1
|
Semework M, Laeke T, Aklilu AT, Tadele A, Ashagre Y, Teklewold P, Kolias AG, Hutchinson P, Balcha A, Yohannes D, Hassen GW. Extended tests for evaluating post-traumatic brain injury deficits in resource-limited settings: methods and pilot study data. Front Neurol 2024; 15:1397625. [PMID: 38933324 PMCID: PMC11199529 DOI: 10.3389/fneur.2024.1397625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Traumatic brain injury (TBI) is one of the leading causes of all injury-related deaths and disabilities in the world, especially in low to middle-income countries (LMICs) which also suffer from lower levels of funding for all levels of the health care system for patients suffering from TBI. These patients do not generally get comprehensive diagnostic workup, monitoring, or treatment, and return to work too quickly, often with undiagnosed post-traumatic deficits which in turn can lead to subsequent incidents of physical harm. Methods Here, we share methods and results from our research project to establish innovative, simple, and scientifically based practices that dramatically leverage technology and validated testing strategies to identify post-TBI deficits quickly and accurately, to circumvent economic realities on the ground in LMICs. We utilized paper tests such as the Montreal cognitive assessment (MoCA), line-bisection, and Bell's test. Furthermore, we combined modifications of neuroscience computer tasks to aid in assessing peripheral vision, memory, and analytical accuracies. Data from seventy-one subjects (51 patients and 20 controls, 15 females and 56 males) from 4 hospitals in Ethiopia are presented. The traumatic brain injury group consists of 17 mild, 28 moderate, and 8 severe patients (based on the initial Glasgow Comma Score). Controls are age and education-matched subjects (no known history of TBI, brain lesions, or spatial neglect symptoms). Results We found these neurophysiological methods can: 1) be implemented in LMICs and 2) test impairments caused by TBI, which generally affect brain processing speed, memory, and both executive and cognitive controls. Discussion The main findings indicate that these examinations can identify several deficits, especially the MoCA test. These tests show great promise to assist in the evaluation of TBI patients and support the establishment of dedicated rehabilitation centers. Our next steps will be expansion of the cohort size and application of the tests to other settings.
Collapse
Affiliation(s)
- Mulugeta Semework
- Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, United States
| | - Tsegazeab Laeke
- Neurosurgery Unit, Black Lion Specialized Hospital, Department of Neurosurgery, College of Health Science Addis Ababa University, Addis Ababa, Ethiopia
| | - Abenezer Tirsit Aklilu
- Neurosurgery Unit, Black Lion Specialized Hospital, Department of Neurosurgery, College of Health Science Addis Ababa University, Addis Ababa, Ethiopia
| | - Abraham Tadele
- Department of Neurosurgery, AABET Hospital, St Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | | | - Peter Teklewold
- Department of Neurosurgery, AABET Hospital, St Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | | | | | | | - Dagnachew Yohannes
- Hawassa University Comprehensive Specialized Hospital and College of Medicine, Hawassa, Ethiopia
| | - Getaw Worku Hassen
- Department of Emergency Medicine, Metropolitan Hospital Center, New York Medical College, New York, NY, United States
| |
Collapse
|
2
|
Veale R, Takahashi M. Pathways for Naturalistic Looking Behavior in Primate II. Superior Colliculus Integrates Parallel Top-down and Bottom-up Inputs. Neuroscience 2024; 545:86-110. [PMID: 38484836 DOI: 10.1016/j.neuroscience.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Volitional signals for gaze control are provided by multiple parallel pathways converging on the midbrain superior colliculus (SC), whose deeper layers output to the brainstem gaze circuits. In the first of two papers (Takahashi and Veale, 2023), we described the properties of gaze behavior of several species under both laboratory and natural conditions, as well as the current understanding of the brainstem and spinal cord circuits implementing gaze control in primate. In this paper, we review the parallel pathways by which sensory and task information reaches SC and how these sensory and task signals interact within SC's multilayered structure. This includes both bottom-up (world statistics) signals mediated by sensory cortex, association cortex, and subcortical structures, as well as top-down (goal and task) influences which arrive via either direct excitatory pathways from cerebral cortex, or via indirect basal ganglia relays resulting in inhibition or dis-inhibition as appropriate for alternative behaviors. Models of attention such as saliency maps serve as convenient frameworks to organize our understanding of both the separate computations of each neural pathway, as well as the interaction between the multiple parallel pathways influencing gaze. While the spatial interactions between gaze's neural pathways are relatively well understood, the temporal interactions between and within pathways will be an important area of future study, requiring both improved technical methods for measurement and improvement of our understanding of how temporal dynamics results in the observed spatiotemporal allocation of gaze.
