1
|
DeGroot DW, Litchfield AC, Blodgett CA, Rhodehouse BB, Hudson KP. Chain of survival for a severe exertional heat stroke casualty. J Appl Physiol (1985) 2025; 138:699-705. [PMID: 39930880 DOI: 10.1152/japplphysiol.01006.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/07/2025] [Accepted: 02/04/2025] [Indexed: 03/04/2025] Open
Abstract
Exertional heat stroke is characterized by profound central nervous system dysfunction and core (rectal) temperature typically >40°C. With prompt recognition and response, the probability of survival is excellent; however, there are limited cases with Tc >43.3°C associated with good outcomes. A 23-yr-old male soldier was conducting land navigation training and was found unresponsive by a nonmedical cadre. Emergency medical services personnel obtained a rectal temperature of 44.3°C, which is the highest-ever body core temperature recorded in a patient with exertional heat stroke who survived without significant sequelae. In this case, we report numerous key decisions that contributed to the good outcome. Among those were the use of a GPS-enabled tracking device that enabled the location of the patient on the land navigation course, and the rapid recognition and response by nonmedical personnel at the point of injury. In addition, prioritizing airway, breathing, and circulation over the choice of cooling modality was important in the setting of a patient in acute respiratory distress. Finally, the careful selection of pharmaceutical agents in the Emergency Department minimized additional stress, primarily on the liver and kidneys, which were already significantly stressed. After transfer to a higher level of care due to developing heat-induced disseminated intravascular coagulation and liver failure, the patient was transferred to inpatient rehabilitation 3 wk postinjury. He recovered by 14 mo postinjury, has been medically cleared to return to active duty without limitations, and is continuing his military service.NEW & NOTEWORTHY We present the details surrounding an exertional heat stroke casualty who had the highest-ever body core temperature, 44.3°C, and survived without significant sequelae. Critical decisions that contributed to this outcome, from the point of injury through the first 24 h, are detailed. Treatment considerations included rapid cooling, maintaining the patient's airway, and hemodynamic stability, and minimizing further physiological strain due to the choice of pharmaceutical agents.
Collapse
Affiliation(s)
| | - Aaron C Litchfield
- Department of Emergency Medicine, Martin Army Community Hospital, Fort Moore, Georgia, United States
| | - Cora A Blodgett
- Department of Family Medicine, Martin Army Community Hospital, Fort Moore, Georgia, United States
| | - Blair B Rhodehouse
- Department of Family Medicine, Martin Army Community Hospital, Fort Moore, Georgia, United States
| | - Kevin P Hudson
- Department of Family Medicine, Martin Army Community Hospital, Fort Moore, Georgia, United States
| |
Collapse
|
2
|
Sambuughin N, Mungunsukh O, Klein MG, Ren M, Bedocs P, Kazman JB, Cofer K, Friel LP, McNally B, Kwon K, Haigney MC, Leggit JC, Pazgier M, Deuster PA, O’Connor FG. Genetics of Exertional Heat Illness: Revealing New Associations and Expanding Heterogeneity. Int J Mol Sci 2024; 25:11269. [PMID: 39457051 PMCID: PMC11508780 DOI: 10.3390/ijms252011269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental heat stress represents a pervasive threat to warfighters, athletes, and occupational workers, impacting performance and increasing the risk of injury. Exertional heat illness (EHI) is a spectrum of clinical disorders of increasing severity. While frequently predictable, EHI can occur unexpectedly and may be followed by long-term comorbidities, including cardiovascular dysfunction and exercise intolerance. The objective of this study was to assess genetic factors contributing to EHI. Whole-exome sequencing was performed in a cohort of 53 cases diagnosed with EHI. Rare variants in prioritized gene sets were analyzed and classified per published guidelines. Clinically significant pathogenic and potentially pathogenic variants were identified in 30.2% of the study cohort. Variants were found in 14 genes, including the previously known RYR1 and ACADVL genes and 12 other genes (CAPN3, MYH7, PFKM, RYR2, TRPM4, and genes for mitochondrial disorders) reported here for the first time in EHI. Supporting structural and functional studies of the TRPM4 p.Arg905Trp variant show that it impairs the thermal sensitivity of the TRPM4 channel, revealing a potentially new molecular mechanism contributing to EHI susceptibility. Our study demonstrates associations between EHI and genes implicated in muscle disorders, cardiomyopathies, thermoregulation, and oxidative phosphorylation deficiencies. These results expand the genetic heterogeneity of EHI and shed light on its molecular pathogenesis.
Collapse
Affiliation(s)
- Nyamkhishig Sambuughin
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Ognoon Mungunsukh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
- Department of Anatomy Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael G. Klein
- Military Cardiovascular Outcomes Research, Cardiology Division, Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.G.K.); (M.C.H.)
| | - Mingqiang Ren
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Peter Bedocs
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
- Defense & Veterans Center for Integrative Pain Management, Department of Anesthesiology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Josh B. Kazman
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Kristen Cofer
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Liam P. Friel
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Beth McNally
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Kyung Kwon
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; (O.M.); (P.B.)
| | - Mark C. Haigney
- Military Cardiovascular Outcomes Research, Cardiology Division, Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.G.K.); (M.C.H.)
| | - Jeffrey C. Leggit
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
- Department of Family Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20184, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20184, USA;
| | - Patricia A. Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
| | - Francis G. O’Connor
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (M.R.); (J.B.K.); (K.C.); (L.P.F.); (B.M.); (K.K.); (J.C.L.); (P.A.D.); (F.G.O.)
