which are the results of a series of molecular events preparing the highly specialized gamete to return to totipotency after fertilization. Given that folliculogenesis is a lengthy process in the cow, the occurrence of disease, metabolic imbalances, heat stress, or other adverse events can make it challenging to maintain oocyte quality. Following fertilization, the newly formed embryo must execute a tightly planned program that includes global DNA remodeling, activation of the embryonic genome, and cell fate decisions to form a blastocyst within a few days and cell divisions. The increasing use of assisted reproductive technologies creates an additional layer of complexity to ensure the highest oocyte and embryo quality given that in vitro systems do not faithfully recreate the physiological maternal environment. In this review, we discuss cellular and molecular factors and events known to be crucial for proper oocyte development and maturation, as well as adverse events that may negatively affect the oocyte; and the importance of the uterine environment, including signaling proteins in the maternal-embryonic interactions that ensure proper embryo development. We also discuss the impact of assisted reproductive technologies in oocyte and embryo quality and developmental potential, and considerations when looking into the prospects for developing systems that allow for in vitro gametogenesis as a tool for assisted reproduction in cattle.
Collapse
Affiliation(s)
- Anna Carolina Denicol
- Department of Animal Science, University of California, Davis, CA, United States of America
| | | |
Collapse
|
9
|
Johnsson M. Genomics in animal breeding from the perspectives of matrices and molecules. Hereditas 2023; 160:20. [PMID: 37149663 PMCID: PMC10163706 DOI: 10.1186/s41065-023-00285-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND This paper describes genomics from two perspectives that are in use in animal breeding and genetics: a statistical perspective concentrating on models for estimating breeding values, and a sequence perspective concentrating on the function of DNA molecules. MAIN BODY This paper reviews the development of genomics in animal breeding and speculates on its future from these two perspectives. From the statistical perspective, genomic data are large sets of markers of ancestry; animal breeding makes use of them while remaining agnostic about their function. From the sequence perspective, genomic data are a source of causative variants; what animal breeding needs is to identify and make use of them. CONCLUSION The statistical perspective, in the form of genomic selection, is the more applicable in contemporary breeding. Animal genomics researchers using from the sequence perspective are still working towards this the isolation of causative variants, equipped with new technologies but continuing a decades-long line of research.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, Uppsala, 75007, Sweden.
| |
Collapse
|
10
|
Ledesma AV, Mueller ML, Van Eenennaam AL. Review: Progress in producing chimeric ungulate livestock for agricultural applications. Animal 2023; 17 Suppl 1:100803. [PMID: 37567671 DOI: 10.1016/j.animal.2023.100803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 08/13/2023] Open
Abstract
The progress made in recent years in the derivation and culture of pluripotent stem cells from farm animals opens up the possibility of creating livestock chimeras. Chimeras producing gametes exclusively derived from elite donor stem cells could pass superior genetics on to the next generation and thereby reduce the genetic lag that typically exists between the elite breeding sector and the commercial production sector, especially for industries like beef and sheep where genetics is commonly disseminated through natural service mating. Chimeras carrying germ cells generated from genome-edited or genetically engineered pluripotent stem cells could further disseminate useful genomic alterations such as climate adaptation, animal welfare improvements, the repair of deleterious genetic conditions, and/or the elimination of undesired traits such as disease susceptibility to the next generation. Despite the successful production of chimeras with germ cells generated from pluripotent donor stem cells injected into preimplantation-stage blastocysts in model species, there are no documented cases of this occurring in livestock. Here, we review the literature on the derivation of pluripotent stem cells from ungulates, and progress in the production of chimeric ungulate livestock for agricultural applications, drawing on insights from studies done in model species, and discuss future possibilities of this fast-moving and developing field. Aside from the technical aspects, the consistency of the regulatory approach taken by different jurisdictions towards chimeric ungulate livestock with germ cells generated from pluripotent stem cells and their progeny will be an important determinant of breeding industry uptake and adoption in animal agriculture.
Collapse
Affiliation(s)
- Alba V Ledesma
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Maci L Mueller
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Alison L Van Eenennaam
- Department of Animal Science, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Strange A, Alberio R. Review: A barnyard in the lab: prospect of generating animal germ cells for breeding and conservation. Animal 2023; 17 Suppl 1:100753. [PMID: 37567650 DOI: 10.1016/j.animal.2023.100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro gametogenesis (IVG) offers broad opportunities for gaining detailed new mechanistic knowledge of germ cell biology that will enable progress in the understanding of human infertility, as well as for applications in the conservation of endangered species and for accelerating genetic selection of livestock. The realisation of this potential depends on overcoming key technical challenges and of gaining more detailed knowledge of the ontogeny and developmental programme in different species. Important differences in the molecular mechanisms of germ cell determination and epigenetic reprogramming between mice and other animals have been elucidated in recent years. These must be carefully considered when developing IVG protocols, as cellular kinetics in mice may not accurately reflect mechanisms in other mammals. Similarly, diverse stem cell models with potential for germ cell differentiation may reflect alternative routes to successful IVG. In conclusion, the fidelity of the developmental programme recapitulated during IVG must be assessed against reference information from each species to ensure the production of healthy animals using these methods, as well as for developing genuine models of gametogenesis.