Collapse
Affiliation(s)
- Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
3
|
Zaino D, Serchi V, Giannini F, Pucci B, Veneri G, Pretegiani E, Rosini F, Monti L, Rufa A. Different saccadic profile in bulbar versus spinal-onset amyotrophic lateral sclerosis. Brain 2023; 146:266-277. [PMID: 35136957 DOI: 10.1093/brain/awac050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023] Open
Abstract
Two clinical phenotypes characterize the onset of amyotrophic lateral sclerosis (ALS): the spinal variant, with symptoms beginning in the limbs, and the bulbar variant, affecting firstly speech and swallowing. The two variants show some distinct features in the histopathology, localization and prognosis, but to which extent they really differ clinically and pathologically remains to be clarified. Recent neuropathological and neuroimaging studies have suggested a broader spreading of the neurodegenerative process in ALS, extending beyond the motor areas, toward other cortical and deep grey matter regions, many of which are involved in visual processing and saccadic control. Indeed, a wide range of eye movement deficits have been reported in ALS, but they have never been used to distinguish the two ALS variants. Since quantifying eye movements is a very sensitive and specific method for the study of brain networks, we compared different saccadic and visual search behaviours across spinal ALS patients (n = 12), bulbar ALS patients (n = 6) and healthy control subjects (n = 13), along with cognitive and MRI measures, with the aim to define more accurately the two patients subgroups and possibly clarify a different underlying neural impairment. We found separate profiles of visually-guided saccades between spinal (short saccades) and bulbar (slow saccades) ALS, which could result from the pathologic involvement of different pathways. We suggest an early involvement of the parieto-collicular-cerebellar network in spinal ALS and the fronto-brainstem circuit in bulbar ALS. Overall, our data confirm the diagnostic value of the eye movements analysis in ALS and add new insight on the involved neural networks.
Collapse
Affiliation(s)
- Domenica Zaino
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy.,Neurology and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Valeria Serchi
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Fabio Giannini
- Centre for Motor Neuron Diseases, Neurology and Neurophysiology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Barbara Pucci
- Neurology and Neurophysiology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Giacomo Veneri
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Pretegiani
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesca Rosini
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Lucia Monti
- Unit of Neuroimaging and Neurointervention, Department of Neurological and Neurosensorial Sciences, AOUS, 53100, Siena, Italy
| | - Alessandra Rufa
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
4
|
Covariations between pupil diameter and supplementary eye field activity suggest a role in cognitive effort implementation. PLoS Biol 2022; 20:e3001654. [PMID: 35617290 PMCID: PMC9135265 DOI: 10.1371/journal.pbio.3001654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
In both human and nonhuman primates (NHP), the medial prefrontal region, defined as the supplementary eye field (SEF), can indirectly influence behavior selection through modulation of the primary selection process in the oculomotor structures. To perform this oculomotor control, SEF integrates multiple cognitive signals such as attention, memory, reward, and error. As changes in pupil responses can assess these cognitive efforts, a better understanding of the precise dynamics by which pupil diameter and medial prefrontal cortex activity interact requires thorough investigations before, during, and after changes in pupil diameter. We tested whether SEF activity is related to pupil dynamics during a mixed pro/antisaccade oculomotor task in 2 macaque monkeys. We used functional ultrasound (fUS) imaging to examine temporal changes in brain activity at the 0.1-s time scale and 0.1-mm spatial resolution concerning behavioral performance and pupil dynamics. By combining the pupil signals and real-time imaging of NHP during cognitive tasks, we were able to infer localized cerebral blood volume (CBV) responses within a restricted part of the dorsomedial prefrontal cortex, referred to as the SEF, an area in which antisaccade preparation activity is also recorded. Inversely, SEF neurovascular activity measured by fUS imaging was found to be a robust predictor of specific variations in pupil diameter over short and long-time scales. Furthermore, we directly manipulated pupil diameter and CBV in the SEF using reward modulations. These results bring a novel understanding of the physiological links between pupil and SEF, but it also raises questions about the role of anterior cingulate cortex (ACC), as CBV variations in the ACC seems to be negligible compared to CBV variations in the SEF. Ultrafast functional imaging reveals short- and long-term covariations between pupil diameter and activity in the Supplementary Eye Field (SEF) of awake behaving non-human primates, yielding a novel understanding of the physiological links between the pupil and SEF.