| |
Collapse
|
3
|
Ibarra Moreno CA, Silva HCA, Voermans NC, Jungbluth H, van den Bersselaar LR, Rendu J, Cieniewicz A, Hopkins PM, Riazi S. Myopathic manifestations across the adult lifespan of patients with malignant hyperthermia susceptibility: a narrative review. Br J Anaesth 2024; 133:759-767. [PMID: 39107166 PMCID: PMC11443134 DOI: 10.1016/j.bja.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/09/2024] Open
Abstract
Malignant hyperthermia susceptibility (MHS) designates individuals at risk of developing a hypermetabolic reaction triggered by halogenated anaesthetics or the depolarising neuromuscular blocking agent suxamethonium. Over the past few decades, beyond the operating theatre, myopathic manifestations impacting daily life are increasingly recognised as a prevalent phenomenon in MHS patients. At the request of the European Malignant Hyperthermia Group, we reviewed the literature and gathered the opinion of experts to define MHS-related myopathy as a distinct phenotype expressed across the adult lifespan of MHS patients unrelated to anaesthetic exposure; this serves to raise awareness about non-anaesthetic manifestations, potential therapies, and management of MHS-related myopathy. We focused on the clinical presentation, biochemical and histopathological findings, and the impact on patient well-being. The spectrum of symptoms of MHS-related myopathy encompasses muscle cramps, stiffness, myalgias, rhabdomyolysis, and weakness, with a wide age range of onset mainly during adulthood. Histopathological analysis can reveal nonspecific abnormalities suggestive of RYR1 involvement, while metabolic profiling reflects altered energy metabolism in MHS muscle. Myopathic manifestations can significantly impact patient quality of life and lead to functional limitations and socio-economic burden. While currently available therapies can provide symptomatic relief, there is a need for further research into targeted treatments addressing the underlying pathophysiology. Counselling early after establishing the MHS diagnosis, followed by multidisciplinary management involving various medical specialties, is crucial to optimise patient care.
Collapse
Affiliation(s)
- Carlos A Ibarra Moreno
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Management, University Health Network, Toronto, ON, Canada
| | - Helga C A Silva
- Malignant Hyperthermia Unit, Department of Anesthesiology, Pain and Intensive Care, Federal University of São Paulo, São Paulo, Brazil
| | - Nicol C Voermans
- Department of Neurology, Radboudumc Research Institute for Medical Innovation, Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Luuk R van den Bersselaar
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands; Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John Rendu
- Universite Grenoble Alpes, INSERM, Grenoble Institut Neurosciences, U1216, CHU Grenoble Alpes, Grenoble, France
| | - Agnieszka Cieniewicz
- Department of Anaesthesiology and Intensive Therapy, Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Philip M Hopkins
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK; Department of Anaesthesia, St James's University Hospital, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - Sheila Riazi
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology and Pain Management, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
4
|
Bouchama A, Mündel T, Laitano O. Beyond heatwaves: A nuanced view of temperature-related mortality. Temperature (Austin) 2024; 11:190-202. [PMID: 39193046 PMCID: PMC11346551 DOI: 10.1080/23328940.2024.2310459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 08/29/2024] Open
Abstract
The increasing use of time-series analyses in exploring the relationship between daily ambient temperature and mortality has expanded our understanding of the potential health impacts of climate change. However, it raises significant concerns about the risk of overinterpretation and misattribution of statistical findings. This review examines the methodological assumptions and interpretation pitfalls prevalent in current research on ambient temperature-mortality associations. Extremely elevated ambient temperatures are well-known to elicit physiological stress and increase mortality risk; however, there is no physiological evidence for lethality risk within normal ambient temperature ranges. Despite this, many studies attribute mortality risks across the entire ambient temperature-mortality curve, including normal range ambient temperatures, thus oversimplifying complex underlying physiological processes. Overinterpretation may lead to inaccurate assessments and misguided public health policies. We caution against the tendency to extrapolate results from extreme heat conditions to milder, more typical summer ambient temperature ranges. We advocate for an interdisciplinary approach that combines physiological, clinical, and epidemiological perspectives, with a strong emphasis on the role of behavioral thermoregulation and socio-economic factors to link normal range ambient temperatures with mortality. We recommend analyses centered on excess mortality during defined heatwave periods, and to incorporate heat stress biomarkers to substantiate causal claims for temperatures below heatwaves threshold. A careful approach to interpreting ambient temperature-mortality associations is crucial for formulating evidence-based public health policies.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Toby Mündel
- Department of Kinesiology, Brock University, Ontario, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Patel J, Boyer N, Mensah K, Haider S, Gibson O, Martin D, Walter E. Critical illness aspects of heatstroke: A hot topic. J Intensive Care Soc 2023; 24:206-214. [PMID: 37260431 PMCID: PMC10227888 DOI: 10.1177/17511437221148922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Heatstroke represents the most severe end of the heat illness spectrum, and is increasingly seen in those undergoing exercise or exertion ('exertional heatstroke') and those exposed to high ambient temperatures, for example in heatwaves ('classical heatstroke'). Both forms may be associated with significant thermal injury, leading to organ dysfunction and the need for admission to an intensive care unit. The process may be exacerbated by translocation of bacteria or endotoxin through an intestinal wall rendered more permeable by the hyperthermia. This narrative review highlights the importance of early diagnosis, rapid cooling and effective management of complications. It discusses the incidence, clinical features and treatment of heatstroke, and discusses the possible role of intestinal permeability and advances in follow-up and recovery of this condition. Optimum treatment involves an integrated input from prehospital, emergency department and critical care teams, along with follow-up by rehabilitation teams and, if appropriate, sports or clinical physiologists.
Collapse
Affiliation(s)
- Jesal Patel
- Department of Intensive Care, Royal
Surrey County Hospital, Guildford, UK
| | - Naomi Boyer
- Department of Intensive Care, Royal
Surrey County Hospital, Guildford, UK
| | - Kwabena Mensah
- Department of Intensive Care, Royal
Surrey County Hospital, Guildford, UK
| | - Syeda Haider
- Department of Intensive Care, Royal
Surrey County Hospital, Guildford, UK
| | - Oliver Gibson
- Division of Sport, Health and Exercise
Sciences, Brunel University, London, UK
| | - Daniel Martin
- Department of Intensive Care, Derriford
Hospital, Plymouth, UK
- Peninsula Medical School, University of
Plymouth, UK
| | - Edward Walter
- Department of Intensive Care, Royal
Surrey County Hospital, Guildford, UK
| |
Collapse
|
6
|
Abstract
Heatstroke, which is associated with circulatory failure and multiple organ dysfunction, is a heat stress-induced life-threatening condition characterized by a raised core body temperature and central nervous system dysfunction. As global warming continues to worsen, heatstroke is expected to become the leading cause of death globally. Despite the severity of this condition, the detailed mechanisms that underlie the pathogenesis of heatstroke still remain largely unknown. Z-DNA-binding protein 1 (ZBP1), also referred to as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1, was initially identified as a tumor-associated and interferon (IFN)-inducible protein, but has recently been reported to be a Z-nucleic acid sensor that regulates cell death and inflammation; however, its biological function is not yet fully understood. In the present study, a brief review of the main regulators is presented, in which the Z-nucleic acid sensor ZBP1 was identified to be a significant factor in regulating the pathological characteristics of heatstroke through ZBP1-dependent signaling. Thus, the lethal mechanism of heatstroke is revealed, in addition to a second function of ZBP1 other than as a nucleic acid sensor.