Collapse
Affiliation(s)
- A Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - R Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK.
| |
Collapse
|
12
|
Hansen PJ. Review: Some challenges and unrealized opportunities toward widespread use of the in vitro-produced embryo in cattle production. Animal 2023; 17 Suppl 1:100745. [PMID: 37567654 PMCID: PMC10659117 DOI: 10.1016/j.animal.2023.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 08/13/2023] Open
Abstract
The embryo produced by in vitro oocyte maturation, fertilization, and embryonic development is an important resource for genetic improvement and has the potential to improve female fertility and to be programmed to produce offspring with superior ability for health and production. The cultured embryo is also an important component of several realized and potential technologies such as gene editing, somatic cell nuclear cloning, stem cell technologies and gamete generation in vitro. Full realization of the opportunities afforded by the in vitro-produced embryo will require overcoming some technical obstacles to cost-effective implementation of an embryo transfer program. Among the research goals for improving the penetration of embryo transfer in the cattle industry are development of methods to increase the supply of oocytes from genetically elite females, enhance the proportion of oocytes that become transferrable embryos, improve the fraction of embryos that establish pregnancy after transfer, reduce pregnancy wastage after pregnancy diagnosis, and identify culture conditions to optimize postnatal phenotype.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL 32611-0910, USA.
| |
Collapse
|
13
|
Goszczynski DE, Navarro M, Mutto AA, Ross PJ. Review: Embryonic stem cells as tools for in vitro gamete production in livestock. Animal 2023; 17 Suppl 1:100828. [PMID: 37567652 DOI: 10.1016/j.animal.2023.100828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
The goal of in vitro gametogenesis is to reproduce the events of sperm and oocyte development in the laboratory. Significant advances have been made in the mouse in the last decade, but evolutionary divergence from the murine developmental program has prevented the replication of these advances in large mammals. In recent years, intensive work has been done in humans, non-human primates and livestock to elucidate species-specific differences that regulate germ cell development, due to the number of potential applications. One of the most promising applications is the use of in vitro gametes to optimize the spread of elite genetics in cattle. In this context, embryonic stem cells have been posed as excellent candidates for germ cell platforms. Here, we present the most relevant advances in in vitro gametogenesis of interest to livestock science, including new types of pluripotent stem cells with potential for germline derivation, characterization of the signaling environment in the gonadal niche, and experimental systems used to reproduce different stages of germ cell development in the laboratory.
Collapse
Affiliation(s)
- D E Goszczynski
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - M Navarro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - A A Mutto
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - P J Ross
- Department of Animal Science, University of California Davis, Davis, CA, USA; STgenetics, Navasota, TX, USA.
| |
Collapse
|
14
|
Preventive Supplementation of Vitamin E and Selenium as a Factor in Improving the Success Rate of Embryo Transfer in Cattle. ACTA VET-BEOGRAD 2023. [DOI: 10.2478/acve-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Abstract
The effects of stress on processes in the body are becoming an increasingly relevant research subject. The reproductive ability of bovine animals largely depends on these effects, whilst embryo transfer is increasingly being used as a reproduction method. In this study, we established the differences in the implantation ability of heifers that were treated (N=17) with selenium (Se) and vitamins AD3E, and non-treated heifers. Upon transfer, we took blood samples from both groups and used the total antioxidant status (TAS) value to analyze the presence of reactive oxygen species (ROS), the levels of non-esterified fatty acids (NEFA) and the levels of vitamin E and Se in blood plasma. In the study, we were able to demonstrate that preventive measures in the form of supplementation of vitamin E and Se, mitigate the effects of oxidative stress, strengthen the ability of an organism to improve the dynamic relationship between free radicals and antioxidants, improve the energy status of cattle, positively impact reproductive parameters and increase the success rate of embryo transfer. The difference in the number of successful embryo implantations between the control and treated group was statistically significant, with 64.7% of treated heifers being pregnant after embryo transfer and giving birth to healthy calves. In the control group, the implantation success rate was 41.2%. The supplementation of antioxidants in the form of a combination of vitamin AD3E and Se, proved to be a good method for strengthening the defense of an organism and an effective mean of preventive clinical approach for improving fertility parameters.
Collapse
|
15
|
Soto DA, Navarro M, Ross PJ. Derivation of Bovine Primed Embryonic Stem Cells from Somatic Cell Nuclear Transfer Embryos. Methods Mol Biol 2023; 2647:305-315. [PMID: 37041343 DOI: 10.1007/978-1-0716-3064-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Derivation of bovine embryonic stem cells from somatic cell nuclear transfer embryos enables the derivation of genetically matched pluripotent stem cell lines to valuable and well-characterized animals. In this chapter, we describe a step-by-step procedure for deriving bovine embryonic stem cells from whole blastocysts produced by somatic cell nuclear transfer. This simple method requires minimal manipulation of blastocyst-stage embryos, relies on commercially available reagents, supports trypsin passaging, and allows the generation of stable primed pluripotent stem cell lines in 3-4 weeks.