Collapse
|
5
|
Whybird M, Coats R, Vuister T, Harrison S, Booth S, Burke M. The role of the posterior parietal cortex on cognition: An exploratory study. Brain Res 2021; 1764:147452. [PMID: 33838128 DOI: 10.1016/j.brainres.2021.147452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) that can be used to increase (intermittent TBS) or reduce (continuous TBS) cortical excitability. The current study provides a preliminary report of the effects of iTBS and cTBS in healthy young adults, to investigate the causal role of the posterior parietal cortex (PPC) during the performance of four cognitive functions: attention, inhibition, sequence learning and working memory. A 2 × 2 repeated measures design was incorporated using hemisphere (left/right) and TBS type (iTBS/cTBS) as the independent variables. 20 participants performed the cognitive tasks both before and after TBS stimulation in 4 counterbalanced experimental sessions (left cTBS, right cTBS, left iTBS and right iTBS) spaced 1 week apart. No change in performance was identified for the attentional cueing task after TBS stimulation, however TBS applied to the left PPC decreased reaction time when inhibiting a reflexive response. The sequence learning task revealed differential effects for encoding of the sequence versus the learnt items. cTBS on the right hemisphere resulted in faster responses to learnt sequences, and iTBS on the right hemisphere reduced reaction times during the initial encoding of the sequence. The reaction times in the 2-back working memory task were increased when TBS stimulation was applied to the right hemisphere. Results reveal clear differential effects for tasks explored, and more specifically where TBS stimulation on right PPC could provide a potential for further investigation into improving oculomotor learning by inducing plasticity-like mechanisms in the brain.
Collapse
Affiliation(s)
- Marlee Whybird
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Rachel Coats
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Tessa Vuister
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Sophie Harrison
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Samantha Booth
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | - Melanie Burke
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Dash S, Peel TR, Lomber SG, Corneil BD. Impairment but not abolishment of express saccades after unilateral or bilateral inactivation of the frontal eye fields. J Neurophysiol 2020; 123:1907-1919. [PMID: 32267202 DOI: 10.1152/jn.00191.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Express saccades are a manifestation of a visual grasp reflex triggered when visual information arrives in the intermediate layers of the superior colliculus (SCi), which in turn orchestrates the lower level brainstem saccade generator to evoke a saccade with a very short latency (~100 ms or less). A prominent theory regarding express saccades generation is that they are facilitated by preparatory signals, presumably from cortical areas, which prime the SCi before the arrival of visual information. Here, we test this theory by reversibly inactivating a key cortical input to the SCi, the frontal eye fields (FEF), while monkeys perform an oculomotor task that promotes express saccades. Across three tasks with a different combination of potential target locations and unilateral or bilateral FEF inactivation, we found a spared ability for monkeys to generate express saccades, despite decreases in express saccade frequency during FEF inactivation. This result is consistent with the FEF having a facilitatory but not critical role in express saccade generation, likely because other cortical areas compensate for the loss of preparatory input to the SCi. However, we also found decreases in the accuracy and peak velocity of express saccades generated during FEF inactivation, which argues for an influence of the FEF on the saccadic burst generator even during express saccades. Overall, our results shed further light on the role of the FEF in the shortest-latency visually-guided eye movements.NEW & NOTEWORTHY Express saccades are the shortest-latency saccade. The frontal eye fields (FEF) are thought to promote express saccades by presetting the superior colliculus. Here, by reversibly inactivating the FEF either unilaterally or bilaterally via cortical cooling, we support this by showing that the FEF plays a facilitative but not critical role in express saccade generation. We also found that FEF inactivation lowered express saccade peak velocity, emphasizing a contribution of the FEF to express saccade kinematics.