Collapse
Affiliation(s)
- Fanglin Li
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiuli He
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Dalmas-Laurent AF, Bruneau B, Roux-Buisson N. Hyperthermie maligne de l’anesthésie. ANESTHÉSIE & RÉANIMATION 2023. [DOI: 10.1016/j.anrea.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Heat-hypersensitive mutants of ryanodine receptor type 1 revealed by microscopic heating. Proc Natl Acad Sci U S A 2022; 119:e2201286119. [PMID: 35925888 PMCID: PMC9371657 DOI: 10.1073/pnas.2201286119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malignant hyperthermia (MH) is a life-threatening disorder caused largely by mutations in ryanodine receptor type 1 (RyR1) Ca2+-release channels. Enhanced Ca2+ release through the mutant channels induces excessive heat development upon exposure to volatile anesthetics. However, the mechanism by which Ca2+ release is accelerated at an elevated temperature is yet to be identified. Fluorescence Ca2+ imaging with rapid heating by an infrared laser beam provides direct evidence that heat induces Ca2+ release through the RyR1 channel. And the mutant channels are more heat sensitive than the wild-type channels, thereby causing an increase in the cytosolic Ca2+ concentration in mutant cells. It is likely that the heat-induced Ca2+ release participates as an enhancer in the cellular mechanism of MH. Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum–targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels’ heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.
Collapse
|
9
|
Riazi S, Bersselaar LRVD, Islander G, Heytens L, Snoeck MMJ, Bjorksten A, Gillies R, Dranitsaris G, Hellblom A, Treves S, Kunst G, Voermans NC, Jungbluth H. Pre-operative exercise and pyrexia as modifying factors in malignant hyperthermia (MH). Neuromuscul Disord 2022; 32:628-634. [PMID: 35738978 DOI: 10.1016/j.nmd.2022.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Malignant hyperthermia (MH) is a life-threatening reaction triggered by volatile anesthetics and succinylcholine. MH is caused by mutations in the skeletal muscle ryanodine receptor (RYR1) gene, as is rhabdomyolysis triggered by exertion and/or pyrexia. The discrepancy between the prevalence of risk genotypes and actual MH incidence remains unexplained. We investigated the role of pre-operative exercise and pyrexia as potential MH modifying factors. We included cases from 5 MH referral centers with 1) clinical features suggestive of MH, 2) confirmation of MH susceptibility on Contracture Testing (IVCT or CHCT) and/or RYR1 genetic testing, and a history of 3) strenuous exercise within 72 h and/or pyrexia >37.5 °C prior to the triggering anesthetic. Characteristics of MH-triggering agents, surgery and succinylcholine use were collected. We identified 41 cases with general anesthesias resulting in an MH event (GA+MH, n = 41) within 72 h of strenuous exercise and/or pyrexia. We also identified previous general anesthesias without MH events (GA-MH, n = 51) in the index cases and their MH susceptible relatives. Apart from pre-operative exercise and/or pyrexia, trauma and acute abdomen as surgery indications, emergency surgery and succinylcholine use were also more common with GA+MH events. These observations suggest a link between pre-operative exercise, pyrexia and MH.
Collapse
Affiliation(s)
- Sheila Riazi
- Department of Anesthesia, Malignant Hyperthermia Investigation Unit, University Health Network, University of Toronto, Toronto, Canada
| | | | | | - Luc Heytens
- Department of Anaesthesiology, University Hospital Antwerp, Edegem, Belgium
| | - Marc M J Snoeck
- Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Andrew Bjorksten
- Department of Anaesthesia and Pain Management, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Robyn Gillies
- Department of Anaesthesia and Pain Management, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - George Dranitsaris
- Department of Anesthesia, Malignant Hyperthermia Investigation Unit, University Health Network, University of Toronto, Toronto, Canada
| | - Anna Hellblom
- Department of Intensive and Perioperative Medicine, Skane University Hospital, Lund, Sweden; Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Susan Treves
- Department of Biomedicine, Basel University Hospital, Basel University, Basel, Switzerland
| | - Gudrun Kunst
- Department of Anaesthetics and Pain Therapy, King's College Hospital, London, UK; School of Cardiovascular Medicine and Sciences, King's College London, London, UK
| | - Nicol C Voermans
- Department of Neurology, Radboud University, Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Randall Centre Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, UK; Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
10
|
Referral indications for malignant hyperthermia susceptibility diagnostics in patients without adverse anesthetic events in the era of next-generation sequencing. Anesthesiology 2022; 136:940-953. [PMID: 35285867 DOI: 10.1097/aln.0000000000004199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The introduction of next-generation sequencing into the diagnosis of neuromuscular disorders has resulted in an increased number of newly identified RYR1 variants. We hypothesize that there is an increased referral of patients to Malignant Hyperthermia (MH)-units without a personal/family history of adverse anesthetic events suspected for MH. This retrospective multicenter cohort study evaluates patient referral indications and outcomes for those without a history of an adverse anesthetic event. METHODS Patients referred between 2010-2019 to the MH-units in Antwerp, Lund, Nijmegen and Toronto were included. Previously tested patients and relatives of previously tested patients were excluded. Data collection included demographics, referral details, muscle contracture and genetic testing results including REVEL scores. Referral indications were categorized into those with a personal/family history of adverse anesthetic event and other indications including exertional and/or recurrent rhabdomyolysis, RYR1 variant(s) detected in diagnostic testing in the neuromuscular clinic without a specific diagnosis (in a family member), diagnosed RYR1-related myopathy (in a family member), idiopathically elevated resting creatine kinase values, exertional heat stroke and other. RESULTS A total of 520 medical records were included, with the three most frequent referral indications; personal history of an adverse anesthetic event (211/520; 40.6%), family history of an adverse anesthetic event (115/520; 22.1%), and exertional and/or recurrent rhabdomyolysis (46/520; 8.8%). The proportion of patients referred without a personal/family history of an adverse anesthetic event increased to 43.6% (133/305) between 2015-2019 compared to 28.4% (61/215) in 2010-2014 (P<0.001). Patients with a personal/family history of an adverse anesthetic event were more frequently diagnosed as MH susceptible (133/220; 60.5%) than those without (47/120; 39.2%), (P < 0.001). Due to missing data, 180 medical records were excluded. CONCLUSION The proportion of patients referred to MH-units without a personal/family history of an adverse anesthetic event has increased, with 39.2% (47/120) diagnosed as MH susceptible.
