1
|
Kitawaki Y, Horie A, Ikeda A, Shitanaka S, Yanai A, Ohara T, Nakakita B, Sagae Y, Okunomiya A, Tani H, Mandai M. Intrauterine administration of peripheral blood mononuclear cells helps manage recurrent implantation failure by normalizing dysregulated gene expression including estrogen-responsive genes in mice. Cell Commun Signal 2024; 22:587. [PMID: 39639317 PMCID: PMC11619271 DOI: 10.1186/s12964-024-01904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Intrauterine peripheral blood mononuclear cell (PBMC) therapy for recurrent implantation failure (RIF) has been reported to improve embryo implantation by acting on the endometrium. However, the exact mode of action of PBMC on the endometrium of patients with RIF remains unclear. In addition, the differences in the therapeutic effects of PBMC therapy with and without human chorionic gonadotropin (hCG) are unknown. Therefore, in this study, we investigated the changes in the endometrium during the implantation phase induced by PBMC administration and the differences in the efficacy of this therapy with and without hCG using a mouse model of implantation failure (IF). METHODS IF model was established by the subcutaneous administration of low-dose RU486. Pregnant mice were randomly divided into five groups: control, IF, culture medium, PBMC, and PBMC-hCG (the latter three groups were IF model mice with intrauterine administration). The pregnancy rate and the number and size of implantation sites were recorded during early pregnancy (day 7.5). Uteri from the preimplantation phase (evening of day 3.5) were collected and analyzed using RNA-sequencing (RNA-seq). RESULTS The pregnancy rate, the number of implantation sites, and the number of normal-sized implantation sites were significantly decreased in the IF model and were improved in the medium, PBMC, and PBMC-hCG groups. RNA-seq data showed that PBMC treatment normalized the expression of the majority of dysregulated genes in the endometrium during the preimplantation phase in the IF model, especially the overexpression of estrogen-activated genes. In addition, PBMC treatment increased the expression of local glucocorticoid receptors and suppressed the expression of inflammation-related genes, whereas no significant changes in blood estradiol and glucocorticoid levels were observed. These changes were more pronounced in the PBMC-hCG group and were consistent with the pregnancy outcomes. CONCLUSIONS Intrauterine administration of PBMC before embryo implantation promoted embryo implantation in the IF mouse model, and hCG enhanced pregnancy outcomes. PBMC modulated steroid receptor expression and suppressed inflammation and excessive estrogen action.
Collapse
Affiliation(s)
- Yoshimi Kitawaki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan.
- Department of Gynecology and Obstetrics, Medical Research Institute Kitano Hospital, 2-4-20 Ohgimachi, Kita-Ku, Osaka, 530-8480, Japan.
| | - Asami Ikeda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Shimpei Shitanaka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Akihiro Yanai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Tsutomu Ohara
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Baku Nakakita
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Yusuke Sagae
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Asuka Okunomiya
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Hirohiko Tani
- Department of Gynecology and Obstetrics, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-Ku, Shizuoka, 420-8527, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|
2
|
Shukla R, Kannan A, Laws MJ, Johnson AW, Flaws JA, Bagchi MK, Bagchi IC. Long-term dietary exposure to a mixture of phthalates enhances estrogen and beta-catenin signaling pathways, leading to endometrial hyperplasia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613339. [PMID: 39345621 PMCID: PMC11429868 DOI: 10.1101/2024.09.16.613339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Phthalates, synthetic chemicals widely utilized as plasticizers and stabilizers in various consumer products, present a significant concern due to their persistent presence in daily human life. While past research predominantly focused on individual phthalates, real-life human exposure typically encompasses complex mixtures of these compounds. The cumulative effects of prolonged exposure to phthalate mixtures on uterine health remain poorly understood. To address this knowledge gap, we conducted studies utilizing adult female mice exposed to a phthalate mixture for 6 and 12 months through ad libitum chow consumption. We previously reported that continuous exposure to this phthalate mixture for 6 months led to uterine fibrosis. In this study, we show that the exposure, when continued beyond 6 months to 1 year, caused fibrotic uteri to display hyperplasia with a significant increase in gland to stroma ratio. Endometrial hyperplasia is commonly caused by unopposed estrogen action, which promotes increased expression of pro-inflammatory cytokines and chemokines and proliferation of the endometrial epithelial cells. Indeed, RNA sequencing analysis revealed a marked upregulation of several estrogen-regulated genes, Wnt ligands that are involved in oncogenic pathways, as well as chemokines, in phthalate-exposed uterine tissues. Consequently, the exposed uteri exhibited increased proliferation of endometrial epithelial cells, and a heightened inflammatory response indicated by extensive homing of macrophages. Further studies revealed a marked enhancement of the Wnt/β-Catenin signaling pathway, potentially contributing to the development of endometrial hyperplasia. Collectively, this study underscores the significance of understanding the exposure to environmental factors in the pathogenesis of endometrial disorders.