Collapse
Affiliation(s)
- Suryadeep Dash
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Tyler R Peel
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Stephen G Lomber
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Brian D Corneil
- Department of Physiology & Pharmacology, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Ma L, Selvanayagam J, Ghahremani M, Hayrynen LK, Johnston KD, Everling S. Single-unit activity in marmoset posterior parietal cortex in a gap saccade task. J Neurophysiol 2020; 123:896-911. [DOI: 10.1152/jn.00614.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. The common marmoset ( Callithrix jacchus) is becoming increasingly popular as a nonhuman primate model to investigate the cortical mechanisms of saccadic control. Recently, our group demonstrated that microstimulation in the posterior parietal cortex (PPC) of marmosets elicits contralateral saccades. Here we recorded single-unit activity in the PPC of the same two marmosets using chronic microelectrode arrays while the monkeys performed a saccadic task with gap trials (target onset lagged fixation point offset by 200 ms) interleaved with step trials (fixation point disappeared when the peripheral target appeared). Both marmosets showed a gap effect, shorter saccadic reaction times (SRTs) in gap vs. step trials. On average, stronger gap-period responses across the entire neuronal population preceded shorter SRTs on trials with contralateral targets although this correlation was stronger among the 15% “gap neurons,” which responded significantly during the gap. We also found 39% “target neurons” with significant saccadic target-related responses, which were stronger in gap trials and correlated with the SRTs better than the remaining neurons. Compared with saccades with relatively long SRTs, short-SRT saccades were preceded by both stronger gap-related and target-related responses in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation. NEW & NOTEWORTHY As a primate model in systems neuroscience, the marmoset is a great complement to the macaque monkey because of its unique advantages. To identify oculomotor networks in the marmoset, we recorded from the marmoset posterior parietal cortex during a saccadic task and found single-unit activities consistent with a role in saccadic modulation. This finding supports the marmoset as a valuable model for studying oculomotor control.
Collapse
Affiliation(s)
- Liya Ma
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Janahan Selvanayagam
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Maryam Ghahremani
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Lauren K. Hayrynen
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Kevin D. Johnston
- Departments of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
- Departments of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Terao Y, Fukuda H, Sugiyama Y, Inomata-Terada S, Tokushige SI, Hamada M, Ugawa Y. Recording Horizontal Saccade Performances Accurately in Neurological Patients Using Electro-oculogram. J Vis Exp 2018. [PMID: 29608147 DOI: 10.3791/56934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Electro-oculogram (EOG) has been widely used for clinical eye movement recording, especially horizontal saccades, although the video-oculography (VOG) has largely taken the place of it nowadays due to its higher spatial accuracy. However, there are situations in which EOG has clear advantages over VOG, e.g., subjects with narrow eye clefts or having cataract lenses, and patients with movement disorders. The present article shows that if properly implemented, EOG can achieve an accuracy almost as good as VOG with substantial stability for recording, while circumventing problems associated with VOG recording. The present paper describes a practical method for recording horizontal saccades using oculomotor paradigms with high accuracy and stability by EOG in neurological patients. The necessary measures are to use an Ag-AgCl electrode with a wide plastic fringe capable of reducing noise, and to wait for sufficient light adaptation to occur. This waiting period also helps to lower the impedance between the electrodes and the skin, thereby ensuring stable signal recorded as time goes by. Furthermore, re-calibration is performed as needed during the task performance. Using this method, the experimenter can avoid drifts of signals, as well as contamination of artifacts or noise from the electromyogram and electroencephalogram, and can collect sufficient data for clinical evaluation of saccades. Thus when implemented, EOG can still be a method of high practicability that can be widely applied to neurological patients, but may be effective also for studies in normal subjects.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Cell Physiology, Kyorin University;
| | | | | | | | | | | | | |
Collapse
|
9
|
Perdziak M, Witkowska D, Gryncewicz W, Ober J. Strabismic amblyopia affects decision processes preceding saccadic response. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2017.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Oliva M, Niehorster DC, Jarodzka H, Holmqvist K. Influence of Coactors on Saccadic and Manual Responses. Iperception 2017; 8:2041669517692814. [PMID: 28321288 PMCID: PMC5347274 DOI: 10.1177/2041669517692814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two experiments were conducted to investigate the effects of coaction on saccadic and manual responses. Participants performed the experiments either in a solitary condition or in a group of coactors who performed the same tasks at the same time. In Experiment 1, participants completed a pro- and antisaccade task where they were required to make saccades towards (prosaccades) or away (antisaccades) from a peripheral visual stimulus. In Experiment 2, participants performed a visual discrimination task that required both making a saccade towards a peripheral stimulus and making a manual response in reaction to the stimulus’s orientation. The results showed that performance of stimulus-driven responses was independent of the social context, while volitionally controlled responses were delayed by the presence of coactors. These findings are in line with studies assessing the effect of attentional load on saccadic control during dual-task paradigms. In particular, antisaccades – but not prosaccades – were influenced by the type of social context. Additionally, the number of coactors present in the group had a moderating effect on both saccadic and manual responses. The results support an attentional view of social influences.
