Cardiac fibroblast sub-types in vitro reflect pathological cardiac remodeling in vivo.
Matrix Biol Plus 2022;
15:100113. [PMID:
35719864 PMCID:
PMC9198323 DOI:
10.1016/j.mbplus.2022.100113]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
A panel of 12 fibrosis related genes clearly identified heart failure (HF) patients better than measurement of the collagen-related hydroxyproline content.
A subcluster enriched for ischemic HF was recognized, but not for diabetes, obesity, or gender.
Single-cell transcriptomic analysis of in vitro differentiated mouse cardiac fibroblasts distinguished 6 subpopulations, including a contractile Acta2high precursor population, and Acta2low subpopulations with high production of extracellular matrix molecules.
The 12 gene profile identified in HF patients showed highest similarity to the fibroblast subset with the strongest expression of extracellular matrix molecules.
Major features of cardiac fibroblast differentiation in heart failure patients, in murine heart disease models, and in cell culture of primary murine cardiac fibroblast are shared.
Many heart diseases are associated with fibrosis, but it is unclear whether different types of heart disease correlate with different subtypes of activated fibroblasts and to which extent such diversity is modeled during in vitro activation of primary cardiac fibroblasts. Analyzing the expression of 82 fibrosis related genes in 65 heart failure (HF) patients, we identified a panel of 12 genes clearly distinguishing HF patients better from healthy controls than measurement of the collagen-related hydroxyproline content. A subcluster enriched in ischemic HF was recognized, but not for diabetes, high BMI, or gender. Single-cell transcriptomic analysis of in vitro activated mouse cardiac fibroblasts distinguished 6 subpopulations, including a contractile Acta2high precursor population, which was predicted by time trajectory analysis to develop into Acta2low subpopulations with high production of extracellular matrix molecules. The 12 gene profile identified in HF patients showed highest similarity to the fibroblast subset with the strongest expression of extracellular matrix molecules. Population markers identified were furthermore able to clearly cluster different disease stages in a murine model for myocardial infarct. These data suggest that major features of cardiac fibroblast activation in heart failure patients, in murine heart disease models, and in cell culture of primary murine cardiac fibroblast are shared.
Collapse