Collapse
|
11
|
Bouchama A, Abuyassin B, Lehe C, Laitano O, Jay O, O'Connor FG, Leon LR. Classic and exertional heatstroke. Nat Rev Dis Primers 2022; 8:8. [PMID: 35115565 DOI: 10.1038/s41572-021-00334-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
In the past two decades, record-breaking heatwaves have caused an increasing number of heat-related deaths, including heatstroke, globally. Heatstroke is a heat illness characterized by the rapid rise of core body temperature above 40 °C and central nervous system dysfunction. It is categorized as classic when it results from passive exposure to extreme environmental heat and as exertional when it develops during strenuous exercise. Classic heatstroke occurs in epidemic form and contributes to 9-37% of heat-related fatalities during heatwaves. Exertional heatstroke sporadically affects predominantly young and healthy individuals. Under intensive care, mortality reaches 26.5% and 63.2% in exertional and classic heatstroke, respectively. Pathological studies disclose endothelial cell injury, inflammation, widespread thrombosis and bleeding in most organs. Survivors of heatstroke may experience long-term neurological and cardiovascular complications with a persistent risk of death. No specific therapy other than rapid cooling is available. Physiological and morphological factors contribute to the susceptibility to heatstroke. Future research should identify genetic factors that further describe individual heat illness risk and form the basis of precision-based public health response. Prioritizing research towards fundamental mechanism and diagnostic biomarker discovery is crucial for the design of specific management approaches.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia.
| | - Bisher Abuyassin
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Cynthia Lehe
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Orlando Laitano
- Department of Nutrition & Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Ollie Jay
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Francis G O'Connor
- Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| |
Collapse
|
12
|
van den Bersselaar LR, Kruijt N, Bongers CCWG, Jungbluth H, Treves S, Riazi S, Snoeck MMJ, Voermans NC. Comment on "Overlapping Mechanisms of Exertional Heat Stroke and Malignant Hyperthermia: Evidence vs. Conjecture". Sports Med 2021; 52:669-672. [PMID: 34626340 DOI: 10.1007/s40279-021-01569-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Luuk R van den Bersselaar
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands. .,Department of Neurology, Radboudumc, Nijmegen, The Netherlands.
| | - Nick Kruijt
- Department of Neurology, Radboudumc, Nijmegen, The Netherlands
| | | | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, UK.,Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, UK.,Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, UK
| | - Susan Treves
- Department of Biomedicine, Basel University Hospital, Basel, Switzerland
| | - Sheila Riazi
- Anesthesiology and Pain Medicine, Malignant Hyperthermia Investigation Unit, University Health Network, University of Toronto, Toronto, Canada
| | - Marc M J Snoeck
- Malignant Hyperthermia Investigation Unit, Department of Anesthesiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | |
Collapse
|
13
|
Beaufils M, Travard L, Rendu J, Marty I. Therapies for RYR1-Related Myopathies: Where We Stand and the Perspectives. Curr Pharm Des 2021; 28:15-25. [PMID: 34514983 DOI: 10.2174/1389201022666210910102516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
RyR1-related myopathies are a family of genetic neuromuscular diseases due to mutations in the RYR1 gene. No treatment exists for any of these myopathies today, which could change in the coming years with the growing number of studies dedicated to the pre-clinical assessment of various approaches, from pharmacological to gene therapy strategies, using the numerous models developed up to now. In addition, the first clinical trials for these rare diseases have just been completed or are being launched. We review the most recent results obtained for the treatment of RyR1-related myopathies, and, in view of the progress in therapeutic development for other myopathies, we discuss the possible future therapeutic perspectives for RyR1-related myopathies.
Collapse
Affiliation(s)
- Mathilde Beaufils
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble. France
| | - Lauriane Travard
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble. France
| | - John Rendu
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble. France
| | - Isabelle Marty
- University Grenoble Alpes, INSERM, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble. France
| |
Collapse
|
14
|
Kruijt N, den Bersselaar LV, Snoeck M, Kramers K, Riazi S, Bongers C, Treves S, Jungbluth H, Voermans N. RYR1-related rhabdomyolysis: a spectrum of hypermetabolic states due to ryanodine receptor dysfunction. Curr Pharm Des 2021; 28:2-14. [PMID: 34348614 DOI: 10.2174/1381612827666210804095300] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
Variants in the ryanodine receptor-1 gene (RYR1) have been associated with a wide range of neuromuscular conditions, including various congenital myopathies and malignant hyperthermia (MH). More recently, a number of RYR1 variants, mostly MH-associated, have been demonstrated to contribute to rhabdomyolysis events not directly related to anesthesia in otherwise healthy individuals. This review focuses on RYR1-related rhabdomyolysis, in the context of several clinical presentations (i.e., exertional rhabdomyolysis, exertional heat illnesses and MH), and conditions involving a similar hypermetabolic state, in which RYR1 variants may be present (i.e., neuroleptic malignant syndrome and serotonin syndrome). The variety of triggers that can evoke rhabdomyolysis, on their own or in combination, as well as the number of potentially associated complications, illustrates that this is a condition relevant to several medical disciplines. External triggers include but are not limited to strenuous physical exercise, especially if unaccustomed or performed under challenging environmental conditions (e.g., high ambient temperature or humidity), alcohol/illicit drugs, prescription medication (in particular statins, other anti-lipid agents, antipsychotics and antidepressants) infection, or heat. Amongst all patients presenting with rhabdomyolysis, a genetic susceptibility is present in a proportion, with RYR1 being one of the most common genetic causes. Clinical clues for a genetic susceptibility include recurrent rhabdomyolysis, creatine kinase (CK) levels above 50 times the upper limit of normal, hyperCKemia lasting for 8 weeks or longer, drug/medication doses insufficient to explain the rhabdomyolysis event, and a positive family history. For the treatment or prevention of RYR1-related rhabdomyolysis, the RYR1 antagonist dantrolene can be administered, both in the acute phase, or prophylactically in patients with a history of muscle cramps and/or recurrent rhabdomyolysis events. Aside from dantrolene, several other drugs are being investigated for their potential therapeutic use in RYR1-related disorders. These findings offer further therapeutic perspectives for humans, suggesting an important area for future research.