Collapse
Affiliation(s)
- Manuel Oliva
- Department of Cognitive Science, Lund University, Sweden
| | - Diederick C Niehorster
- Humanities Laboratory & Department of Psychology, Lund University, Sweden & Institute for Psychology, University of Muenster, Germany
| | - Halszka Jarodzka
- Welten Institute, Open University of the Netherlands, The Netherlands
| | - Kenneth Holmqvist
- Humanities Laboratory, Lund University, Sweden & UPSET, NWU Vaal, South Africa
| |
Collapse
|
11
|
Rizzo JR, Hudson TE, Abdou A, Lui YW, Rucker JC, Raghavan P, Landy MS. Disrupted Saccade Control in Chronic Cerebral Injury: Upper Motor Neuron-Like Disinhibition in the Ocular Motor System. Front Neurol 2017; 8:12. [PMID: 28184211 PMCID: PMC5266728 DOI: 10.3389/fneur.2017.00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/09/2017] [Indexed: 11/28/2022] Open
Abstract
Saccades rapidly direct the line of sight to targets of interest to make use of the high acuity foveal region of the retina. These fast eye movements are instrumental for scanning visual scenes, foveating targets, and, ultimately, serve to guide manual motor control, including eye-hand coordination. Cerebral injury has long been known to impair ocular motor control. Recently, it has been suggested that alterations in control may be useful as a marker for recovery. We measured eye movement control in a saccade task in subjects with chronic middle cerebral artery stroke with both cortical and substantial basal ganglia involvement and in healthy controls. Saccade latency distributions were bimodal, with an early peak at 60 ms (anticipatory saccades) and a later peak at 250 ms (regular saccades). Although the latencies corresponding to these peaks were the same in the two groups, there were clear differences in the size of the peaks. Classifying saccade latencies relative to the saccade "go signal" into anticipatory (latencies up to 80 ms), "early" (latencies between 80 and 160 ms), and "regular" types (latencies longer than 160 ms), stroke subjects displayed a disproportionate number of anticipatory saccades, whereas control subjects produced the majority of their saccades in the regular range. We suggest that this increase in the number of anticipatory saccade events may result from a disinhibition phenomenon that manifests as an impairment in the endogenous control of ocular motor events (saccades) and interleaved fixations. These preliminary findings may help shed light on the ocular motor deficits of neurodegenerative conditions, results that may be subclinical to an examiner, but clinically significant secondary to their functional implications.