Collapse
Affiliation(s)
- Delia A Soto
- Department of Animal Science, University of California, Davis, CA, USA
| | - Micaela Navarro
- Department of Animal Science, University of California, Davis, CA, USA
- Instituto de Investigaciones Biotecnológicas, CONICET, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA, USA.
| |
Collapse
|
16
|
Miller S. Genomic selection in beef cattle creates additional opportunities for embryo technologies to meet industry needs. Reprod Fertil Dev 2022; 35:98-105. [PMID: 36592979 DOI: 10.1071/rd22233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The use of genotype information to improve the predictability of Expected Progeny Difference was first implemented in American Angus cattle in 2009 and has now grown to where over 50% of all registered calves are genotyped. Animals with only a genotype now have genetic prediction accuracy equivalent to eight or more progeny records across all traits. Reproductive technologies have also been widely adopted with approximately 50% of all calves born being the result of artificial insemination. Non-surgical embryo transfer started increasing in the mid 1990s with just over 10% of calves born being the result of embryo transfer since 2005. The number of embryos created with in vitro technologies has risen sharply since 2015 and now accounts for close to 30% of all ET calves. Genomics has enabled embryo technologies to be more impactful, as females can be selected with greater accuracy and sires can be used at earlier ages with moderate accuracy. Large numbers of females genotyped each year also increases the number of selection candidates, increasing the selection intensity. Genomics, combined with increased recording, also provides more information on females. This increases the spread in the estimated index values of current dams, identifying more elite dams for selection as embryo donors. The greater scope of female selection also contributes to better inbreeding management. Commercial animals genotyped could be targeted for oocyte harvesting at slaughter, creating opportunities for low cost high value beef embryos to be used in the beef on dairy segment of the industry.
Collapse
Affiliation(s)
- Stephen Miller
- Animal Genetics and Breeding Unit, a joint venture of NSW Department of Primary Industries and the University of New England, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
17
|
Navarro M, Halstead MM, Rincon G, Mutto AA, Ross PJ. bESC from cloned embryos do not retain transcriptomic or epigenetic memory from somatic donor cells. Reproduction 2022; 164:243-257. [PMID: 35951478 DOI: 10.1530/rep-22-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
In brief Epigenetic reprogramming after mammalian somatic cell nuclear transfer is often incomplete, resulting in low efficiency of cloning. However, gene expression and histone modification analysis indicated high similarities in transcriptome and epigenomes of bovine embryonic stem cells from in vitro fertilized and somatic cell nuclear transfer embryos. Abstract Embryonic stem cells (ESC) indefinitely maintain the pluripotent state of the blastocyst epiblast. Stem cells are invaluable for studying development and lineage commitment, and in livestock, they constitute a useful tool for genomic improvement and in vitro breeding programs. Although these cells have been recently derived from bovine blastocysts, a detailed characterization of their molecular state is lacking. Here, we apply cutting-edge technologies to analyze the transcriptomic and epigenomic landscape of bovine ESC (bESC) obtained from in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. bESC were efficiently derived from SCNT and IVF embryos and expressed pluripotency markers while retaining genome stability. Transcriptome analysis revealed that only 46 genes were differentially expressed between IVF- and SCNT-derived bESC, which did not reflect significant deviation in cellular function. Interrogating histone 3 lysine 4 trimethylation, histone 3 lysine 9 trimethylation, and histone 3 lysine 27 trimethylation with cleavage under targets and tagmentation, we found that the epigenomes of both bESC groups were virtually indistinguishable. Minor epigenetic differences were randomly distributed throughout the genome and were not associated with differentially expressed or developmentally important genes. Finally, the categorization of genomic regions according to their combined histone mark signal demonstrated that all bESC shared the same epigenomic signatures, especially at gene promoters. Overall, we conclude that bESC derived from SCNT and IVF embryos are transcriptomically and epigenetically analogous, allowing for the production of an unlimited source of pluripotent cells from high genetic merit organisms without resorting to transgene-based techniques.
