1
|
Mittal A, Singh Dhanota DP, Saggar K, Singh G, Ahluwalia A. Role of Interictal Arterial Spin Labeling Magnetic Resonance Perfusion in Mesial Temporal Lobe Epilepsy. Ann Indian Acad Neurol 2021; 24:495-500. [PMID: 34728940 PMCID: PMC8513983 DOI: 10.4103/aian.aian_1274_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 11/18/2022] Open
Abstract
Context: Electrophysiological and hemodynamic data can be integrated to accurately identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptogenic zone. Aims: 1. To evaluate usefulness of ASL for detecting interictal temporal hypoperfusion to localize the epileptogenic zone in patients of drug resistant mesial temporal lobe epilepsy (MTLE). 2. Correlation of localization of epileptogenic zone on ASL MR perfusion with structural MRI and EEG. Methods and Materials: 30 patients with MTLE and10 age and gender matched normal controls were studied. All patients underwent ictal video EEG monitoring non-invasively, MR imaging with epilepsy protocol and pseudocontinuous ASL (PCASL) perfusion study. Relative CBF (rCBF) values in bilateral mesial temporal lobes were measured utilizing quantitative analysis of perfusion images. A perfusion asymmetry index (AI) was calculated for each region. Results: In patients, ipsilateral mesial temporal rCBF was significantly decreased compared with contralateral mesial temporal rCBF (p = 0.021). Mesial temporal blood flow was more asymmetric in patients than in normal control participants (p = 0.000). Clear perfusion asymmetry on PCASL-MRI was identified despite normal structural-MRI in 5 cases, agreeing with EEG laterality. Conclusions: Pseudo-continuous ASL offers a promising approach to detect interictal hypoperfusion in TLE and as a clinical alternative to SPECT and PET due to non-invasiveness and easy accessibility. Incorporation of ASL into routine pre-surgical evaluation protocols can help to localize epileptogenic zone in surgical candidates.
Collapse
Affiliation(s)
- Ashima Mittal
- Department of Radiodiagnosis and Imaging, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Devinder Pal Singh Dhanota
- Department of Radiodiagnosis and Imaging, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Kavita Saggar
- Department of Radiodiagnosis and Imaging, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Archana Ahluwalia
- Department of Radiodiagnosis and Imaging, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| |
Collapse
|
2
|
An S, Bartolomei F, Guye M, Jirsa V. Optimization of surgical intervention outside the epileptogenic zone in the Virtual Epileptic Patient (VEP). PLoS Comput Biol 2019; 15:e1007051. [PMID: 31242177 PMCID: PMC6594587 DOI: 10.1371/journal.pcbi.1007051] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/17/2019] [Indexed: 01/18/2023] Open
Abstract
Studies to improve the efficacy of epilepsy surgery have focused on better refining the localization of the epileptogenic zone (EZ) with the aim of effectively resecting it. However, in a considerable number of patients, EZs are distributed across multiple brain regions and may involve eloquent areas that cannot be removed due to the risk of neurological complications. There is a clear need for developing alternative approaches to induce seizure relief, but minimal impact on normal brain functions. Here, we develop a personalized in-silico network approach, that suggests effective and safe surgical interventions for each patient. Based on the clinically identified EZ, we employ modularity analysis to identify target brain regions and fiber tracts involved in seizure propagation. We then construct and simulate a patient-specific brain network model comprising phenomenological neural mass models at the nodes, and patient-specific structural brain connectivity using the neuroinformatics platform The Virtual Brain (TVB), in order to evaluate effectiveness and safety of the target zones (TZs). In particular, we assess safety via electrical stimulation for pre- and post-surgical condition to quantify the impact on the signal transmission properties of the network. We demonstrate the existence of a large repertoire of efficient surgical interventions resulting in reduction of degree of seizure spread, but only a small subset of them proves safe. The identification of novel surgical interventions through modularity analysis and brain network simulations may provide exciting solutions to the treatment of inoperable epilepsies. We propose a personalized in-silico surgical approach able to suggest effective and safe surgical options for each epilepsy patient. In particular, we focus on deriving effective alternative methods for those cases where EZs are inoperable because of issues related with neurological complications. Based on modularity analysis using structural brain connectivity from each patient, TZs that would be considered as surgical sites are obtained. The acquired TZs are evaluated by personalized brain network simulations in terms of effectiveness and safety. Through the feedback approach combining modularity analysis and brain network simulations, the optimized TZ options that minimize seizure propagation while not affecting normal brain functions are obtained. Our study has a great importance in that it demonstrates the possibility of computational neuroscience field being able to construct a paradigm for personalized medicine by deriving innovative surgical options suitable for each patient and predicting the surgical outcomes.