Collapse
Affiliation(s)
- John-Ross Rizzo
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, USA
- Department of Neurology, New York University Langone Medical Center, New York, NY, USA
| | - Todd E. Hudson
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, USA
- Department of Neurology, New York University Langone Medical Center, New York, NY, USA
| | - Andrew Abdou
- Rutgers School of Biomedical and Health Sciences, New Brunswick, NJ, USA
| | - Yvonne W. Lui
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| | - Janet C. Rucker
- Department of Neurology, New York University Langone Medical Center, New York, NY, USA
| | - Preeti Raghavan
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, USA
| | - Michael S. Landy
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
12
|
TERAO Y, FUKUDA H, HIKOSAKA O. What do eye movements tell us about patients with neurological disorders? - An introduction to saccade recording in the clinical setting. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:772-801. [PMID: 29225306 PMCID: PMC5790757 DOI: 10.2183/pjab.93.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 06/01/2023]
Abstract
Non-invasive and readily implemented in the clinical setting, eye movement studies have been conducted extensively not only in healthy human subjects but also in patients with neurological disorders. The purpose of saccade studies is to "read out" the pathophysiology underlying neurological disorders from the saccade records, referring to known primate physiology. In the current review, we provide an overview of studies in which we attempted to elucidate the patterns of saccade abnormalities in over 250 patients with neurological disorders, including cerebellar ataxia and brainstem pathology due to neurodegenerative disorders, and what they tell about the pathophysiology of patients with neurological disorders. We also discuss how interventions, such as deep brain stimulation, affect saccade performance and provide further insights into the workings of the oculomotor system in humans. Finally, we argue that it is important to understand the functional significance and behavioral correlate of saccade abnormalities in daily life, which could require eye tracking methodologies to be performed in settings similar to daily life.
Collapse
Affiliation(s)
- Yasuo TERAO
- Department of Cell Physiology, Kyorin University, Tokyo, Japan
| | | | - Okihide HIKOSAKA
- Section of Neuronal Networks, Laboratory of Sensorimotor Research, National Eye Institute, U.S.A.
| |
Collapse
|
13
|
Tiadi A, Gérard CL, Peyre H, Bui-Quoc E, Bucci MP. Immaturity of Visual Fixations in Dyslexic Children. Front Hum Neurosci 2016; 10:58. [PMID: 26924975 PMCID: PMC4756100 DOI: 10.3389/fnhum.2016.00058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/05/2016] [Indexed: 12/27/2022] Open
Abstract
To our knowledge, behavioral studies recording visual fixations abilities in dyslexic children are scarce. The object of this article is to explore further the visual fixation ability in dyslexics compared to chronological age-matched and reading age-matched non-dyslexic children. Fifty-five dyslexic children from 7 to 14 years old, 55 chronological age-matched non-dyslexic children and 55 reading age-matched non-dyslexic children participated to this study. Eye movements from both eyes were recorded horizontally and vertically by a video-oculography system (EyeBrain(®) T2). The fixation task consisted in fixating a white-filled circle appearing in the center of the screen for 30 s. Results showed that dyslexic children produced a significantly higher number of unwanted saccades than both groups of non-dyslexic children. Moreover, the number of unwanted saccades significantly decreased with age in both groups of non-dyslexic children, but not in dyslexics. Furthermore, dyslexics made more saccades during the last 15 s of fixation period with respect to both groups of non-dyslexic children. Such poor visual fixation capability in dyslexic children could be due to impaired attention abilities, as well as to an immaturity of the cortical areas controlling the fixation system.
Collapse
Affiliation(s)
- Aimé Tiadi
- UMR 1141, Institut National de la Santé et de la Recherche Médicale - Université Paris Diderot - Paris 7, Robert Debré Hospital Paris, France
| | | | - Hugo Peyre
- Child and Adolescent Psychiatry Department, Robert Debré Hospital Paris, France
| | | | - Maria Pia Bucci
- UMR 1141, Institut National de la Santé et de la Recherche Médicale - Université Paris Diderot - Paris 7, Robert Debré Hospital Paris, France
| |
Collapse
|
14
|
Sprenger A, Weber FD, Machner B, Talamo S, Scheffelmeier S, Bethke J, Helmchen C, Gais S, Kimmig H, Born J. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior. Cereb Cortex 2015; 25:4610-8. [PMID: 26048955 PMCID: PMC4816803 DOI: 10.1093/cercor/bhv115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization.