Collapse
Affiliation(s)
- M Navarro
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
- Department of Animal Science, University of California, Davis, California, USA
| | - M M Halstead
- Department of Animal Science, University of California, Davis, California, USA
| | | | - A A Mutto
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
| | - P J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
18
|
Recchia K, Pessôa LVDF, Pieri NCG, Pires PRL, Bressan FF. Influence of Cell Type in In Vitro Induced Reprogramming in Cattle. Life (Basel) 2022; 12:1139. [PMID: 36013318 PMCID: PMC9409886 DOI: 10.3390/life12081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have been considered an essential tool in stem cell research due to their potential to develop new therapies and technologies and answer essential questions about mammalian early development. An important step in generating iPSCs is selecting their precursor cell type, influencing the reprogramming efficiency and maintenance in culture. In this study, we aim to characterize bovine mesenchymal cells from adipose tissue (bAdMSCs) and fetal fibroblasts (bFFs) and to compare the reprogramming efficiency of these cells when induced to pluripotency. The cells were characterized by immunostaining (CD90, SSEA1, SSEA3, and SSEA4), induced differentiation in vitro, proliferation rates, and were subjected to cell reprogramming using the murine OSKM transcription factors. The bFFs presented morphological changes resembling pluripotent cells after reprogramming and culture with different supplementation, and putative iPSCs were characterized by immunostaining (OCT4, SOX2, NANOG, and AP). In the present study, we demonstrated that cell line origin and cellular proliferation rate are determining factors for reprogramming cells into pluripotency. The generation of biPSCs is a valuable tool to improve both translational medicine and animal production and to study the different supplements required to maintain the pluripotency of bovine cells in vitro.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| | - Pedro Ratto Lisboa Pires
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| |
Collapse
|
19
|
Cui G, Xu Y, Cao S, Shi K. Inducing somatic cells into pluripotent stem cells is an important platform to study the mechanism of early embryonic development. Mol Reprod Dev 2022; 89:70-85. [PMID: 35075695 DOI: 10.1002/mrd.23559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 01/24/2023]
Abstract
The early embryonic development starts with the totipotent zygote upon fertilization of differentiated sperm and egg, which undergoes a range of reprogramming and transformation to acquire pluripotency. Induced pluripotent stem cells (iPSCs), a nonclonal technique to produce stem cells, are originated from differentiated somatic cells via accomplishment of cell reprogramming, which shares common reprogramming process with early embryonic development. iPSCs are attractive in recent years due to the potentially significant applications in disease modeling, potential value in genetic improvement of husbandry animal, regenerative medicine, and drug screening. This review focuses on introducing the research advance of both somatic cell reprogramming and early embryonic development, indicating that the mechanisms of iPSCs also shares common features with that of early embryonic development in several aspects, such as germ cell factors, DNA methylation, histone modification, and/or X chromosome inactivation. As iPSCs can successfully avoid ethical concerns that are naturally present in the embryos and/or embryonic stem cells, the practicality of somatic cell reprogramming (iPSCs) could provide an insightful platform to elucidate the mechanisms underlying the early embryonic development.
Collapse
Affiliation(s)
- Guina Cui
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Yanwen Xu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyuan Cao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
20
|
OUP accepted manuscript. Mol Hum Reprod 2022; 28:6551255. [DOI: 10.1093/molehr/gaac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Crowe AD, Lonergan P, Butler ST. Invited review: Use of assisted reproduction techniques to accelerate genetic gain and increase value of beef production in dairy herds. J Dairy Sci 2021; 104:12189-12206. [PMID: 34538485 DOI: 10.3168/jds.2021-20281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
The contribution of the calf enterprise to the profit of the dairy farm is generally considered small, with beef bull selection on dairy farms often not considered a high priority. However, this is likely to change in the future as the rapid rate of expansion of the dairy herd in some countries is set to plateau and improvements in dairy herd fertility combine to reduce the proportion of dairy breed calves required on dairy farms. This presents the opportunity to increase the proportion of beef breed calves born, increasing both the value of calf sales and the marketability of the calves. Beef embryos could become a new breeding tool for dairies as producers need to reassess their breeding policy as a consequence of welfare concerns and poor calf prices. Assisted reproductive technologies can contribute to accelerated genetic gain by allowing an increased number of offspring to be produced from genetically elite dams. There are the following 3 general classes of donor females of interest to an integrated dairy-beef system: (1) elite dairy dams, from which oocytes are recovered from live females using ovum pick-up and fertilized in vitro with semen from elite dairy bulls; (2) elite beef dams, where the oocytes are recovered from live females using ovum pick-up and fertilized with semen from elite beef bulls; and (3) commercial beef dams (≥50% beef genetics), where ovaries are collected from the abattoir postslaughter, and oocytes are fertilized with semen from elite beef bulls that are suitable for use on dairy cows (resulting embryo with ≥75% beef genetics). The expected benefits of these collective developments include accelerated genetic gain for milk and beef production in addition to transformation of the dairy herd calf crop to a combination of good genetic merit dairy female calves and premium-quality beef calves. The aim of this review is to describe how these technologies can be harnessed to intensively select for genetic improvement in both dairy breed and beef breed bulls suitable for use in the dairy herd.
