1
|
Madrazo I, Kopyov O, Ávila-Rodríguez MA, Ostrosky F, Carrasco H, Kopyov A, Avendaño-Estrada A, Jiménez F, Magallón E, Zamorano C, González G, Valenzuela T, Carrillo R, Palma F, Rivera R, Franco-Bourland RE, Guízar-Sahagún G. Transplantation of Human Neural Progenitor Cells (NPC) into Putamina of Parkinsonian Patients: A Case Series Study, Safety and Efficacy Four Years after Surgery. Cell Transplant 2018; 28:269-285. [PMID: 30574805 PMCID: PMC6425108 DOI: 10.1177/0963689718820271] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with Parkinson’s disease (PD) suffer from motor and mental disturbances due to degeneration of dopaminergic and non-dopaminergic neuronal systems. Although they provide temporary symptom relief, current treatments fail to control motor and non-motor alterations or to arrest disease progression. Aiming to explore safety and possible motor and neuropsychological benefits of a novel strategy to improve the PD condition, a case series study was designed for brain grafting of human neural progenitor cells (NPCs) to a group of eight patients with moderate PD. A NPC line, expressing Oct-4 and Sox-2, was manufactured and characterized. Using stereotactic surgery, NPC suspensions were bilaterally injected into patients’ dorsal putamina. Cyclosporine A was given for 10 days prior to surgery and continued for 1 month thereafter. Neurological, neuropsychological, and brain imaging evaluations were performed pre-operatively, 1, 2, and 4 years post-surgery. Seven of eight patients have completed 4-year follow-up. The procedure proved to be safe, with no immune responses against the transplant, and no adverse effects. One year after cell grafting, all but one of the seven patients completing the study showed various degrees of motor improvement, and five of them showed better response to medication. PET imaging showed a trend toward enhanced midbrain dopaminergic activity. By their 4-year evaluation, improvements somewhat decreased but remained better than at baseline. Neuropsychological changes were minor, if at all. The intervention appears to be safe. At 4 years post-transplantation we report that undifferentiated NPCs can be delivered safely by stereotaxis to both putamina of patients with PD without causing adverse effects. In 6/7 patients in OFF condition improvement in UPDRS III was observed. PET functional scans suggest enhanced putaminal dopaminergic neurotransmission that could correlate with improved motor function, and better response to L-DOPA. Patients’ neuropsychological scores were unaffected by grafting. Trial Registration: Fetal derived stem cells for Parkinson’s disease https://doi.org/10.1186/ISRCTN39104513Reg#ISRCTN39104513
Collapse
Affiliation(s)
- I Madrazo
- 1 Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - O Kopyov
- 2 Celavie Biosciences LLC, Oxnard, CA, USA
| | - M A Ávila-Rodríguez
- 3 Unidad Radiofarmacia-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - F Ostrosky
- 4 Facultad de Psicología, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - H Carrasco
- 5 Hospital Central Militar, Mexico City, Mexico
| | - A Kopyov
- 2 Celavie Biosciences LLC, Oxnard, CA, USA
| | - A Avendaño-Estrada
- 3 Unidad Radiofarmacia-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - F Jiménez
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - E Magallón
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - C Zamorano
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - G González
- 4 Facultad de Psicología, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - T Valenzuela
- 6 Hospital Angeles Pedregal, Mexico City, Mexico.,7 Neuroscience Center, Hospital Angeles Pedregal, Mexico City, Mexico
| | - R Carrillo
- 6 Hospital Angeles Pedregal, Mexico City, Mexico
| | - F Palma
- 6 Hospital Angeles Pedregal, Mexico City, Mexico
| | - R Rivera
- 6 Hospital Angeles Pedregal, Mexico City, Mexico
| | - R E Franco-Bourland
- 8 Department of Biochemistry, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - G Guízar-Sahagún
- 9 Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
2
|