Collapse
|
3
|
Zhao T, Sun Z, Lai X, Lu H, Liu L, Li S, Yuan JH, Guo Z. Tamoxifen exerts anti-peritoneal fibrosis effects by inhibiting H19-activated VEGFA transcription. J Transl Med 2023; 21:614. [PMID: 37697303 PMCID: PMC10494369 DOI: 10.1186/s12967-023-04470-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) remains limited due to dialysis failure caused by peritoneal fibrosis. Tamoxifen (TAM), an inhibitor of estrogen receptor 1 (ESR1), has been reported to treat fibrosis, but the underlying mechanism remains unknown. In this study, we sought to explore whether tamoxifen played an anti-fibrotic role by affecting transcription factor ESR1. METHODS ESR1 expression was detected in the human peritoneum. Mice were daily intraperitoneally injected with 4.25% glucose PD dialysate containing 40 mM methylglyoxal for 2 weeks to establish PD-induced peritoneal fibrosis. Tamoxifen was administrated by daily gavage, at the dose of 10 mg/kg. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assay were performed to validate ESR1 bound H19 promoter. Gain-of-function and loss-of-function experiments were performed to investigate the biological roles of H19 on the mesothelial-mesenchymal transition (MMT) of human peritoneal mesothelial cells (HPMCs). Intraperitoneal injection of nanomaterial-wrapped 2'-O-Me-modified small interfering RNA was applied to suppress H19 in the mouse peritoneum. RNA immunoprecipitation and RNA pull-down assays demonstrated binding between H19 and p300. Exfoliated peritoneal cells were obtained from peritoneal dialysis effluent to analyze the correlations between ESR1 (or H19) and peritoneal solute transfer rate (PSTR). RESULTS ESR1 was increased significantly in the peritoneum after long-term exposure to PD dialysate. Tamoxifen treatment ameliorated high glucose-induced MMT of HPMCs, improved ultrafiltration rate, and decreased PSTR of mouse peritoneum. Tamoxifen reduced the H19 level by decreasing the ESR1 transcription of H19. Depletion of H19 reversed the pro-fibrotic effect of high glucose while ectopic expression of H19 exacerbated fibrotic pathological changes. Intraperitoneal injection of nanomaterial-wrapped 2'-O-Me-modified siRNAs targeting H19 mitigated PD-related fibrosis in mice. RNA immunoprecipitation (RIP) and RNA pull-down results delineated that H19 activated VEGFA expression by binding p300 to the VEGFA promoter and inducing histone acetylation of the VEGFA promoter. ESR1 and H19 were promising targets to predict peritoneal function. CONCLUSIONS High glucose-induced MMT of peritoneal mesothelial cells in peritoneal dialysis via activating ESR1. In peritoneal mesothelial cells, ESR1 transcribed the H19 and H19 binds to transcription cofactor p300 to activate the VEGFA. Targeting ESR1/H19/VEGFA pathway provided new hope for patients undergoing peritoneal dialysis.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200433, China
| | - Zhengyu Sun
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Xueli Lai
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Hongtao Lu
- Department of Nutrition, Naval Medical University, Shanghai, 200433, China
| | - Lulu Liu
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Shuangxi Li
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Ji-Hang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| | - Zhiyong Guo
- Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
4
|
Li Q, Yang L, Zhang F, Liu J, Jiang M, Chen Y, Ren C. m6A methyltransferase METTL3 inhibits endometriosis by regulating alternative splicing of MIR17HG. Reproduction 2023; 165:197-208. [PMID: 36445237 DOI: 10.1530/rep-22-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
