1
|
Carrabba M, Jover E, Fagnano M, Thomas AC, Avolio E, Richardson T, Carter B, Vozzi G, Perriman AW, Madeddu P. Fabrication of New Hybrid Scaffolds for in vivo Perivascular Application to Treat Limb Ischemia. Front Cardiovasc Med 2020; 7:598890. [PMID: 33330660 PMCID: PMC7711071 DOI: 10.3389/fcvm.2020.598890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
Cell therapies are emerging as a new therapeutic frontier for the treatment of ischemic disease. However, femoral occlusions can be challenging environments for effective therapeutic cell delivery. In this study, cell-engineered hybrid scaffolds are implanted around the occluded femoral artery and the therapeutic benefit through the formation of new collateral arteries is investigated. First, it is reported the fabrication of different hybrid “hard-soft” 3D channel-shaped scaffolds comprising either poly(ε-caprolactone) (PCL) or polylactic-co-glycolic acid (PLGA) and electro-spun of gelatin (GL) nanofibers. Both PCL-GL and PLGA-GL scaffolds show anisotropic characteristics in mechanical tests and PLGA displays a greater rigidity and faster degradability in wet conditions. The resulting constructs are engineered using human adventitial pericytes (APCs) and both exhibit excellent biocompatibility. The 3D environment also induces expressional changes in APCs, conferring a more pronounced proangiogenic secretory profile. Bioprinting of alginate-pluronic gel (AG/PL), containing APCs and endothelial cells, completes the hybrid scaffold providing accurate spatial organization of the delivered cells. The scaffolds implantation around the mice occluded femoral artery shows that bioengineered PLGA hybrid scaffold outperforms the PCL counterpart accelerating limb blood flow recovery through the formation arterioles with diameters >50 μm, demonstrating the therapeutic potential in stimulating reparative angiogenesis.
Collapse
Affiliation(s)
- Michele Carrabba
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Eva Jover
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Marco Fagnano
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Anita C Thomas
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Thomas Richardson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Ben Carter
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Giovanni Vozzi
- Research Centre 'E. Piaggio', University of Pisa, Pisa, Italy.,Dipartimento di Ingegneria dell'informazione, University of Pisa, Pisa, Italy
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Jover E, Fagnano M, Angelini G, Madeddu P. Cell Sources for Tissue Engineering Strategies to Treat Calcific Valve Disease. Front Cardiovasc Med 2018; 5:155. [PMID: 30460245 PMCID: PMC6232262 DOI: 10.3389/fcvm.2018.00155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification is an independent risk factor and an established predictor of adverse cardiovascular events. Despite concomitant factors leading to atherosclerosis and heart valve disease (VHD), the latter has been identified as an independent pathological entity. Calcific aortic valve stenosis is the most common form of VDH resulting of either congenital malformations or senile “degeneration.” About 2% of the population over 65 years is affected by aortic valve stenosis which represents a major cause of morbidity and mortality in the elderly. A multifactorial, complex and active heterotopic bone-like formation process, including extracellular matrix remodeling, osteogenesis and angiogenesis, drives heart valve “degeneration” and calcification, finally causing left ventricle outflow obstruction. Surgical heart valve replacement is the current therapeutic option for those patients diagnosed with severe VHD representing more than 20% of all cardiac surgeries nowadays. Tissue Engineering of Heart Valves (TEHV) is emerging as a valuable alternative for definitive treatment of VHD and promises to overcome either the chronic oral anticoagulation or the time-dependent deterioration and reintervention of current mechanical or biological prosthesis, respectively. Among the plethora of approaches and stablished techniques for TEHV, utilization of different cell sources may confer of additional properties, desirable and not, which need to be considered before moving from the bench to the bedside. This review aims to provide a critical appraisal of current knowledge about calcific VHD and to discuss the pros and cons of the main cell sources tested in studies addressing in vitro TEHV.
Collapse
Affiliation(s)
- Eva Jover
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Marco Fagnano
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Gianni Angelini
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
3
|
Jiang C, Gong F. MiR-148a promotes myocardial differentiation of human bone mesenchymal stromal cells via DNA methyltransferase 1 (DNMT1). Cell Biol Int 2018; 42:913-922. [PMID: 28656724 DOI: 10.1002/cbin.10813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 06/24/2017] [Indexed: 11/08/2022]
Abstract
MicroRNAs have potential to modulate the differentiation of stem cells. In previous study, we found that miR-148a was up-regulated in myocardial differentiation of human bone mesenchymal stromal cells (hBMSCs) induced by 5'-azacytidine. However, the role of miR-148a in regulating this process still remains unclear. In this study, we investigated the function and molecular mechanism of miR-148a in myocardial differentiation of hBMSCs. We found that miR-148a was significantly increased while DNA methyltransferase 1 (DNMT1) was significantly decreased in myocardial differentiation of hBMSCs. Then, the dual luciferase reporter assays method indicated that DNMT1 was the direct target of miR-148a. In addition, we showed that up-regulation of miR-148a could enhance myocardial differentiation of hBMSCs, while down-regulation of miR-148a could inhibit myocardial differentiation process. Moreover, knockdown of DNMT1 could block the role of miR-148a in promoting myocardial differentiation of hBMSCs. Finally, MiR-148a acted on methylation level of GATA-4 and knockdown of DNMT1 could block this function. Therefore, our results indicate that miR-148a plays a vital role in regulating myocardial differentiation of hBMSCs by targeting DNMT1.
Collapse
Affiliation(s)
- Changke Jiang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, 439 Xuanhua Road, Yongchuan, Chongqing, 402160, China
| | - Fang Gong
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, 439 Xuanhua Road, Yongchuan, Chongqing, 402160, China
| |
Collapse
|