Collapse
Affiliation(s)
- Alan D Crowe
- School of Agriculture and Food Science, University College Dublin, D04 N2E5 Ireland; Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, D04 N2E5 Ireland.
| | - Stephen T Butler
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland.
| |
Collapse
|
22
|
Gerri C, Menchero S, Mahadevaiah SK, Turner JMA, Niakan KK. Human Embryogenesis: A Comparative Perspective. Annu Rev Cell Dev Biol 2021; 36:411-440. [PMID: 33021826 DOI: 10.1146/annurev-cellbio-022020-024900] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding human embryology has historically relied on comparative approaches using mammalian model organisms. With the advent of low-input methods to investigate genetic and epigenetic mechanisms and efficient techniques to assess gene function, we can now study the human embryo directly. These advances have transformed the investigation of early embryogenesis in nonrodent species, thereby providing a broader understanding of conserved and divergent mechanisms. Here, we present an overview of the major events in human preimplantation development and place them in the context of mammalian evolution by comparing these events in other eutherian and metatherian species. We describe the advances of studies on postimplantation development and discuss stem cell models that mimic postimplantation embryos. A comparative perspective highlights the importance of analyzing different organisms with molecular characterization and functional studies to reveal the principles of early development. This growing field has a fundamental impact in regenerative medicine and raises important ethical considerations.
Collapse
Affiliation(s)
- Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Sergio Menchero
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Shantha K Mahadevaiah
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
23
|
Alberio R, Wolf E. 25th ANNIVERSARY OF CLONING BY SOMATIC-CELL NUCLEAR TRANSFER: Nuclear transfer and the development of genetically modified/gene edited livestock. Reproduction 2021; 162:F59-F68. [PMID: 34096507 PMCID: PMC8240728 DOI: 10.1530/rep-21-0078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The birth and adult development of 'Dolly' the sheep, the first mammal produced by the transfer of a terminally differentiated cell nucleus into an egg, provided unequivocal evidence of nuclear equivalence among somatic cells. This ground-breaking experiment challenged a long-standing dogma of irreversible cellular differentiation that prevailed for over a century and enabled the development of methodologies for reversal of differentiation of somatic cells, also known as nuclear reprogramming. Thanks to this new paradigm, novel alternatives for regenerative medicine in humans, improved animal breeding in domestic animals and approaches to species conservation through reproductive methodologies have emerged. Combined with the incorporation of new tools for genetic modification, these novel techniques promise to (i) transform and accelerate our understanding of genetic diseases and the development of targeted therapies through creation of tailored animal models, (ii) provide safe animal cells, tissues and organs for xenotransplantation, (iii) contribute to the preservation of endangered species, and (iv) improve global food security whilst reducing the environmental impact of animal production. This review discusses recent advances that build on the conceptual legacy of nuclear transfer and – when combined with gene editing – will have transformative potential for medicine, biodiversity and sustainable agriculture. We conclude that the potential of these technologies depends on further fundamental and translational research directed at improving the efficiency and safety of these methods.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences University of Nottingham, Nottingham, UK
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
24
|
Alberio R, Kobayashi T, Surani MA. Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports 2021; 16:1078-1092. [PMID: 33979595 PMCID: PMC8185373 DOI: 10.1016/j.stemcr.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Post-implantation embryo development commences with a bilaminar disc in most mammals, including humans. Whereas access to early human embryos is limited and subject to greater ethical scrutiny, studies on non-primate embryos developing as bilaminar discs offer exceptional opportunities for advances in gastrulation, the germline, and the basis for evolutionary divergence applicable to human development. Here, we discuss the advantages of investigations in the pig embryo as an exemplar of development of a bilaminar disc embryo with relevance to early human development. Besides, the pig has the potential for the creation of humanized organs for xenotransplantation. Precise genetic engineering approaches, imaging, and single-cell analysis are cost effective and efficient, enabling research into some outstanding questions on human development and for developing authentic models of early human development with stem cells.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| | - Toshihiro Kobayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; The Graduate University of Advanced Studies, Okazaki, Aichi 444-8787, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
25
|
Strategy to Establish Embryo-Derived Pluripotent Stem Cells in Cattle. Int J Mol Sci 2021; 22:ijms22095011. [PMID: 34065074 PMCID: PMC8125899 DOI: 10.3390/ijms22095011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.