Collapse
Affiliation(s)
- Sora An
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
- * E-mail:
| |
Collapse
|
3
|
History of surgery for temporal lobe epilepsy. Epilepsy Behav 2017; 70:57-60. [PMID: 28410466 DOI: 10.1016/j.yebeh.2017.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 11/20/2022]
Abstract
The history of epilepsy and its treatment goes back to ancient times when it included medicinal herbs, lifestyle modifications, and even surgery. Trepanation is considered the oldest surgical procedure for the treatment of epilepsy. The first series of temporal lobectomies for the treatment of drug-resistant epilepsy were reported by Penfield and Flanigin (1950). During the years since then, neuroimaging and other technologies have had remarkable and revolutionary progress. This progress has resulted in tremendous advancements in understanding the underlying causes and pathophysiology of epilepsies. With the help of these technologies and advancements, we may now offer surgery as a safer therapeutic option to more patients who are suffering from drug-resistant temporal lobe epilepsy. However, the degree of improvement in surgery outcome has not been proportionate to the technological progress.
Collapse
|
4
|
Parekh MB, Gurjarpadhye AA, Manoukian MAC, Dubnika A, Rajadas J, Inayathullah M. Recent Developments in Diffusion Tensor Imaging of Brain. ACTA ACUST UNITED AC 2015; 1:1-12. [PMID: 27077135 DOI: 10.17140/roj-1-101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Magnetic resonance imaging (MRI) has come to be known as a unique radiological imaging modality because of its ability to perform tomographic imaging of body without the use of any harmful ionizing radiation. The radiologists use MRI to gain insight into the anatomy of organs, including the brain, while biomedical researchers explore the modality to gain better understanding of the brain structure and function. However, due to limited resolution and contrast, the conventional MRI fails to show the brain microstructure. Diffusion tensor imaging (DTI) harnesses the power of conventional MRI to deduce the diffusion dynamics of water molecules within the tissue and indirectly create a three-dimensional sketch of the brain anatomy. DTI enables visualization of brain tissue microstructure, which is extremely helpful in understanding various neuropathologies and neurodegenerative disorders. In this review, we briefly discuss the background and operating principles of DTI, followed by current trends in DTI applications for biomedical and clinical investigation of various brain diseases and disorders.
Collapse
Affiliation(s)
- Mansi Bharat Parekh
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, USA; Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | - Abhijit Achyut Gurjarpadhye
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, USA; Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Martin A C Manoukian
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, USA; University of California Davis School of Medicine, Sacramento, California, USA
| | - Arita Dubnika
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, USA; Riga Technical University, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre, Riga, Latvia
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, USA; Cardiovascular Pharmacology, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Mohammed Inayathullah
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Palo Alto, California, USA; Department of Radiology, Stanford University School of Medicine, Stanford, California, USA; Cardiovascular Pharmacology, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Patient-specific detection of cerebral blood flow alterations as assessed by arterial spin labeling in drug-resistant epileptic patients. PLoS One 2015; 10:e0123975. [PMID: 25946055 PMCID: PMC4422723 DOI: 10.1371/journal.pone.0123975] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/24/2015] [Indexed: 11/19/2022] Open
Abstract
Electrophysiological and hemodynamic data can be integrated to accurately and precisely identify the generators of abnormal electrical activity in drug-resistant focal epilepsy. Arterial Spin Labeling (ASL), a magnetic resonance imaging (MRI) technique for quantitative noninvasive measurement of cerebral blood flow (CBF), can provide a direct measure of variations in cerebral perfusion associated with the epileptic focus. In this study, we aimed to confirm the ASL diagnostic value in the identification of the epileptogenic zone, as compared to electrical source imaging (ESI) results, and to apply a template-based approach to depict statistically significant CBF alterations. Standard video-electroencephalography (EEG), high-density EEG, and ASL were performed to identify clinical seizure semiology and noninvasively localize the epileptic focus in 12 drug-resistant focal epilepsy patients. The same ASL protocol was applied to a control group of 17 healthy volunteers from which a normal perfusion template was constructed using a mixed-effect approach. CBF maps of each patient were then statistically compared to the reference template to identify perfusion alterations. Significant hypo- and hyperperfused areas were identified in all cases, showing good agreement between ASL and ESI results. Interictal hypoperfusion was observed at the site of the seizure in 10/12 patients and early postictal hyperperfusion in 2/12. The epileptic focus was correctly identified within the surgical resection margins in the 5 patients who underwent lobectomy, all of which had good postsurgical outcomes. The combined use of ESI and ASL can aid in the noninvasive evaluation of drug-resistant epileptic patients.