In brief Inflammation and abnormal immune response are the key processes in the development of endometriosis (EMs), and m6A modification can regulate the inflammatory response. This study reveals that METTL3-mediated N6-methyladenosine (m6A) modification plays an important role in EMs. Abstract m6A modification is largely involved in the development of different diseases. This study intended to investigate the implication of m6A methylation transferase methyltransferase like 3 (METTL3) in EMs. EMs- and m6A-related mRNAs and long non-coding RNAs were identified through bioinformatics analysis. Next, EM mouse models established by endometrial autotransplantation and mouse endometrial stromal cell (mESC) were prepared and treated with oe-METTL3 or sh-MIR17HG for pinpointing the in vitro and in vivo effects of METTL3 on EMs in relation to MIR17HG through the determination of mESC biological processes as well as estradiol (E2) and related lipoprotein levels. We demonstrated that METTL3 and MIR17HG were downregulated in the EMs mouse model. Overexpression of METTL3 suppressed the proliferation, migration, and invasion of mESCs. In addition, METTL3 enhanced the expression of MIR17HG through m6A modification. Moreover, METTL3 could inhibit the E2 level and alter related lipoprotein levels in EMs mice through the upregulation of MIR17HG. The present study highlighted that the m6A methylation transferase METTL3 prevents EMs progression by upregulating MIR17HG expression.
Collapse
Affiliation(s)
- Qian Li
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Li Yang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Feng Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Jiaxi Liu
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Min Jiang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Yannan Chen
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Chenchen Ren
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Li T, Vazakidou P, Leonards PEG, Damdimopoulos A, Panagiotou EM, Arnelo C, Jansson K, Pettersson K, Papaikonomou K, van Duursen M, Damdimopoulou P. Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology 2023; 485:153425. [PMID: 36621641 DOI: 10.1016/j.tox.2023.153425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are raising concerns about adverse effects on fertility in women. However, there is a lack of information regarding mechanisms and effects in humans. Our study aims to identify mechanisms of endocrine disruption using two EDCs, diethylstilbestrol (DES) and ketoconazole (KTZ)1. Human ovarian cortical tissue obtained from Caesarean section patients was exposed to 10-9 M - 10-5 M KTZ and 10-10 M - 10-6 M DES in vitro for 6 days. Follicle survival and growth were studied via histology analysis and liquid-chromatography-mass spectrometry-based steroid quantification. RNA-sequencing was performed on COV434, KGN, and primary ovarian cells that were exposed for 24 h. Significantly lower unilaminar follicle densities were observed in DES 10-10 M group, whereas low KTZ exposure reduced secondary follicle density. KTZ 10-5 M reduced levels of pregnenolone and progesterone. RNA-sequencing revealed that 445 and 233 differentially expressed genes (false discovery rate < 0.1) altogether in DES and KTZ exposed groups. Gene set variation analysis showed that both chemicals modulated pathways that are important for folliculogenesis and steroidogenesis. We selected stearoyl-CoA desaturase (SCD) and 7-dehydrocholesterol reductase (DHCR7) for further validation. Up-regulation of both genes in response to KTZ was confirmed by qPCR and in situ RNA hybridization. Further validation with immunofluorescence focused on the expression of SCD in growing follicles in exposed ovarian tissue. In conclusion, SCD may serve as a potential novel human-relevant biomarker of EDC exposure and effects on ovaries.