Collapse
|
26
|
Xiao Y, Amaral TF, Ross PJ, Soto DA, Diffenderfer KE, Pankonin AR, Jeensuk S, Tríbulo P, Hansen PJ. Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells†. Biol Reprod 2021; 105:52-63. [PMID: 33899086 DOI: 10.1093/biolre/ioab075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
The WNT signaling system plays an important but paradoxical role in the regulation of pluripotency. In the cow, IWR-1, which inhibits canonical WNT activation and has WNT-independent actions, promotes the derivation of primed pluripotent embryonic stem cells from the blastocyst. Here, we describe a series of experiments to determine whether derivation of embryonic stem cells could be generated by replacing IWR-1 with other inhibitors of WNT signaling. Results confirm the importance of inhibition of canonical WNT signaling for the establishment of pluripotent embryonic stem cells in cattle and indicate that the actions of IWR-1 can be mimicked by the WNT secretion inhibitor IWP2 but not by the tankyrase inhibitor XAV939 or WNT inhibitory protein dickkopf 1. The role of Janus kinase-mediated signaling pathways for the maintenance of pluripotency of embryonic stem cells was also evaluated. Maintenance of pluripotency of embryonic stem cells lines was blocked by a broad inhibitor of Janus kinase, even though the cells did not express phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Further studies with blastocysts indicated that IWR-1 blocks the activation of pSTAT3. A likely explanation is that IWR-1 blocks differentiation of embryonic stem cells into a pSTAT3+ lineage. In conclusion, results presented here indicate the importance of inhibition of WNT signaling for the derivation of pluripotent bovine embryonic stem cells, the role of Janus kinase signaling for maintenance of pluripotency, and the participation of IWR-1 in the inhibition of activation of STAT3.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Thiago F Amaral
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| | - Delia A Soto
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Aimee R Pankonin
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Surawich Jeensuk
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.,Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - Paula Tríbulo
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Jin YH, Robledo D, Hickey JM, McGrew MJ, Houston RD. Surrogate broodstock to enhance biotechnology research and applications in aquaculture. Biotechnol Adv 2021; 49:107756. [PMID: 33895331 PMCID: PMC8192414 DOI: 10.1016/j.biotechadv.2021.107756] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/23/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Aquaculture is playing an increasingly important role in meeting global demands for seafood, particularly in low and middle income countries. Genetic improvement of aquaculture species has major untapped potential to help achieve this, with selective breeding and genome editing offering exciting avenues to expedite this process. However, limitations to these breeding and editing approaches include long generation intervals of many fish species, alongside both technical and regulatory barriers to the application of genome editing in commercial production. Surrogate broodstock technology facilitates the production of donor-derived gametes in surrogate parents, and comprises transplantation of germ cells of donors into sterilised recipients. There are many successful examples of intra- and inter-species germ cell transfer and production of viable offspring in finfish, and this leads to new opportunities to address the aforementioned limitations. Firstly, surrogate broodstock technology raises the opportunity to improve genome editing via the use of cultured germ cells, to reduce mosaicism and potentially enable in vivo CRISPR screens in the progeny of surrogate parents. Secondly, the technology has pertinent applications in preservation of aquatic genetic resources, and in facilitating breeding of high-value species which are otherwise difficult to rear in captivity. Thirdly, it holds potential to drastically reduce the effective generation interval in aquaculture breeding programmes, expediting the rate of genetic gain. Finally, it provides new opportunities for dissemination of tailored, potentially genome edited, production animals of high genetic merit for farming. This review focuses on the state-of-the-art of surrogate broodstock technology, and discusses the next steps for its applications in research and production. The integration and synergy of genomics, genome editing, and reproductive technologies have exceptional potential to expedite genetic gain in aquaculture species in the coming decades. Genetic improvement in aquaculture species has a major role in global food security. Advances in biotechnology provide new opportunities to support aquaculture breeding. Advances in biotechnology provide new opportunities to support aquaculture breeding. Donor-derived gametes can be produced from surrogate broodstock of several aquaculture species. Surrogate broodstock technology provides new opportunities for application of genome editing. Surrogate broodstock can accelerate genetic gain, and improve dissemination of elite germplasm.
Collapse
Affiliation(s)
- Ye Hwa Jin
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Diego Robledo
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Mike J McGrew
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK
| | - Ross D Houston
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin EH25 9RG, UK.
| |
Collapse
|
28
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
29
|
Hayashi K, Galli C, Diecke S, Hildebrandt TB. Artificially produced gametes in mice, humans and other species. Reprod Fertil Dev 2021; 33:91-101. [PMID: 38769675 DOI: 10.1071/rd20265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
The production of gametes from pluripotent stem cells in culture, also known as invitro gametogenesis, will make an important contribution to reproductive biology and regenerative medicine, both as a unique tool for understanding germ cell development and as an alternative source of gametes for reproduction. Invitro gametogenesis was developed using mouse pluripotent stem cells but is increasingly being applied in other mammalian species, including humans. In principle, the entire process of germ cell development is nearly reconstitutable in culture using mouse pluripotent stem cells, although the fidelity of differentiation processes and the quality of resultant gametes remain to be refined. The methodology in the mouse system is only partially applicable to other species, and thus it must be optimised for each species. In this review, we update the current status of invitro gametogenesis in mice, humans and other animals, and discuss challenges for further development of this technology.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-0054, Japan; and Corresponding author
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, 26100 Cremona, Italy; and Fondazione Avantea, 26100 Cremona, Italy
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, 13092 Berlin, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; and Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
30
|
Scarfone RA, Pena SM, Russell KA, Betts DH, Koch TG. The use of induced pluripotent stem cells in domestic animals: a narrative review. BMC Vet Res 2020; 16:477. [PMID: 33292200 PMCID: PMC7722595 DOI: 10.1186/s12917-020-02696-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are undifferentiated stem cells characterized by the ability to differentiate into any cell type in the body. iPSCs are a relatively new and rapidly developing technology in many fields of biology, including developmental anatomy and physiology, pathology, and toxicology. These cells have great potential in research as they are self-renewing and pluripotent with minimal ethical concerns. Protocols for their production have been developed for many domestic animal species, which have since been used to further our knowledge in the progression and treatment of diseases. This research is valuable both for veterinary medicine as well as for the prospect of translation to human medicine. Safety, cost, and feasibility are potential barriers for this technology that must be considered before widespread clinical adoption. This review will analyze the literature pertaining to iPSCs derived from various domestic species with a focus on iPSC production and characterization, applications for tissue and disease research, and applications for disease treatment.