Collapse
|
6
|
Storti SF, Boscolo Galazzo I, Del Felice A, Pizzini FB, Arcaro C, Formaggio E, Mai R, Manganotti P. Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage 2014; 102 Pt 1:49-59. [DOI: 10.1016/j.neuroimage.2013.06.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/03/2013] [Accepted: 06/10/2013] [Indexed: 11/16/2022] Open
|
7
|
Najm IM, Tassi L, Sarnat HB, Holthausen H, Russo GL. Epilepsies associated with focal cortical dysplasias (FCDs). Acta Neuropathol 2014; 128:5-19. [PMID: 24916270 DOI: 10.1007/s00401-014-1304-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 11/24/2022]
Abstract
Focal cortical dysplasias (FCDs) are increasingly recognized as one of the most common causes of pharmaco-resistant epilepsies. FCDs were recently divided into various clinico-pathological subtypes due to distinct imaging, electrophysiological, and outcome characteristics. In this review, we will overview the international consensus classification of FCDs in light of more recently reported clinical, electrical, imaging and functional observations, and will also address areas of ongoing debate. In addition, we will summarize our current knowledge on pathobiology and epileptogenicity of FCDs as well as its underlying molecular and cellular mechanisms. The clinical (electroencephalographic, imaging, and functional) characteristics of major FCD subtypes and their implications on the presurgical evaluation and surgical management will be discussed in light of studies describing these characteristics and postoperative seizure outcomes in patients with medically intractable focal epilepsy due to histopathologically confirmed FCDs.
Collapse
Affiliation(s)
- Imad M Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | |
Collapse
|
8
|
Ruescher J, Iljina O, Altenmüller DM, Aertsen A, Schulze-Bonhage A, Ball T. Somatotopic mapping of natural upper- and lower-extremity movements and speech production with high gamma electrocorticography. Neuroimage 2013; 81:164-177. [PMID: 23643922 DOI: 10.1016/j.neuroimage.2013.04.102] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 04/02/2013] [Accepted: 04/23/2013] [Indexed: 11/27/2022] Open
|
9
|
Shrestha R, Li K, Wang W, Lian HP, Wang MD. Electrocorticography with direct cortical stimulation for a left temporal glioma with intractable epilepsy. ACTA ACUST UNITED AC 2012; 27:54-6. [PMID: 22734216 DOI: 10.1016/s1001-9294(12)60024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Resha Shrestha
- Department of Neurosurgery, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | | | | | | | | |
Collapse
|
10
|
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique that has grown rapidly in popularity over the past decade. It is already prevalent in psychology, cognitive and basic neuroscience research and is being used increasingly as a tool for clinical decision-making in epilepsy. It has been used to determine language location and laterality in patients, sometimes eliminating the need for invasive tests. fMRI can been used pre-surgically to guide resection margins, preserving eloquent cortex. Other fMRI paradigms assessing memory, visual and somatosensory systems have limited clinical applications currently, but show great promise. Simultaneous recording of electroencephalogram (EEG) and fMRI has also provided insights into the networks underlying seizure generation and is increasingly being used in epilepsy centres. In this review, we present some of the current clinical applications for fMRI in the pre-surgical assessment of epilepsy patients, and examine a number of new techniques that may soon become clinically relevant.