de Natale ER, Wilson H, Pagano G, Politis M. Imaging Transplantation in Movement Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:213-263. [PMID: 30473196 DOI: 10.1016/bs.irn.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell replacement therapy with graft transplantation has been tested as a disease-modifying treatment in neurodegenerative diseases characterized by the damage of a predominant cell type, such as substantia nigra dopaminergic neurons in Parkinson's disease (PD) or striatal medium spiny projection neurons in Huntington's disease (HD). The results of these trials are mixed with success in preclinical and pilot open-label trials, which were not consistently reproduced in randomized controlled trials. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) molecular imaging and functional magnetic resonance imaging allow the graft survival, and its relationship with the host tissues to be studied in vivo. In PD, PET with [18F]DOPA showed that graft survival does not necessarily correlate with the clinical improvement and PD patients with worse outcome had lower binding in the ventral striatum and a high serotonin ([11C]DASB PET) to dopamine ([18F]DOPA PET) ratio in the grafted neurons. In HD, PET with [11C]PK11195 showed the graft survival and the clinical responses may be related to the reactive activation of the host inflammatory/immune system. Findings from these studies have been used to refine study protocols and patient selection in current clinical trials, which includes identifying suitable candidates for transplantation using imaging markers and employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
Affiliation(s)
- Edoardo Rosario de Natale
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
3
|
Abstract
Purpose of Review The purpose of this review was to review the imaging, particularly positron emission tomography (PET), findings in neurorestoration studies in movement disorders, with specific focus on neural transplantation in Parkinson’s disease (PD) and Huntington’s disease (HD). Recent Findings PET findings in PD transplantation studies have shown that graft survival as reflected by increases in dopaminergic PET markers does not necessarily correlate with clinical improvement. PD patients with more denervated ventral striatum and more imbalanced serotonin-to-dopamine ratio in the grafted neurons tended to have worse outcome. In HD transplantation studies, variable graft survival and clinical responses may be related to host inflammatory/immune responses to the grafts. Summary Information gleaned from imaging findings in previous neural transplantation studies has been used to refine study protocol and patient selection in future trials. This includes identifying suitable candidates for transplantation using imaging markers, employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
|
4
|
Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I. Cell Therapy for Parkinson's Disease. Cell Transplant 2017; 26:1551-1559. [PMID: 29113472 PMCID: PMC5680961 DOI: 10.1177/0963689717735411] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Cell therapy for Parkinson's disease (PD) began in 1979 with the transplantation of fetal rat dopamine-containing neurons that improved motor abnormalities in the PD rat model with good survival of grafts and axonal outgrowth. Thirty years have passed since the 2 clinical trials using cell transplantation for PD patients were first reported. Recently, cell therapy is expected to develop as a realistic treatment option for PD patients owing to the advancement of biotechnology represented by pluripotent stem cells. Medication using levodopa, surgery including deep brain stimulation, and rehabilitation have all been established as current therapeutic strategies. Strong therapeutic effects have been demonstrated by these treatment methods, but they have been unable to stop the progression of the disease. Fortunately, cell therapy might be a key for true neurorestoration. This review article describes the historical development of cell therapy for PD, the current status of cell therapy, and the future direction of this treatment method.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Masahiro Kameda
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Tatsuya Sasaki
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Naoki Tajiri
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
- Department of Psychology, Graduate School of Psychology, Kibi International University, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Graduate School of Medicine, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Peng S, Ma Y, Flores J, Cornfeldt M, Mitrovic B, Eidelberg D, Doudet DJ. Modulation of Abnormal Metabolic Brain Networks by Experimental Therapies in a Nonhuman Primate Model of Parkinson Disease: An Application to Human Retinal Pigment Epithelial Cell Implantation. J Nucl Med 2016; 57:1591-1598. [PMID: 27056614 DOI: 10.2967/jnumed.115.161513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/07/2016] [Indexed: 01/30/2023] Open
Abstract