Collapse
Affiliation(s)
- Rachel A Scarfone
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Samantha M Pena
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
31
|
Oocyte Selection for In Vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals (Basel) 2020; 10:ani10122196. [PMID: 33255250 PMCID: PMC7760727 DOI: 10.3390/ani10122196] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The efficiency of producing embryos using in vitro technologies in cattle species remains lower when compared to mice, indicating that the proportion of female gametes that fail to develop after in vitro manipulation is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting embryo production, the precise identification of noninvasive markers that predict oocyte competence is of major interest. The aim of this review was to explore the current literature on different noninvasive markers associated with oocyte quality in the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, a large slightly expanded investment without dark areas, large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated with better embryonic development. In addition, the combination of oocyte and zygote selection, spindle imaging, and the anti-Stokes Raman scattering microscopy together with studies decoding molecular cues in oocyte maturation have the potential to further optimize the identification of oocytes with better developmental competence for in vitro technologies in livestock species. Abstract The efficiency of producing embryos using in vitro technologies in livestock species rarely exceeds the 30–40% threshold, indicating that the proportion of oocytes that fail to develop after in vitro fertilization and culture is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting blastocyst yield, the precise identification of noninvasive cellular or molecular markers that predict oocyte competence is of major interest to research and practical applications. The aim of this review was to explore the current literature on different noninvasive markers associated with oocyte quality in the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, large number of surrounding cumulus cells, slightly expanded investment without dark areas, large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated with better competence. In addition, the combination of oocyte and zygote selection via brilliant cresyl blue (BCB) test, spindle imaging, and the anti-Stokes Raman scattering microscopy together with studies decoding molecular cues in oocyte maturation have the potential to further optimize the identification of oocytes with better developmental competence for in-vitro-derived technologies in livestock species.
Collapse
|
32
|
Hansen PJ. The incompletely fulfilled promise of embryo transfer in cattle-why aren't pregnancy rates greater and what can we do about it? J Anim Sci 2020; 98:skaa288. [PMID: 33141879 PMCID: PMC7608916 DOI: 10.1093/jas/skaa288] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Typically, bovine embryos are transferred into recipient females about day 7 after estrus or anticipated ovulation, when the embryo has reached the blastocyst stage of development. All the biological and technical causes for failure of a female to produce a blastocyst 7 d after natural or artificial insemination (AI) are avoided when a blastocyst-stage embryo is transferred into the female. It is reasonable to expect, therefore, that pregnancy success would be higher for embryo transfer (ET) recipients than for inseminated females. This expectation is not usually met unless the recipient is exposed to heat stress or is classified as a repeat-breeder female. Rather, pregnancy success is generally similar for ET and AI. The implication is that either one or more of the technical aspects of ET have not yet been optimized or that underlying female fertility that causes an embryo to die before day 7 also causes it to die later in pregnancy. Improvements in pregnancy success after ET will depend upon making a better embryo, improving uterine receptivity, and forging new tools for production and transfer of embryos. Key to accelerating progress in improving pregnancy rates will be the identification of phenotypes or phenomes that allow the prediction of embryo competence for survival and maternal capacity to support embryonic development.
Collapse
Affiliation(s)
- Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL
| |
Collapse
|
33
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
34
|
Vries AD, Kaniyamattam K. A review of simulation analyses of economics and genetics for the use of in-vitro produced embryos and artificial insemination in dairy herds. Anim Reprod 2020; 17:e20200020. [PMID: 33029212 PMCID: PMC7534553 DOI: 10.1590/1984-3143-ar2020-0020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of in-vitro produced (IVP) embryo transfer (ET) in dairy herds is growing fast. Much of this growth is on dairy farms where the focus is on milk production and not on selling breeding stock. The value of implementing IVP-ET in a dairy herd arises from a higher genetic merit of the IVP-embryo, but the cost to produce a pregnancy with an IVP embryo is greater than the cost of artificial insemination (AI). The first objective of this study was to review estimates of the net benefit of using IVP-ET over AI in dairy herds using existing literature. Another objective was to show how much IVP-ET use in a herd is optimal. Most of the literature is based on simulation modeling, including our own work that focuses on the dairy industry in the USA. We found that the most profitable use of AI and IVP-ET is often a combination of the two. More IVP-ET should be used when the value of surplus calves is greater and the cost of IVP-ET is lower, among many other factors. In the future, use of IVP-ET will be further improved by more accurately identifying superior donors and recipients, reducing the generation interval, and achieving greater efficiency in embryo production.