Collapse
Affiliation(s)
- Tianyi Li
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Paraskevi Vazakidou
- Department Environment and Health, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Pim E G Leonards
- Department Environment and Health, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis Core Facility, Department of Biosciences and Nutrition, Karolinska Institute, 14186 Stockholm, Sweden.
| | - Eleftheria Maria Panagiotou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Catarina Arnelo
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Kerstin Jansson
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Karin Pettersson
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | - Kiriaki Papaikonomou
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Majorie van Duursen
- Department Environment and Health, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| |
Collapse
|
6
|
Roles of Estrogen, Estrogen Receptors, and Estrogen-Related Receptors in Skeletal Muscle: Regulation of Mitochondrial Function. Int J Mol Sci 2023; 24:ijms24031853. [PMID: 36768177 PMCID: PMC9916347 DOI: 10.3390/ijms24031853] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Estrogen is an essential sex steroid hormone that functions primarily in female reproductive system, as well as in a variety of tissues and organs with pleiotropic effects, such as in cardiovascular, nervous, immune, and musculoskeletal systems. Women with low estrogen, as exemplified by those in postmenopause, are therefore prone to suffer from various disorders, i.e., cardiovascular disease, dementia, metabolic syndrome, osteoporosis, sarcopenia, frailty, and so on. Estrogen regulates the expression of its target genes by binding to its cognate receptors, estrogen receptors (ERs) α and β. Notably, the estrogen-related receptors (ERRs) α, β, and γ are originally identified as orphan receptors that share substantial structural homology and common transcriptional targets with ERs. Accumulating evidence suggests that ERs and ERRs play crucial roles in skeletal muscles, such as muscle mass maintenance, muscle exercise physiology, and muscle regeneration. In this article, we review potential regulatory roles of ERs and ERRs in muscle physiology, particularly with regard to mitochondrial function and metabolism.
Collapse
|
7
|
Zhou J, Chen J, Chen Z, Wu G, Zhou Z, Wu T, Wang W, Luo Y, Liu T. Prognostic significance of long non-coding RNA five prime to XIST in various cancers. BMC Cancer 2022; 22:61. [PMID: 35027040 PMCID: PMC8756669 DOI: 10.1186/s12885-021-09161-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/24/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND To observe the clinicopathological and prognostic value of long non-coding RNA five prime to X inactive specific transcript (lncFTX) in multiple tumors. METHODS Eligible studies for lncFTX were identified by searching PubMed, Embase, Web of Science and Cochrane Library databases from inception to December 01, 2020. Stata 12.0 software was used to calculate the odds ratio (OR)/hazard ratio (HR) and 95% confidence interval (95% CI). We used The Cancer Genome Atlas (TCGA) dataset to further investigate the differential expression and prognostic value of lncFTX. RESULTS We included 11 studies involving a total of 1633 patients. The results showed that the expression of lncFTX was positively associated with advanced TNM stage (III-IV versus I-II) (OR = 2.30, 95% CI: 1.74-3.03, P < 0.05), lymph nodes metastasis (OR = 3.01, 95% CI: 2.00-4.52, P < 0.05), distant metastasis (OR = 3.68, 95% CI: 2.13-6.34, P < 0.05), and cancer mortality (HR = 1.83, 95% CI: 1.20-2.81, P < 0.05). However, the expression of lncFTX was not associated with tumor differentiation (poor differentiation versus well or moderate differentiation) and vessel invasion of cancer. Subgroup analysis showed that the higher lncFTX expression was associated with shorter overall survival in cancer patients, regardless of the sample size and cancer type. No publication bias was found, and the sensitivity analysis results suggested that the main findings were robust. Elevated expression and prognostic significance of FTX were confirmed using TCGA dataset. CONCLUSIONS This study found that the expression of lncFTX was positively associated with advanced tumor node metastasis (TNM) stage, lymph nodes, distant metastasis and, cancer mortality, suggesting that lncFTX might be a potential prognostic biomarker for tumors.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011 China
| | - Junjie Chen
- Department of Orthopedics, Longhui People’s Hospital, Shaoyang, Hunan 422200 China
| | - Ziyuan Chen
- Department of Orthopedics, The First People’s Hospital of Changde City, Changde, Hunan 415003 China
| | - Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011 China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania Australia
| | - Tong Wu