Collapse
Affiliation(s)
- Andreas Sprenger
- Department of Neurology, University Luebeck, D-23538 Luebeck, Germany
| | - Frederik D. Weber
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Bjoern Machner
- Department of Neurology, University Luebeck, D-23538 Luebeck, Germany
| | - Silke Talamo
- Department of Neurology, University Luebeck, D-23538 Luebeck, Germany
| | | | - Judith Bethke
- Department of Neurology, University Luebeck, D-23538 Luebeck, Germany
| | | | - Steffen Gais
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Hubert Kimmig
- Department of Neurology, University Luebeck, D-23538 Luebeck, Germany
- Schwarzwald-Baar Klinikum, D-78052 Villingen-Schwenningen, Germany
- Department of Neurology, University Freiburg, D-79106 Freiburg, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology and Center for Integrative Neuroscience, University of Tuebingen, D-72076 Tuebingen, Germany
| |
Collapse
|
15
|
Jastorff J, Abdollahi RO, Fasano F, Orban GA. Seeing biological actions in 3D: An fMRI study. Hum Brain Mapp 2015; 37:203-19. [PMID: 26510637 PMCID: PMC5061089 DOI: 10.1002/hbm.23020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/09/2015] [Accepted: 10/04/2015] [Indexed: 11/11/2022] Open
Abstract
Precise kinematics or body configuration cannot be recovered from visual input without disparity information. Yet, no imaging study has investigated the role of disparity on action observation. Here, we investigated the interaction between disparity and the main cues of biological motion, kinematics and configuration, in two fMRI experiments. Stimuli were presented as point‐light figures, depicting complex action sequences lasting 21 s. We hypothesized that interactions could occur at any of the three levels of the action observation network, comprising occipitotemporal, parietal and premotor cortex, with premotor cortex being the most likely location. The main effects of kinematics and configuration confirmed that the biological motion sequences activated all three levels of the action observation network, validating our approach. The interaction between configuration and disparity activated only premotor cortex, whereas interactions between kinematics and disparity occurred at all levels of the action observation network but were strongest at the premotor level. Control experiments demonstrated that these interactions could not be accounted for by low level motion in depth, task effects, spatial attention, or eye movements, including vergence. These results underscore the role of premotor cortex in action observation, and in imitating others or responding to their actions. Hum Brain Mapp 37:203–219, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jan Jastorff
- Laboratory for Translational Neuropsychiatry, Research Group Psychiatry, Department of Neuroscience, KU Leuven, Belgium.,Laboratorium Voor Neuro-En Psychofysiologie, KU Leuven Medical School, Leuven, Belgium
| | - Rouhollah O Abdollahi
- Laboratorium Voor Neuro-En Psychofysiologie, KU Leuven Medical School, Leuven, Belgium.,Department of Neuroscience, University of Parma, Parma, Italy
| | - Fabrizio Fasano
- Department of Neuroscience, University of Parma, Parma, Italy
| | - Guy A Orban
- Department of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Terao Y, Fukuda H, Tokushuge S, Nomura Y, Hanajima R, Ugawa Y. Saccade abnormalities associated with focal cerebral lesions - How cortical and basal ganglia commands shape saccades in humans. Clin Neurophysiol 2015; 127:2953-2967. [PMID: 26475210 DOI: 10.1016/j.clinph.2015.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/11/2015] [Accepted: 07/15/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To study saccade abnormalities associated with focal cerebral lesions, including the cerebral cortex and basal ganglia (BG). METHODS We studied the latency and amplitude of reflexive and voluntary saccades in 37 patients with focal lesions of the frontal and parietal cortices and BG (caudate and putamen), and 51 age-matched controls, along with the ability to inhibit unwanted reflexive saccades. RESULTS Latencies of reflexive saccades were prolonged in patients with parietal lesions involving the parietal eye field (PEF), whereas their amplitude was decreased with parietal or putaminal lesions. In contrast, latency of voluntary saccades was prolonged and their success rate reduced with frontal lesions including the frontal eye field (FEF) or its outflow tract as well as the dorsolateral/medial prefrontal cortex, and caudate lesions, whereas their amplitude was decreased with parietal lesions. Inhibitory control of reflexive saccades was impaired with frontal, caudate and, less prominently, parietal lesions. CONCLUSIONS PEF is important in triggering reflexive saccades, also determining their amplitude. Whereas FEF and the caudate emit commands for initiating voluntary saccades, their amplitude is mainly determined by PEF. Commands not only from FEF and dorsolateral/medial prefrontal cortex but also from the caudate and PEF serve to inhibit unnecessary reflexive saccades. SIGNIFICANCE The findings suggested how cortical and BG commands shape reflexive and voluntary saccades in humans.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | - Shinnichi Tokushuge
