1
|
Zambuto SG, Scott AK, Oyen ML. Beyond 2D: Novel biomaterial approaches for modeling the placenta. Placenta 2024; 157:55-66. [PMID: 38514278 PMCID: PMC11399328 DOI: 10.1016/j.placenta.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
This review considers fully three-dimensional biomaterial environments of varying complexity as these pertain to research on the placenta. The developments in placental cell sources are first considered, along with the corresponding maternal cells with which the trophoblast interact. We consider biomaterial sources, including hybrid and composite biomaterials. Properties and characterization of biomaterials are discussed in the context of material design for specific placental applications. The development of increasingly complicated three-dimensional structures includes examples of advanced fabrication methods such as microfluidic device fabrication and 3D bioprinting, as utilized in a placenta context. The review finishes with a discussion of the potential for in vitro, three-dimensional placenta research to address health disparities and sexual dimorphism, especially in light of the exciting recent changes in the regulatory environment for in vitro devices.
Collapse
Affiliation(s)
- Samantha G Zambuto
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Adrienne K Scott
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michelle L Oyen
- Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis, MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Kek T, Geršak K, Virant-Klun I. Exposure to endocrine disrupting chemicals (bisphenols, parabens, and triclosan) and their associations with preterm birth in humans. Reprod Toxicol 2024; 125:108580. [PMID: 38522559 DOI: 10.1016/j.reprotox.2024.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Preterm birth in humans (PTB), defined as birth prior to 37 weeks of gestation, is one of the most important causes of neonatal morbidity and mortality and is associated with adverse health outcomes later in life. Attributed to many different etiological factors, estimated 15.1 million or 11.1% of births each year are preterm, which is more than 1 per 10 livebirths globally. Environmental pollution is a well-established risk factor that could influence the pathogenesis of PTB. Increasing evidence has shown an association between maternal exposure to endocrine disrupting chemicals (EDCs) and PTB. This scoping review aims to summarize current research on the association between EDC exposure and PTB in humans. Database PubMed was used to identify articles discussing the effect of selected EDCs, namely bisphenol A, bisphenol S, bisphenol F, parabens, and triclosan, found in plastics, cosmetics and other personal care products, on PTB occurrence. Regardless of some inconsistences in the findings across studies, the reviewed studies suggest a potential association between involuntary exposure to reviewed EDCs and the risk of PTB. However, further studies are needed to delineate exact correlations and mechanisms through which EDC exposure causes PTB so that efficient preventative measures could be implemented. Until then, health care providers should inform women about possible EDC exposure thus empowering them to make healthy choices and at the same time decrease the EDC negative effects.
Collapse
Affiliation(s)
- Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia.
| | - Ksenija Geršak
- Medical Faculty, University of Ljubljana, Vrazov trg 2, Ljubljana 1000, Slovenia; Division of Gynaecology and Obstetrics, University Medical Centre Ljubljana, Šlajmerjeva 3, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška cesta 2, Ljubljana 1000, Slovenia
| |
Collapse
|
3
|
Tantengco OAG, Vidal MS, Bento GFC, Menon R. Impact of bisphenol A on cell viability and inflammatory cytokine production in human cervical epithelial cells. Am J Reprod Immunol 2023; 90:e13784. [PMID: 37881122 PMCID: PMC10607601 DOI: 10.1111/aji.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
PROBLEM An intact cervix is a barrier that prevents pathogenic bacteria from invading the uterine and amniotic cavity during pregnancy. Its disruption is associated with ascending infection and adverse pregnancy outcomes. This study analyzed the effects of bisphenol A (BPA), a chemical used in plastics manufacturing, on cell death and inflammation in cervical epithelial cells. METHODS Ectocervical epithelial (ecto) and endocervical epithelial (endo) cells were treated with 100 ng/mL and 300 ng/mL of BPA for 48 h. The cells were subjected to flow cytometry using annexin V and propidium iodide to determine apoptosis and necrosis, cell cycle analysis, and ELISA to determine the levels of inflammatory cytokines (IL-6, IL-8, and IL-10). RESULTS Low-dose and high-dose BPA significantly increased the live ecto cell population dose-dependently. BPA did not have any noticeable effect on cell cycle progression in either cell type. BPA treatment also decreased the apoptotic ecto and endo cell population dose-dependently. Lastly, high dose BPA significantly increased IL-6 in ecto and endo cells. However, IL-8 and IL-10 were not affected by BPA treatments. CONCLUSION Chemical exposure damage to the cervix can lead to adverse pregnancy outcomes. Our study showed that the BPA concentrations reported in pregnant subjects do not induce cervical cell toxicity . The decrease in apoptosis and increase in live cells may be a compensatory mechanism to preserve the integrity of the cervical epithelial layer.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic Science & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | - Manuel S. Vidal
- Division of Basic Science & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Giovana Fernanda Cosi Bento
- Division of Basic Science & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Ramkumar Menon
- Division of Basic Science & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
4
|