- Department of Emergency, The First Hospital of Changsha City, Changsha, Hunan 410005 China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011 China
| | - Yingquan Luo
- Department of General Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011 China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011 China
| |
Collapse
|
8
|
Ramos EI, Yang B, Vasquez YM, Lin KY, Choudhari R, Gadad SS. Characterization of the Testis-specific LINC01016 Gene Reveals Isoform-specific Roles in Controlling Biological Processes. J Endocr Soc 2021; 5:bvab153. [PMID: 34703959 PMCID: PMC8533999 DOI: 10.1210/jendso/bvab153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical regulators of biological processes. However, the aberrant expression of an isoform from the same lncRNA gene could lead to RNA with altered functions due to changes in their conformations, leading to diseases. Here, we describe a detailed characterization of the gene that encodes long intergenic non-protein-coding RNA 01016 (LINC01016, also known as LncRNA1195) with a focus on its structure, exon usage, and expression in human and macaque tissues. In this study we show that it is among the highly expressed lncRNAs in the testis, exclusively conserved among nonhuman primates, suggesting its recent evolution and is processed into 12 distinct RNAs in testis, cervix, and uterus tissues. Further, we integrate de novo annotation of expressed LINC01016 transcripts and isoform-dependent gene expression analyses to show that human LINC01016 is a multiexon gene, processed through differential exon usage with isoform-specific roles. Furthermore, in cervical, testicular, and uterine cancers, LINC01016 isoforms are differentially expressed, and their expression is predictive of survival in these cancers. This study has revealed an essential aspect of lncRNA biology, rarely associated with coding RNAs, that lncRNA genes are precisely processed to generate isoforms with distinct biological roles in specific tissues.
Collapse
Affiliation(s)
- Enrique I Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Barbara Yang
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Yasmin M Vasquez
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ken Y Lin
- Department of Obstetrics & Gynecology and Women's Health, Division of Gynecologic Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas 79905, USA.,Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, Texas 78229, USA
| |
Collapse
|
9
|
Choudhari R, Yang B, Rotwein P, Gadad SS. Structure and expression of the long noncoding RNA gene MIR503 in humans and non-human primates. Mol Cell Endocrinol 2020; 510:110819. [PMID: 32311422 DOI: 10.1016/j.mce.2020.110819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
Recent technical and other advances in genomics provide unique opportunities to improve our understanding of human physiology and disease predisposition through a detailed analysis of gene structure and expression by examining data in public genome and gene-expression repositories. Yet, the vast majority of human genes remain understudied. This is particularly true of genes for long noncoding RNAs (lncRNAs). Here, we describe the detailed characterization of MIR503HG, a lncRNA gene found on the X chromosome in humans. Using information extracted from public databases, we show that human MIR503HG is a 5-exon gene, and that it is highly conserved among 5 non-human primates spanning over 85 million years ago of evolutionary diversification. MIR503HG is transcribed and processed into multiple distinct RNAs in each of these species through differential exon use and alternative RNA splicing, with a higher abundance of transcripts being found in reproductive tissues, especially during the early stages of ovary and testis development, indicating a possible role in reproductive biology. Furthermore, in select reproductive system cancers, MIR503HG transcripts are downregulated, with higher levels of RNA expression being associated with clinical outcomes. Collectively, these investigations show how the use of genomic, gene expression, and other genetic resources can lead to new insights about human biology and disease, and argue that MIR503HG is worthy of additional study.
Collapse
Affiliation(s)
- Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States.
| | - Barbara Yang
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States.
| | - Peter Rotwein
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States.
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States; Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, United States; Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States.
| |
Collapse
|
10
|
Emerging Roles of Estrogen-Regulated Enhancer and Long Non-Coding RNAs. Int J Mol Sci 2020; 21:ijms21103711. [PMID: 32466143 PMCID: PMC7279485 DOI: 10.3390/ijms21103711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be “junk” DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.
Collapse
|