Abnormal covariance pattern of regional metabolism associated with Parkinson disease (PD) is modulated by dopaminergic pharmacotherapy. Using high-resolution 18F-FDG PET and network analysis, we previously derived and validated a parkinsonism-related metabolic pattern (PRP) in nonhuman primate models of PD. It is currently not known whether this network is modulated by experimental therapeutics. In this study, we examined changes in network activity by striatal implantation of human levodopa-producing retinal pigment epithelial (hRPE) cells in parkinsonian macaques and evaluated the reproducibility of network activity in a small test-retest study. METHODS 18F-FDG PET scans were acquired in 8 healthy macaques and 8 macaques with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced bilateral nigrostriatal dopaminergic lesions after unilateral putaminal implantation of hRPE cells or sham surgery. PRP activity was measured prospectively in all animals and in a subset of test-retest animals using a network quantification approach. Network activity and regional metabolic values were compared on a hemispheric basis between animal groups and treatment conditions. RESULTS All individual macaques showed clinical improvement after hRPE cell implantation compared with the sham surgery. PRP activity was elevated in the untreated MPTP hemispheres relative to those of the normal controls (P < 0.00005) but was reduced (P < 0.05) in the hRPE-implanted hemispheres. The modulation observed in network activity was supported by concurrent local and remote changes in regional glucose metabolism. PRP activity remained unchanged in the untreated MPTP hemispheres versus the sham-operated hemispheres. PRP activity was also stable (P ≥ 0.29) and correlated (R2 ≥ 0.926; P < 0.00005) in the test-retest hemispheres. These findings were highly reproducible across several PRP topographies generated in multiple cohorts of parkinsonian and healthy macaques. CONCLUSION We have demonstrated long-term therapeutic effects of hRPE cell implantation in nonhuman primate models of PD. The implantation of such levodopa-producing cells can concurrently decrease the elevated metabolic network activity in parkinsonian brains on an individual basis. These results parallel the analogous findings reported in patients with PD undergoing levodopa therapy and other symptomatic interventions. With further validation in large samples, 18F-FDG PET imaging with network analysis may provide a viable biomarker for assessing treatment response in animal models of PD after experimental therapies.
Collapse
Affiliation(s)
- Shichun Peng
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York, New York
| | - Yilong Ma
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York, New York
| | - Joseph Flores
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - David Eidelberg
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, New York, New York
| | - Doris J Doudet
- Department of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Collier TJ, O'Malley J, Rademacher DJ, Stancati JA, Sisson KA, Sortwell CE, Paumier KL, Gebremedhin KG, Steece-Collier K. Interrogating the aged striatum: robust survival of grafted dopamine neurons in aging rats produces inferior behavioral recovery and evidence of impaired integration. Neurobiol Dis 2015; 77:191-203. [PMID: 25771169 PMCID: PMC4402284 DOI: 10.1016/j.nbd.2015.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/13/2023] Open
Abstract
Advanced age is the primary risk factor for Parkinson's disease (PD). In PD patients and rodent models of PD, advanced age is associated with inferior symptomatic benefit following intrastriatal grafting of embryonic dopamine (DA) neurons, a pattern believed to result from decreased survival and reinnervation provided by grafted neurons in the aged host. To help understand the capacity of the aged, parkinsonian striatum to be remodeled with new DA terminals, we used a grafting model and examined whether increasing the number of grafted DA neurons in aged rats would translate to enhanced behavioral recovery. Young (3months), middle-aged (15months), and aged (22months) parkinsonian rats were grafted with proportionately increasing numbers of embryonic ventral mesencephalic (VM) cells to evaluate whether the limitations of the graft environment in subjects of advancing age can be offset by increased numbers of transplanted neurons. Despite robust survival of grafted neurons in aged rats, reinnervation of striatal neurons remained inferior and amelioration of levodopa-induced dyskinesias (LID) was delayed or absent. This study demonstrates that: 1) counter to previous evidence, under certain conditions the aged striatum can support robust survival of grafted DA neurons; and 2) unknown factors associated with the aged striatum result in inferior integration of graft and host, and continue to present obstacles to full therapeutic efficacy of DA cell-based therapy in this model of aging.