Collapse
Affiliation(s)
- Albert De Vries
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Karun Kaniyamattam
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Palmer E, Chavatte-Palmer P. Contribution of Reproduction Management and Technologies to Genetic Progress in Horse Breeding. J Equine Vet Sci 2020; 89:103016. [PMID: 32563446 DOI: 10.1016/j.jevs.2020.103016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Reproductive technologies aim at improving fertility with the ultimate result of improving genetic selection. In equidae, the respective contribution of different methods of horse management and breeding to genetic progress remain difficult to evaluate as breeding strategies affect the number of offspring per mare or stallion whereas different selection methods (based on pedigree, performance, genomics or progeny's performance) will be applicable at different ages, leading to different accuracy in the estimation of the breeding value. Here, a mathematical model was applied to evaluate theoretical genetic progress depending on breeding conditions in horses. The model showed that for breeding systems ranging from 0.6 to 2 foals/year/mare and from 10 to 150 foals/year for stallions, when selection of the best animals is strictly made by a truncation, the genetic progress is accelerated by (1) increasing the number of offspring per year, (2) the start of reproduction as soon as the age of 2 in both sexes, and (3) reducing the number of years of use for stallions from 10 to 5 years. The calculation showed that using all ways of improvement could provide an increase in genetic progress of up to +270% and +226% in mares and stallions, respectively, above the basal reference situation of 100%. In the Selle Français breed, the observed reproductive management parameters (10 years generation interval, 10 foals/stallion and 0.55 foals/mare) are close to the worst conditions of the model. In addition, the best mares are not selected for breeding. In conclusion, new reproductive technologies, genomic selection, and breeding younger animals will increase genetic gain.
Collapse
Affiliation(s)
- Eric Palmer
- Académie d'Agriculture de France, Paris, France.
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
36
|
Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb207159. [PMID: 32034040 DOI: 10.1242/jeb.207159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prospect of genome editing offers a number of promising opportunities for livestock breeders. Firstly, these tools can be used in functional genomics to elucidate gene function, and identify causal variants underlying monogenic traits. Secondly, they can be used to precisely introduce useful genetic variation into structured livestock breeding programs. Such variation may include repair of genetic defects, the inactivation of undesired genes, and the moving of useful alleles and haplotypes between breeds in the absence of linkage drag. Editing could also be used to accelerate the rate of genetic progress by enabling the replacement of the germ cell lineage of commercial breeding animals with cells derived from genetically elite lines. In the future, editing may also provide a useful complement to evolving approaches to decrease the length of the generation interval through in vitro generation of gametes. For editing to be adopted, it will need to seamlessly integrate with livestock breeding schemes. This will likely involve introducing edits into multiple elite animals to avoid genetic bottlenecks. It will also require editing of different breeds and lines to maintain genetic diversity, and enable structured cross-breeding. This requirement is at odds with the process-based trigger and event-based regulatory approach that has been proposed for the products of genome editing by several countries. In the absence of regulatory harmony, researchers in some countries will have the ability to use genome editing in food animals, while others will not, resulting in disparate access to these tools, and ultimately the potential for global trade disruptions.
Collapse
|
37
|
Pieri NCG, de Souza AF, Botigelli RC, Machado LS, Ambrosio CE, Dos Santos Martins D, de Andrade AFC, Meirelles FV, Hyttel P, Bressan FF. Stem cells on regenerative and reproductive science in domestic animals. Vet Res Commun 2019; 43:7-16. [PMID: 30656543 DOI: 10.1007/s11259-019-9744-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Stem cells are undifferentiated and self-renewable cells that present new possibilities for both regenerative medicine and the understanding of early mammalian development. Adult multipotent stem cells are already widely used worldwide in human and veterinary medicine, and their therapeutic signalling, particularly with respect to immunomodulation, and their trophic properties have been intensively studied. The derivation of embryonic stem cells (ESCs) from domestic species, however, has been challenging, and the poor results do not reflect the successes obtained in mouse and human experiments. More recently, the generation of induced pluripotent stem cells (iPSCs) via the forced expression of specific transcription factors has been demonstrated in domestic species and has introduced new potentials in regenerative medicine and reproductive science based upon the ability of these cells to differentiate into a variety of cells types in vitro. For example, iPSCs have been differentiated into primordial germ-like cells (PGC-like cells, PGCLs) and functional gametes in mice. The possibility of using iPSCs from domestic species for this purpose would contribute significantly to reproductive technologies, offering unprecedented opportunities to restore fertility, to preserve endangered species and to generate transgenic animals for biomedical applications. Therefore, this review aims to provide an updated overview of adult multipotent stem cells and to discuss new possibilities introduced by the generation of iPSCs in domestic animals, highlighting the possibility of generating gametes in vitro via PGCL induction.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Lucas Simões Machado
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos Eduardo Ambrosio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Daniele Dos Santos Martins
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - André Furugen Cesar de Andrade
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Flavio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil.
| |
Collapse
|