Collapse
Affiliation(s)
- Nick Kruijt
- Department of Neurology, Radboud University Medical Centre, Nijmegen. Netherlands
| | | | - Marc Snoeck
- Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen. Netherlands
| | - Kees Kramers
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen. Netherlands
| | - Sheila Riazi
- Department of Anesthesiology and Pain Medicine, University Health Network, University of Toronto, Toronto, ON. Canada
| | - Coen Bongers
- Department of Physiology, Radboudumc, Nijmegen. Netherlands
| | - Susan Treves
- Department of Biomedicine, University Hospital Basel. Switzerland
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London. United Kingdom
| | - Nicol Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen. Netherlands
| |
Collapse
|
15
|
Xue L, Guo W, Li L, Ou S, Zhu T, Cai L, Ding W, Wu W. Metabolomic profiling identifies a novel mechanism for heat stroke‑related acute kidney injury. Mol Med Rep 2021; 23:241. [PMID: 33655337 PMCID: PMC7893796 DOI: 10.3892/mmr.2021.11880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/20/2020] [Indexed: 11/27/2022] Open
Abstract
Heat stroke can induce a systemic inflammatory response, which may lead to multi‑organ dysfunction including acute kidney injury (AKI) and electrolyte disturbances. To investigate the pathogenesis of heat stroke (HS)‑related AKI, a mouse model of HS was induced by increasing the animal's core temperature to 41˚C. Blood samples obtained from the tail vein were used to measure plasma glucose and creatinine levels. Micro‑positron emission tomography‑computed tomography (micro‑PET/CT), H&E staining and transmission electron microscopy were conducted to examine metabolic and morphological changes in the mouse kidneys. Immunohistochemistry (IHC) and western blot analyses were performed to investigate the expression of apoptosis‑inducing factor mitochondria‑associated 2 (Aifm2), high‑mobility group box 1 (HMGB1) and receptor for advanced glycosylation end products (RAGE). Liquid chromatography‑mass spectrometry analysis was conducted to find differential metabolites and signaling pathways. The HS mouse model was built successfully, with significantly increased creatinine levels detected in the serum of HS mice compared with controls, whereas micro‑PET/CT revealed active metabolism in the whole body of HS mice. H&E and TUNEL staining revealed that the kidneys of HS mice exhibited signs of hemorrhage and apoptosis. IHC and western blotting demonstrated significant upregulation of Aifm2, HMGB1 and RAGE in response to HS. Finally, 136 differential metabolites were screened out, and enrichment of the 'biosynthesis of unsaturated fatty acids' pathway was detected. HS‑associated AKI is the renal manifestation of systemic inflammatory response syndrome, and may be triggered by the HMGB1/RAGE pathway. Metabolomics indicated increased adrenic acid, docosahexaenoic acid and eicosapentaenoic acid may serve as metabolic biomarkers for AKI in HS. The findings suggested that a correlation between the HMGB1/RAGE pathway and biosynthesis of unsaturated fatty acids may contribute to the progression of HS‑related AKI.
Collapse
Affiliation(s)
- Ling Xue
- Department of Urology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Guo
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Li
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Santao Ou
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tingting Zhu
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liang Cai
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenfei Ding
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Weihua Wu
- Department of Nephrology, Sichuan Clinical Research Center for Nephropathy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
16
|
Lafoux A, Lotteau S, Huchet C, Ducreux S. The Contractile Phenotype of Skeletal Muscle in TRPV1 Knockout Mice is Gender-Specific and Exercise-Dependent. Life (Basel) 2020; 10:E233. [PMID: 33036239 PMCID: PMC7600525 DOI: 10.3390/life10100233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/24/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) belongs to the transient receptor potential superfamily of sensory receptors. TRPV1 is a non-selective cation channel permeable to Ca2+ that is capable of detecting noxious heat temperature and acidosis. In skeletal muscles, TRPV1 operates as a reticular Ca2+-leak channel and several TRPV1 mutations have been associated with two muscle disorders: malignant hyperthermia (MH) and exertional heat stroke (EHS). Although TRPV1-/- mice have been available since the 2000s, TRPV1's role in muscle physiology has not been thoroughly studied. Therefore, the focus of this work was to characterize the contractile phenotype of skeletal muscles of TRPV1-deficient mice at rest and after four weeks of exercise. As MS and EHS have a higher incidence in men than in women, we also investigated sex-related phenotype differences. Our results indicated that, without exercise, TRPV1-/- mice improved in vivo muscle strength with an impairment of skeletal muscle in vitro twitch features, i.e., delayed contraction and relaxation. Additionally, exercise appeared detrimental to TRPV1-/- slow-twitch muscles, especially in female animals.
Collapse
Affiliation(s)
- Aude Lafoux
- Therassay Platform, CAPACITES, Université de Nantes, 44200 Nantes, France;
| | - Sabine Lotteau
- CarMeN Laboratory, University of Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France;
| | - Corinne Huchet
- Nantes Gene Therapy Laboratory, INSERM UMR 1089, Université de Nantes, 44200 Nantes, France;
| | - Sylvie Ducreux
- CarMeN Laboratory, University of Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France;
- Département de Cardiologie, Hospices Civils de Lyon, Groupement Hospitalier EST, IHU-OPERA Bâtiment B13, 69500 Bron, France
| |
Collapse
|
17
|
Bosson C, Rendu J, Pelletier L, Abriat A, Chatagnon A, Brocard J, Brocard J, Figarella-Branger D, Ducreux S, van Coppenolle F, Sagui E, Marty I, Roux-Buisson N, Faure J. Variations in the TRPV1 gene are associated to exertional heat stroke. J Sci Med Sport 2020; 23:1021-1027. [PMID: 32471784 DOI: 10.1016/j.jsams.2020.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Exertional Heat Stroke (EHS) is one of the top three causes of sudden death in athletes. Extrinsic and intrinsic risk factors have been identified but the genetic causes still remain unclear. Our aim was to identify genes responsible for EHS, which is a necessary step to identify patients at risk and prevent crises. DESIGN Genetic and functional laboratory studies METHODS: Whole Exome Sequencing (WES) was performed to search for candidate genes in a cohort of 15 soldiers who had a documented EHS episode. In silico and in vitro functional studies were performed to evaluate the effect of mutations identified in the candidate gene TRPV1. RESULTS WES led to the identification of two missense variations in the TRPV1 gene. These variations were very rare or unreported in control databases and located in critical domains of the protein. In vitro functional studies revealed that both variations induce a strong modification of the channel response to one of its natural agonist, the capsaicin. CONCLUSIONS We evidenced mutations altering channel properties of the TRPV1 gene and demonstrated that TRPV1, which is involved in thermoregulation and nociception, is a new candidate gene for EHS. Our data provide the bases to explore genetic causes and molecular mechanisms governing the pathophysiology of EHS.