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol (Lausanne) 2023; 14:1215353. [PMID: 37854189 PMCID: PMC10579913 DOI: 10.3389/fendo.2023.1215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-β estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Li Y, Li P, Yu X, Zheng X, Gu Q. Exploitation of In Vivo-Emulated In Vitro System in Advanced Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37023249 DOI: 10.1021/acs.jafc.2c07289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Reasonable model construction contributes to the accuracy of experimental results. Multiple in vivo models offer reliable choices for effective evaluation, whereas their applications are hampered due to adverse features including high time-consumption, high cost and ethical contradictions. In vivo-emulated in vitro systems (IVE systems) have experienced rapid development and have been brought into food science for about two decades. IVE systems' flexibly gathers the strengths of in vitro and in vivo models into one, reflecting the results in an efficient, systematic and interacted manner. In this review, we comprehensively reviewed the current research progress of IVE systems based on the literature published in the recent two decades. By categorizing the IVE systems into 2D coculture models, spheroids and organoids, their applications were systematically summarized and typically exemplified. The pros and cons of IVE systems were also thoroughly discussed, drawing attention to present challenges and inspiring potential orientation and future perspectives. The wide applicability and multiple possibilities suggest IVE systems as an effective and persuasive platform in the future of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Xin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, and National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China
- Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, and National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, 310018, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Wang H, Xu T, Yin D. Emerging trends in the methodology of environmental toxicology: 3D cell culture and its applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159501. [PMID: 36265616 DOI: 10.1016/j.scitotenv.2022.159501] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Human diseases and health concerns caused by environmental pollutants are globally emerging. Therefore, rapid and efficient evaluation of the effects of environmental pollutants on human health is essential. Due to the significant differences between humans and animals and the lack of physiologically related environments, animal models and two-dimensional (2D) culture cannot accurately describe toxicological effects and predict actual in vivo responses. To make up for the limitations of traditional environmental toxicology screening, three-dimensional (3D) culture has been developed. The 3D culture could provide a good organizational structure comparable to the complex internal environment of humans and produce a more realistic response to environmental pollutants, which has been used in drug development, toxicity evaluation, personalized therapy and biological mechanism research. The goal of environmental toxicology is to provide clues and support for the risk assessment and management of environmental pollutants. With the development of 3D culture that can reproduce specific physiological aspects loaded with specific cells that reflect human biology, interactions between pollutants and target tissues and organs can be explored to assess the acute and chronic adverse health effects of exposure to various environmental toxins. The 3D culture with great potential shows broad prospects in toxicology research and is expected to bridge the gap between 2D culture and animal models eventually. In this sense, we strongly recommend that 3D culture be used to identify and understand environmental toxins, which will greatly facilitate the public's comprehensive understanding of environmental toxins.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
7
|
Kourmaeva E, Sabry R, Favetta LA. Bisphenols A and F, but not S, induce apoptosis in bovine granulosa cells via the intrinsic mitochondrial pathway. Front Endocrinol (Lausanne) 2022; 13:1028438. [PMID: 36387888 PMCID: PMC9650025 DOI: 10.3389/fendo.2022.1028438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
With the gradual decline in global fertility rates, there is a need to identify potential contributing factors, their mechanisms of actions and investigate possible solutions to reverse the trend. Endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), are environmental toxicants that are known to negatively impact reproductive functions. As such, the use of BPA in the manufacturing industry has slowly been replaced by analogs, including bisphenol S (BPS) and bisphenol F (BPF), despite limited knowledge available regarding their impact on health and their safety. The following study investigates the effects of BPA, BPS and BPF at a concentration of 0.5 μg/mL and 50 μg/mL on bovine granulosa cell apoptosis, with the ultimate goal of determining how they may impact oocyte competence and, thus, overall fertility. The underlying hypothesis is that bisphenols disrupt the granulosa cell environment surrounding the oocyte inducing excessive apoptosis via the intrinsic mitochondrial pathway. To test this hypothesis, apoptosis was measured following a time- and dose-dependent exposure to all three bisphenols by flowcytometry paired with annexin V/PI staining as well as by quantification of key genes belonging to the intrinsic apoptotic pathway both at the mRNA and protein levels. The results of this study report that BPA and BPF reduce cell viability through reduced cell counts and increased apoptosis. This increase is due, in part, to the induction of apoptotic genes of the intrinsic pathway of apoptosis. Additionally, this study also suggests that BPS may not act on the intrinsic mitochondrial apoptotic pathway in bovine granulosa cells. Overall, this study allows us to establish potential apoptotic pathways activated by bisphenols as well as compare the relative apoptotic activities of BPA to its most widespread analogs.