Collapse
|
11
|
Beisteiner R, Drabeck K, Foki T, Geissler A, Gartus A, Lehner-Baumgartner E, Baumgartner C. Does clinical memory fMRI provide a comprehensive map of medial temporal lobe structures? Exp Neurol 2008; 213:154-62. [PMID: 18590730 DOI: 10.1016/j.expneurol.2008.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
Abstract
Successful clinical application of fMRI tasks requires reliable knowledge about the brain structures mapped by the task. With memory fMRI, diverging evidence exists concerning the location of major signal sources as well as hippocampal contributions. To clarify these issues, we investigated a frequently applied memory test (home town walking) in 33 patients with unilateral medial temporal lobe pathology, comparing healthy and diseased hemispheres. We focused on a detailed investigation of individual fMRI maps on non-transformed high-resolution functional images. Results show a clear dominance of activations around the collateral sulcus, corresponding to parahippocampal and entorhinal cortex activities. Hippocampus activity was absent in the vast majority of patients. The diseased hemispheres showed lower activation than the healthy hemispheres. We conclude that (1) the investigated memory test may be successfully applied for evaluation of the parahippocampal cortex, (2) the hippocampus is not reliably mapped by the task, and (3) the methods described for investigation of individual high-resolution functional images allow generation of application profiles for clinical fMRI tasks.
Collapse
Affiliation(s)
- Roland Beisteiner
- Study Group Clinical fMRI, MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
12
|
Mathiak K, Fallgatter AJ. Combining Magnetoencephalography and Functional Magnetic Resonance Imaging. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 68:121-48. [PMID: 16443012 DOI: 10.1016/s0074-7742(05)68005-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Klaus Mathiak
- Department of Psychiatry, RWTH Aachen University D-52074 Aachen, Germany
| | | |
Collapse
|
13
|
Hamandi K, Salek-Haddadi A, Fish DR, Lemieux L. EEG/Functional MRI in Epilepsy: The Queen Square Experience. J Clin Neurophysiol 2004; 21:241-8. [PMID: 15509913 DOI: 10.1097/00004691-200407000-00002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The recording of EEG during functional MRI scanning (EEG/fMRI) has opened up new dimensions in brain research. The simultaneous recording of EEG activity and its temparospatial haemodynamic correlates is a powerful tool in the non-invasive mapping of normal and pathological brain function. The technological constraints imposed by having a conductor (the EEG) within the magnetic environment of the MRI scanner have been sufficiently overcome for high quality EEG recording during MRI. The initial applications of EEG/fMRI were in the study of epileptiform discharges in epilepsy. This has been rapidly followed by studies of normal EEG rhythms and evoked response in healthy subjects. The ability to map brain areas involved in the generation of epileptiform discharges recorded on the surface EEG has been shown using EEG/fMRI in patients with epilepsy. This has potential clinical applications in providing additional localizing information in the pre-surgical workup of epilepsy patients and in gaining a greater understanding of the neurobiology of interictal epileptiform discharges and epileptic seizures. In this review we address the issues in recording EEG during fMRI and review the application of EEG/fMRI in the study of patients with epilepsy at our centre.
Collapse
Affiliation(s)
- Khalid Hamandi
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, London, United Kingdom
| | | | | | | |
Collapse
|
14
|
Abstract
Advances in understanding of both the causes and consequences of epilepsy have been paralleled by a number of recent reports and clinical guidelines highlighting the complexities involved in both diagnosing and treating epilepsy. We review recent developments, including comments on the evolution of clinical guidelines, anti-epileptic drugs, epilepsy surgery and new treatment approaches in development. Epilepsy genetics and emerging evidence on mechanisms of drug resistance in epilepsy will also be discussed. Issues with respect to pregnancy and epilepsy are considered, together with more recently identified dilemmas including bone health in epilepsy and whether seizures themselves cause brain damage. Imaging in epilepsy has recently been reviewed elsewhere, and will not be discussed.
Collapse
Affiliation(s)
- Andrew R C Kelso
- Epilepsy Group, Centre for Clinical Neurosciences, St George's University of London, UK
| | | |
Collapse
|