Collapse
Affiliation(s)
- Caroline Bosson
- CHU Grenoble Alpes IBP, Génétique Moléculaire : Maladies Héréditaires et Oncologie, France; Grenoble Institute of Neurosciences, Inserm U1216, Cellular Myology and Pathology, Grenoble Alpes, University, Grenoble, France
| | - John Rendu
- CHU Grenoble Alpes IBP, Génétique Moléculaire : Maladies Héréditaires et Oncologie, France; Grenoble Institute of Neurosciences, Inserm U1216, Cellular Myology and Pathology, Grenoble Alpes, University, Grenoble, France
| | - Laurent Pelletier
- Grenoble Institute of Neurosciences, Inserm U1216, Cellular Myology and Pathology, Grenoble Alpes, University, Grenoble, France
| | - Amandine Abriat
- Military Hospital Laveran, Service of Neurology, Marseille, France
| | - Amandine Chatagnon
- CHU Grenoble Alpes IBP, Génétique Moléculaire : Maladies Héréditaires et Oncologie, France
| | - Julie Brocard
- Grenoble Institute of Neurosciences, Inserm U1216, Cellular Myology and Pathology, Grenoble Alpes, University, Grenoble, France
| | - Jacques Brocard
- Grenoble Institute of Neurosciences, Inserm U1216, Cellular Myology and Pathology, Grenoble Alpes, University, Grenoble, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital de la Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France; Univ Aix-Marseille I, France
| | - Sylvie Ducreux
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA, Lyon, Université Claude Bernard, Bron, France
| | - Fabien van Coppenolle
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA, Lyon, Université Claude Bernard, Bron, France
| | | | - Isabelle Marty
- Grenoble Institute of Neurosciences, Inserm U1216, Cellular Myology and Pathology, Grenoble Alpes, University, Grenoble, France
| | - Nathalie Roux-Buisson
- CHU Grenoble Alpes IBP, Génétique Moléculaire : Maladies Héréditaires et Oncologie, France; Grenoble Institute of Neurosciences, Inserm U1216, Cellular Myology and Pathology, Grenoble Alpes, University, Grenoble, France.
| | - Julien Faure
- CHU Grenoble Alpes IBP, Génétique Moléculaire : Maladies Héréditaires et Oncologie, France; Grenoble Institute of Neurosciences, Inserm U1216, Cellular Myology and Pathology, Grenoble Alpes, University, Grenoble, France
| |
Collapse
|
18
|
Abstract
Malignant hyperthermia (MH) is a rare but potentially lethal skeletal muscle disorder affecting calcium release channels. It is inherited in a mendelian autosomal dominant pattern with variable penetration. The initial clinical manifestations are of a hypermetabolic state with increased CO2 production, respiratory acidosis, increased temperature, and increased oxygen demands. If diagnosed late, MH progresses to multi-organ system failure and death. Current data suggest that mortality has improved to less than 5%. The gold standard for ruling out MH is the contracture test. Genetic testing is also available. MH-susceptible individuals should be clearly identified for safe administration of future anesthetics.
Collapse
Affiliation(s)
- Herodotos Ellinas
- Department of Anesthesiology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | - Meredith A Albrecht
- Department of Anesthesiology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| |
Collapse
|
19
|
Gardner L, Miller DM, Daly C, Gupta PK, House C, Roiz de Sa D, Shaw MA, Hopkins PM. Investigating the genetic susceptibility to exertional heat illness. J Med Genet 2020; 57:531-541. [DOI: 10.1136/jmedgenet-2019-106461] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/16/2022]
Abstract
BackgroundWe aimed to identify rare (minor allele frequency ≤1%), potentially pathogenic non-synonymous variants in a well-characterised cohort with a clinical history of exertional heat illness (EHI) or exertional rhabdomyolysis (ER). The genetic link between malignant hyperthermia (MH) and EHI was investigated due to their phenotypic overlap.MethodsThe coding regions of 38 genes relating to skeletal muscle calcium homeostasis or exercise intolerance were sequenced in 64 patients (mostly military personnel) with a history of EHI, or ER and who were phenotyped using skeletal muscle in vitro contracture tests. We assessed the pathogenicity of variants using prevalence data, in silico analysis, phenotype and segregation evidence and by review of the literature.ResultsWe found 51 non-polymorphic, potentially pathogenic variants in 20 genes in 38 patients. Our data indicate that RYR1 p.T3711M (previously shown to be likely pathogenic for MH susceptibility) and RYR1 p.I3253T are likely pathogenic for EHI. PYGM p.A193S was found in 3 patients with EHI, which is significantly greater than the control prevalence (p=0.000025). We report the second case of EHI in which a missense variant at CACNA1S p.R498 has been found. Combinations of rare variants in the same or different genes are implicated in EHI.ConclusionWe confirm a role of RYR1 in the heritability of EHI as well as ER but highlight the likely genetic heterogeneity of these complex conditions. We propose defects, or combinations of defects, in skeletal muscle calcium homeostasis, oxidative metabolism and membrane excitability are associated with EHI.
