1
|
Lucocq J, Pandanaboyana S. Pancreatic cancer arising in intraductal papillary mucinous neoplasms (IPMN): emerging data warrants further research. Br J Surg 2024; 111:znae238. [PMID: 39352709 PMCID: PMC11443967 DOI: 10.1093/bjs/znae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Affiliation(s)
- James Lucocq
- Department of Hepatopancreatobiliary Surgery, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | | |
Collapse
|
2
|
Rodler S, Ganjavi C, De Backer P, Magoulianitis V, Ramacciotti LS, De Castro Abreu AL, Gill IS, Cacciamani GE. Generative artificial intelligence in surgery. Surgery 2024; 175:1496-1502. [PMID: 38582732 DOI: 10.1016/j.surg.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 04/08/2024]
Abstract
Generative artificial intelligence is able to collect, extract, digest, and generate information in an understandable way for humans. As the first surgical applications of generative artificial intelligence are applied, this perspective paper aims to provide a comprehensive overview of current applications and future perspectives for the application of generative artificial intelligence in surgery, from preoperative planning to training. Generative artificial intelligence can be used before surgery for planning and decision support by extracting patient information and providing patients with information and simulation regarding the procedure. Intraoperatively, generative artificial intelligence can document data that is normally not captured as intraoperative adverse events or provide information to help decision-making. Postoperatively, GAIs can help with patient discharge and follow-up. The ability to provide real-time feedback and store it for later review is an important capability of GAIs. GAI applications are emerging as highly specialized, task-specific tools for tasks such as data extraction, synthesis, presentation, and communication within the realm of surgery. GAIs have the potential to play a pivotal role in facilitating interaction between surgeons and artificial intelligence.
Collapse
Affiliation(s)
- Severin Rodler
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA; Department of Urology, University Hospital of LMU Munich, Germany; Young Academic Working Group in Urologic Technology of the European Association of Urology, Arnhem, The Netherlands
| | - Conner Ganjavi
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA
| | - Pieter De Backer
- Young Academic Working Group in Urologic Technology of the European Association of Urology, Arnhem, The Netherlands; Department of Urology, Onze-Lieve-Vrouwziekenhuis Hospital, Aalst, Belgium; ORSI Academy, Ghent, Belgium
| | - Vasileios Magoulianitis
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Lorenzo Storino Ramacciotti
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA
| | - Andre Luis De Castro Abreu
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA
| | - Inderbir S Gill
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA
| | - Giovanni E Cacciamani
- USC Institute of Urology and Catherine and Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Artificial Intelligence Center at USC Urology, USC Institute of Urology, University of Southern California, Los Angeles, CA; Young Academic Working Group in Urologic Technology of the European Association of Urology, Arnhem, The Netherlands.
| |
Collapse
|
3
|
Krishna S, Abdelbaki A, Hart PA, Machicado JD. Endoscopic Ultrasound-Guided Needle-Based Confocal Endomicroscopy as a Diagnostic Imaging Biomarker for Intraductal Papillary Mucinous Neoplasms. Cancers (Basel) 2024; 16:1238. [PMID: 38539568 PMCID: PMC10969577 DOI: 10.3390/cancers16061238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 11/11/2024] Open
Abstract
Pancreatic cancer is on track to become the second leading cause of cancer-related deaths by 2030, yet there is a lack of accurate diagnostic tests for early detection. Intraductal papillary mucinous neoplasms (IPMNs) are precursors to pancreatic cancer and are increasingly being detected. Despite the development and refinement of multiple guidelines, diagnosing high-grade dysplasia or cancer in IPMNs using clinical, radiologic, endosonographic, and cyst fluid features still falls short in terms of accuracy, leading to both under- and overtreatment. EUS-guided needle-based confocal laser endomicroscopy (nCLE) is a novel technology that allows real-time optical biopsies of pancreatic cystic lesions. Emerging data has demonstrated that EUS-nCLE can diagnose and risk stratify IPMNs more accurately than conventional diagnostic tools. Implementing EUS-nCLE in clinical practice can potentially improve early diagnosis of pancreatic cancer, reduce unnecessary surgeries of IPMNs with low-grade dysplasia, and advance the field of digital pathomics. In this review, we summarize the current evidence that supports using EUS-nCLE as a diagnostic imaging biomarker for diagnosing IPMNs and for risk stratifying their degree of neoplasia. Moreover, we will present emerging data on the role of adding artificial intelligence (AI) algorithms to nCLE and integrating novel fluid biomarkers into nCLE.
Collapse
Affiliation(s)
- Shreyas Krishna
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (S.K.); (A.A.)
| | - Ahmed Abdelbaki
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (S.K.); (A.A.)
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (S.K.); (A.A.)
| | - Jorge D. Machicado
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|