Collapse
Affiliation(s)
| | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Lavogina D, Visser N, Samuel K, Davey E, Björvang RD, Hassan J, Koponen J, Rantakokko P, Kiviranta H, Rinken A, Olovsson M, Salumets A, Damdimopoulou P. Endocrine disrupting chemicals interfere with decidualization of human primary endometrial stromal cells in vitro. Front Endocrinol (Lausanne) 2022; 13:903505. [PMID: 36060944 PMCID: PMC9437351 DOI: 10.3389/fendo.2022.903505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Multiple studies have shown associations between exposure to endocrine disrupting chemicals (EDCs) and reduced fertility in women. However, little is known about the target organs of chemical disruption of female fertility. Here, we focus on the hormone-sensitive uterine lining, the endometrium, as a potential target. Decidualization is the morphological and functional change that endometrial stromal cells undergo to support endometrial receptivity, which is crucial for successful implantation, placentation, and pregnancy. We investigated the effect of nine selected EDCs on primary human endometrial stromal cell decidualization in vitro. The cells were exposed to a decidualization-inducing mixture in the presence or absence of 1 μM of nine different EDCs for nine days. Extent of decidualization was assessed by measuring the activity of cAMP dependent protein kinase, Rho-associated coiled-coil containing protein kinase, and protein kinase B in lysates using photoluminescent probes, and secretion of prolactin into the media by using ELISA. Decidualization-inducing mixture upregulated activity of protein kinases and prolactin secretion in cells derived from all women. Of the tested chemicals, dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB) and perfluorooctanesulfonic acid (PFOS) significantly reduced decidualization as judged by the kinase markers and prolactin secretion. In addition, bisphenol A (BPA) reduced prolactin secretion but did not significantly affect activity of the kinases. None of the EDCs was cytotoxic, based on the assessment of total protein content or activity of the viability marker casein kinase 2 in lysates. These results indicate that EDCs commonly present in the blood circulation of reproductive-aged women can reduce decidualization of human endometrial stromal cells in vitro. Future studies should focus on detailed hazard assessment to define possible risks of EDC exposure to endometrial dysfunction and implantation failure in women.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Nadja Visser
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Eva Davey
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Richelle D. Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jasmin Hassan
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jani Koponen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Matts Olovsson
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Ferreira R, Amaral C, Correia-da-Silva G, Almada M, Borges M, Cunha SC, Fernandes JO, Teixeira N. Bisphenols A, F, S and AF trigger apoptosis and/or endoplasmic reticulum stress in human endometrial stromal cells. Toxicology 2022; 478:153282. [DOI: 10.1016/j.tox.2022.153282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
|
10
|
Vidal MS, Menon R, Yu GFB, Amosco MD. Actions of Bisphenol A on Different Feto-Maternal Compartments Contributing to Preterm Birth. Int J Mol Sci 2022; 23:ijms23052411. [PMID: 35269554 PMCID: PMC8910111 DOI: 10.3390/ijms23052411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Preterm birth remains to be one of the most prevalent obstetric complications worldwide. Since there are multiple etiological factors associated with this disease process, an integrative literature search in PubMed and Scopus databases on possible mechanism of action and effect of bisphenols on exposure on human or animal placental samples in preterm birth was conducted. From 2332 articles on initial literature search, 63 studies were included for full data extraction. Altogether, several pathways were shown to be possibly affected by bisphenols, leading to dysregulations in structural and endocrine foundation in the placenta, potential induction of senescence and failure of decidualization in the decidua, and possible propagation of inflammation in the fetal membranes. Combined, these actions may eventually counteract bisphenol-induced relaxation of the myometrium and promote contractility alongside fetal membrane weakening. In totality, these individual impairments in gestation-critical processes may lead to failure of maintenance of pregnancy, and thus effecting preterm birth.
Collapse
Affiliation(s)
- Manuel S. Vidal
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Correspondence:
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Gracia Fe B. Yu
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila 1000, Philippines;
| | - Melissa D. Amosco
- Department of Obstetrics and Gynecology, Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| |
Collapse
|
11
|
Adu-Gyamfi EA, Rosenfeld CS, Tuteja G. The impact of bisphenol a (BPA) on the placenta. Biol Reprod 2022; 106:826-834. [PMID: 35020819 DOI: 10.1093/biolre/ioac001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that is used in a wide-variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impact of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts; and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.
Collapse
Affiliation(s)
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Manzan-Martins C, Paulesu L. Impact of bisphenol A (BPA) on cells and tissues at the human materno-fetal interface. Tissue Cell 2021; 73:101662. [PMID: 34628212 DOI: 10.1016/j.tice.2021.101662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Bisphenol A (BPA) is an endocrine disruptor extensively used in the production of polycarbonate plastics and epoxy resins and a component of liquid and food containers. It is a hazard in the prenatal period because of its presence in the placenta, fetal membranes, amniotic fluid, maternal and fetal blood and its ability to cross the placenta and reach the fetus. Estimation of the risk of BPA exposure during in utero life is extremely important in order to prevent complications of pregnancy and fetal growth. This review describes in vitro models of the human materno-fetal interface. It also outlines the effects of BPA at doses indicated as "physiological", namely at the concentrations found in the general population, and at "supraphysiological" and "subphysiological" doses, i.e. above and below the physiological range. This work will help clarify the discrepancies observed in studies on the effects of BPA on human reproduction and pregnancy, and it will be useful for the choice of appropriate in vitro models for future studies aimed at identifying the potential impact of BPA on specific functional processes.
Collapse
Affiliation(s)
| | - L Paulesu
- Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|