Collapse
|
20
|
Yang L, Tautz T, Zhang S, Fomina A, Liu H. The current status of malignant hyperthermia. J Biomed Res 2020; 34:75-85. [PMID: 32305961 DOI: 10.7555/jbr.33.20180089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Malignant hyperthermia (MH) is a rare and life-threatening pharmacogenetic disorder triggered by volatile anesthetics, the depolarizing muscle relaxant succinylcholine, and rarely by strenuous exercise or environmental heat. The exact prevalence of MH is unknown, and it varies from 1:16 000 in Denmark to 1:100 000 in New York State. The underlying mechanism of MH is excessive calcium release from the sarcoplasmic reticulum (SR), leading to uncontrolled skeletal muscle hyper-metabolism. Genetic mutations in ryanodine receptor type 1 ( RYR1) and CACNA1S have been identified in approximately 50% to 86% and 1% of MH-susceptible (MHS) individuals, respectively. Classic clinical symptoms of MH include hypercarbia, sinus tachycardia, masseter spasm, hyperthermia, acidosis, muscle rigidity, hyperkalemia, myoglobinuria, and etc. There are two types of testing for MH: a genetic test and a contracture test. Contracture testing is still being considered as the gold standard for MH diagnosis. Dantrolene is the only available drug approved for the treatment of MH through suppressing the calcium release from SR. Since clinical symptoms of MH are highly variable, it can be difficult to establish a diagnosis of MH. Nevertheless, prompt diagnosis and treatments are crucial to avoid a fatal outcome. Therefore, it is very important for anesthesiologists to raise awareness and understand the characteristics of MH. This review summarizes epidemiology, clinical symptoms, diagnosis and treatments of MH and any new developments.
Collapse
Affiliation(s)
- Lukun Yang
- Department of Anesthesiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China;Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Timothy Tautz
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Shulin Zhang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Alla Fomina
- Department of Physiology and Membrane Biology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| |
Collapse
|
21
|
Litman RS, Smith VI, Larach MG, Mayes L, Shukry M, Theroux MC, Watt S, Wong CA. Consensus Statement of the Malignant Hyperthermia Association of the United States on Unresolved Clinical Questions Concerning the Management of Patients With Malignant Hyperthermia. Anesth Analg 2019; 128:652-659. [DOI: 10.1213/ane.0000000000004039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Chen HS, Tong HS, Zhao Y, Hong CY, Bin JP, Su L. Differential Expression Pattern of Exosome Long Non-Coding RNAs (lncRNAs) and MicroRNAs (miRNAs) in Vascular Endothelial Cells Under Heat Stroke. Med Sci Monit 2018; 24:7965-7974. [PMID: 30399613 PMCID: PMC6234752 DOI: 10.12659/msm.909983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Heat stroke is a life-threatening disease which is characterized by a high body temperature and multiple organ dysfunction syndrome. Vascular endothelial cell injury is a main feature of heat stroke. Little is known about the long noncoding RNA (lncRNA) and microRNA (miRNA) expression alternation in endothelial cell exosomes related to heat stroke. The aim of this study was to explore the changes of lncRNAs and miRNAs expression pattern in exosomes derived from vascular endothelial cells under heat stroke temperature conditions. MATERIAL AND METHODS Cultured medium exosomes from HUVECs (human vascular endothelial cells) either under normal temperature or heat stroke temperature conditions were harvested; then RNA was extracted and the lncRNAs and miRNAs were analyzed by high throughput sequencing. RESULTS Ten significantly upregulated and 10 downregulated lncRNAs were identified in exosomes derived from heat stroke temperature treated cells. Furthermore, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were used to evaluate the signaling pathway of differential expressions in lncRNAs. Finally, the interaction network of lncRNAs-miRNAs-mRNA was uncovered using ceRNA (competing endogenous RNA) principle via prediction software. CONCLUSIONS These results indicate that the identified lncRNAs and miRNAs in endothelial cell exosomes might serve as non-invasive biomarkers for heat stroke.
Collapse
Affiliation(s)
- Huai-Sheng Chen
- Department of Critical Care Medicine, Guangzhou School of Clinical Medicine, Southern Medical University (Guangzhou General Hospital of Guangzhou Military Region), Guangzhou, Guangdong, China (mainland).,Department of Critical Care Medicine, Shenzhen People's Hospital/Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China (mainland)
| | - Hua-Sheng Tong
- Department of Critical Care Medicine, Guangzhou School of Clinical Medicine, Southern Medical University (Guangzhou General Hospital of Guangzhou Military Region), Guangzhou, Guangdong, China (mainland)
| | - Ying Zhao
- Department of Critical Care Medicine, Shenzhen People's Hospital/Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China (mainland)
| | - Cheng-Ying Hong
- Department of Critical Care Medicine, Shenzhen People's Hospital/Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China (mainland)
| | - Jian-Ping Bin
- Department of Cardiovascular Disease, Southern Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Lei Su
- Department of Critical Care Medicine, Guangzhou School of Clinical Medicine, Southern Medical University (Guangzhou General Hospital of Guangzhou Military Region), Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
23
|
Isackson PJ, Wang J, Zia M, Spurgeon P, Levesque A, Bard J, James S, Nowak N, Lee TK, Vladutiu GD. RYR1 and CACNA1S genetic variants identified with statin-associated muscle symptoms. Pharmacogenomics 2018; 19:1235-1249. [PMID: 30325262 PMCID: PMC6563124 DOI: 10.2217/pgs-2018-0106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
AIM To examine the genetic differences between subjects with statin-associated muscle symptoms and statin-tolerant controls. MATERIALS & METHODS Next-generation sequencing was used to characterize the exomes of 76 subjects with severe statin-associated muscle symptoms and 50 statin-tolerant controls. RESULTS 12 probably pathogenic variants were found within the RYR1 and CACNA1S genes in 16% of cases with severe statin-induced myopathy representing a fourfold increase over variants found in statin-tolerant controls. Subjects with probably pathogenic RYR1 or CACNA1S variants had plasma CK 5X to more than 400X the upper limit of normal in addition to having muscle symptoms. CONCLUSIONS Genetic variants within the RYR1 and CACNA1S genes are likely to be a major contributor to the susceptibility to statin-associated muscle symptoms.
Collapse
Affiliation(s)
- Paul J Isackson
- Department of Pediatrics, State University of New York at Buffalo, NY 14203, USA
| | - Jianxin Wang
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Mohammad Zia
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Paul Spurgeon
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Adrian Levesque
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Jonathan Bard
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Smitha James
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Norma Nowak
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Tae Keun Lee
- Department of Pediatrics, State University of New York at Buffalo, NY 14203, USA
| | - Georgirene D Vladutiu
- Department of Pediatrics, State University of New York at Buffalo, NY 14203, USA
- Departments of Neurology & Pathology & Anatomical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
24
|
Abstract
During the complex series of events leading to muscle contraction, the initial electric signal coming from motor neurons is transformed into an increase in calcium concentration that triggers sliding of myofibrils. This process, referred to as excitation-contraction coupling, is reliant upon the calcium-release complex, which is restricted spatially to a sub-compartment of muscle cells ("the triad") and regulated precisely. Any dysfunction in the calcium-release complex leads to muscle impairment and myopathy. Various causes can lead to alterations in excitation-contraction coupling and to muscle diseases. The latter are reviewed and classified into four categories: (i) mutation in a protein of the calcium-release complex; (ii) alteration in triad structure; (iii) modification of regulation of channels; (iv) modification in calcium stores within the muscle. Current knowledge of the pathophysiologic mechanisms in each category is described and discussed.