Collapse
Affiliation(s)
- Timothy J Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Jennifer O'Malley
- Cincinnati Children's Hospital Medical Center, Division of Child Neurology, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - David J Rademacher
- Lake Forest College, Department of Psychology, 555 N Sheridan Rd, Lake Forest, IL 60045, USA
| | - Jennifer A Stancati
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Kellie A Sisson
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Caryl E Sortwell
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Katrina L Paumier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Kibrom G Gebremedhin
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
7
|
Yasuhara T, Kameda M, Agari T, Date I. Regenerative medicine for Parkinson's disease. Neurol Med Chir (Tokyo) 2015; 55:113-23. [PMID: 25746305 PMCID: PMC4533405 DOI: 10.2176/nmc.ra.2014-0264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regenerative medicine for Parkinson’s disease (PD) is expected to develop dramatically with the advancement of biotechnology as represented by induced pluripotent stem cells. Existing therapeutic strategy for PD consists of medication using L-DOPA, surgery such as deep brain stimulation and rehabilitation. Current treatment cannot stop the progression of the disease, although there is definite therapeutic effect. True neurorestoration is strongly desired by regenerative medicine. This review article describes the historical development of regenerative medicine for PD, with a focus on fetal nigral cell transplantation and glial cell line-derived neurotrophic factor infusion. Subsequently, the current status of regenerative medicine for PD in terms of cell therapy and gene therapy are reviewed. In the end, the future direction to realize regenerative medicine for PD is discussed.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine
| | | | | | | |
Collapse
|
8
|
The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease. PLoS One 2015; 10:e0117391. [PMID: 25693197 PMCID: PMC4332861 DOI: 10.1371/journal.pone.0117391] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/21/2014] [Indexed: 01/28/2023] Open
Abstract
The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring dopamine neurons in Parkinson's disease.
Collapse
|
9
|
Fraix V, Castrioto A, Moro E, Krack P. Trattamento chirurgico della malattia di Parkinson. Neurologia 2015. [DOI: 10.1016/s1634-7072(14)69825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Abstract
This article discusses the current use of PET imaging in the evaluation of dopamine function in Parkinson disease (PD). The article reviews the major radioligands targeting dopaminergic systems in patients with parkinsonian disorders. The primary objective is to show the novel clinical applications of molecular imaging in the diagnosis and assessment of motor and nonmotor symptoms in PD.
Collapse
|
11
|
Nolan YM, Sullivan AM, Toulouse A. Parkinson's disease in the nuclear age of neuroinflammation. Trends Mol Med 2013; 19:187-96. [PMID: 23318001 DOI: 10.1016/j.molmed.2012.12.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Chronic neuroinflammation is associated with the pathophysiology of Parkinson's disease, a movement disorder characterised by deterioration of the nigrostriatal system of the brain. Recent studies have yielded important insights into the regulation of inflammation by nuclear receptors, a superfamily of ligand-activated transcription factors. Certain nuclear receptors are also emerging as regulators of neurodegeneration, including the degeneration of dopaminergic neurons in Parkinson's disease, and the importance of transcriptional control in this process is becoming increasingly apparent. Here, we discuss the role of Nurr1, peroxisome proliferator-activated receptors (PPARs), retinoic acid receptors, and glucocorticoid receptors in neuroinflammatory processes that contribute to dopaminergic neuronal degeneration. We examine current evidence providing insight into the potential of these important players as therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|
12
|
Qin XY, Akanuma H, Wei F, Nagano R, Zeng Q, Imanishi S, Ohsako S, Yoshinaga J, Yonemoto J, Tanokura M, Sone H. Effect of low-dose thalidomide on dopaminergic neuronal differentiation of human neural progenitor cells: a combined study of metabolomics and morphological analysis. Neurotoxicology 2012; 33:1375-80. [PMID: 22981892 DOI: 10.1016/j.neuro.2012.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 02/04/2023]
Abstract
Thalidomide is increasingly used in anticancer and anti-inflammation therapies. However, it is known for its teratogenicity and ability to induce peripheral neuropathy, although the mechanisms underlying its neurological effect in humans are unclear. In this study, we investigated the effect of thalidomide on the metabolism and neuronal differentiation of human neural progenitor cells. We found that levels of tyrosine, phenylalanine, methionine and glutathione, which are involved in dopamine and methionine metabolism, were decreased following thalidomide treatment. Morphological analysis revealed that treatment with 100 nM thalidomide, which is much lower than clinical doses, significantly decreased the number of dopaminergic (tyrosine hydroxylase-positive) neurons, compared with control cells. Our results suggest that these adverse neurological effects of thalidomide should be taken into consideration prior to its use for the treatment of neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Xian-Yang Qin
- Health Risk Research Section, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8606, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|