Collapse
Affiliation(s)
- Isabelle Marty
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,INSERM, U1216, F-38000 Grenoble, France
| | - Julien Fauré
- University Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,INSERM, U1216, F-38000 Grenoble, France.,CHU de Grenoble, F-38000 Grenoble, France
| |
Collapse
|
25
|
Abstract
This review identifies disease states associated with malignant hyperthermia susceptibility based on genotypic and phenotypic findings, and a framework is established for clinicians to identify a potentially malignant hyperthermia–susceptible patient.
Collapse
|
26
|
Abstract
This article reviews advancements in the genetics of malignant hyperthermia, new technologies and approaches for its diagnosis, and the existing limitations of genetic testing for malignant hyperthermia. It also reviews the various RYR1-related disorders and phenotypes, such as myopathies, exertional rhabdomyolysis, and bleeding disorders, and examines the connection between these disorders and malignant hyperthermia.
Collapse
|
27
|
Anandan C, Cipriani MA, Laughlin RS, Niu Z, Milone M. Rhabdomyolysis and fluctuating asymptomatic hyperCKemia associated with CACNA1S variant. Eur J Neurol 2017; 25:417-419. [PMID: 29193480 DOI: 10.1111/ene.13528] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE CACNA1S encodes Cav 1.1, a voltage sensor for muscle excitation-contraction coupling, which activates the ryanodine receptor 1 (RYR1) leading to calcium release from the sarcoplasmic reticulum. CACNA1S mutations cause hypokalemic periodic paralysis, malignant hyperthermia and congenital myopathy. RYR1 mutations result in congenital myopathy, malignant hyperthermia and rhabdomyolysis. METHODS The aim was to describe a novel phenotype associated with a CACNA1S variant at a site previously linked to hypokalemic periodic paralysis. RESULTS The patient presented with fluctuating asymptomatic creatine kinase elevation after an episode of rhabdomyolysis but has no history of periodic paralysis. His muscle biopsy showed core-like structures occurring mainly in type 2 fibers. He carries a novel Cav 1.1 variant (p.Arg528Leu) affecting a highly conserved amino acid. Different mutations at the same location cause hypokalemic periodic paralysis. CONCLUSION This case underscores the similarity between the phenotypes caused by mutations in two functionally linked proteins, RYR1 and Cav 1.1.
Collapse
Affiliation(s)
- C Anandan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - M A Cipriani
- Department of Family Medicine, Mayo Clinic, Rochester, MN, USA
| | - R S Laughlin
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Z Niu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - M Milone
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Kraeva N, Sapa A, Dowling JJ, Riazi S. Malignant hyperthermia susceptibility in patients with exertional rhabdomyolysis: a retrospective cohort study and updated systematic review. Can J Anaesth 2017; 64:736-743. [DOI: 10.1007/s12630-017-0865-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 03/13/2017] [Indexed: 01/24/2023] Open
|
29
|
Leppig KA, Thiese HA, Carrel D, Crosslin DR, Dorschner MO, Gordon AS, Hartzler A, Ralston J, Scrol A, Larson EB, Jarvik GP. Building a family network from genetic testing. Mol Genet Genomic Med 2016; 5:122-129. [PMID: 28361098 PMCID: PMC5370219 DOI: 10.1002/mgg3.259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022] Open
Abstract
Background Genetic testing has multigenerational and familial repercussions. However, the “trickle‐down effect” of providing genetic counseling and testing to family members at risk after an initial identification of a pathogenic variant in a medically actionable gene has been poorly understood. Methods Three probands were identified during the pharmacogenetics research phase of eMERGEII (electronic MEdical Record and Genomics, phase II) to have variants in genes associated with autosomal dominant adult‐onset disorders determined to be actionable by the American College of Medical Genetics (ACMG). Two of the three probands had variants that were classified as pathogenic and the third proband had a variant ultimately classified of uncertain significance, but of concern due to the proband's own phenotype. All probands had additional family members at risk for inheriting the variant. Two of the three probands had family members who received their medical care from the same health care system, Group Health Cooperative (GHC). It was recommended that the proband contact their family members at risk to be referred to genetic counseling for consideration of genetic testing. Results The two probands with pathogenic variants contacted some of their family members at risk. Individuals contacted included children and adult grandchildren, particularly if they received their medical care at GHC. To the best of our knowledge, siblings and more distant relatives at risk were not informed by the proband of their genetic risk. Conclusions Establishing a family network is essential to disseminate knowledge of genetic risk. These three initial cases describe our experience of contacting eMERGE participants with identified variants, providing the probands with appropriate genetic counseling and care coordination, and recommendations for contacting family members at risk. Greater challenges were observed for coordinating genetics care for family members and extending the family network to include other relatives at risk.
Collapse
Affiliation(s)
- Kathleen A Leppig
- Genetic ServicesGroup Health CooperativeSeattleWA98112USA; Department of PathologyUniversity of WashingtonSeattleWA98195USA
| | - Heidi A Thiese
- Genetic Services Group Health Cooperative Seattle WA 98112 USA
| | - David Carrel
- Group Health Research Institute Group Health Cooperative Seattle WA 98101 USA
| | - David R Crosslin
- Department of Biomedical Informatics and Medical Education University of Washington Seattle WA 98195 USA
| | | | - Adam S Gordon
- Department of Medicine (Medical Genetics) and Genomic Sciences University of Washington Seattle WA 98195 USA
| | - Andrea Hartzler
- Group Health Research Institute Group Health Cooperative Seattle WA 98101 USA
| | - James Ralston
- Group Health Research Institute Group Health Cooperative Seattle WA 98101 USA
| | - Aaron Scrol
- Group Health Research Institute Group Health Cooperative Seattle WA 98101 USA
| | - Eric B Larson
- Group Health Research Institute Group Health Cooperative Seattle WA 98101 USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics) and Genomic Sciences University of Washington Seattle WA 98195 USA
| |
Collapse
|