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | - Ritsuko Hanajima
- Department of Neurology, School of Medicine, Kitasato University, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Japan
| |
Collapse
|
17
|
Shakespeare TJ, Kaski D, Yong KXX, Paterson RW, Slattery CF, Ryan NS, Schott JM, Crutch SJ. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy. Brain 2015; 138:1976-91. [PMID: 25895507 PMCID: PMC4572483 DOI: 10.1093/brain/awv103] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/17/2015] [Indexed: 12/13/2022] Open
Abstract
The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions whose frequency correlated significantly with generalized reductions in cortical thickness. Patients with both posterior cortical atrophy and typical Alzheimer's disease showed lower gain in smooth pursuit compared to controls. The current study establishes that eye movement abnormalities are near-ubiquitous in posterior cortical atrophy, and highlights multiple aspects of saccadic performance which distinguish posterior cortical atrophy from typical Alzheimer's disease. We suggest the posterior cortical atrophy oculomotor profile (e.g. exacerbation of the saccadic gap/overlap effect, preserved saccadic velocity) reflects weak input from degraded occipito-parietal spatial representations of stimulus location into a superior collicular spatial map for eye movement regulation. This may indicate greater impairment of identification of oculomotor targets rather than generation of oculomotor movements. The results highlight the critical role of spatial attention and object identification but also precise stimulus localization in explaining the complex real world perception deficits observed in posterior cortical atrophy and many other patients with dementia-related visual impairment.
Collapse
Affiliation(s)
- Timothy J Shakespeare
- 1 Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Diego Kaski
- 2 Division of Brain Sciences, Imperial College London, Charing Cross Hospital, London UK
| | - Keir X X Yong
- 1 Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Ross W Paterson
- 1 Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Catherine F Slattery
- 1 Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Natalie S Ryan
- 1 Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Jonathan M Schott
- 1 Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Sebastian J Crutch
- 1 Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| |
Collapse
|
18
|
Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. J Neurosci 2015; 34:14260-71. [PMID: 25339740 DOI: 10.1523/jneurosci.1111-14.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of upper and lower motor neurons, resulting in progressive weakness and muscle atrophy. Recent studies suggest that nondemented ALS patients can show selective cognitive impairments, predominantly executive dysfunction, but little is known about the neural basis of these impairments. Oculomotor studies in ALS have described deficits in antisaccade execution, which requires the implementation of a task set that includes inhibition of automatic responses followed by generation of a voluntary action. It has been suggested that the dorsolateral prefrontal cortex (DLPFC) contributes in this process. Thus, we investigated whether deterioration of executive functions in ALS patients, such as the ability to implement flexible behavior during the antisaccade task, is related to DLPFC dysfunction. While undergoing an fMRI scan, 12 ALS patients and 12 age-matched controls performed an antisaccade task with concurrent eye tracking. We hypothesized that DLPFC deficits would appear during the antisaccade preparation stage, when the task set is being established. ALS patients made more antisaccade direction errors and showed significant reductions in DLPFC activation. In contrast, regions, such as supplementary eye fields and frontal eye fields, showed increased activation that was anticorrelated with the number of errors. The ALS group also showed reduced saccadic latencies that correlated with increased activation across the oculomotor saccade system. These findings suggest that ALS results in deficits in the inhibition of automatic responses that are related to impaired DLPFC activation. However, they also suggest that ALS patients undergo functional changes that partially compensate the neurological impairment.
Collapse
|
19
|
Profile of Gaze Dysfunction following Cerebrovascular Accident. ISRN OPHTHALMOLOGY 2013; 2013:264604. [PMID: 24558601 PMCID: PMC3914228 DOI: 10.1155/2013/264604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/21/2013] [Indexed: 11/17/2022]
Abstract
Aim. To evaluate the profile of ocular gaze abnormalities occurring following stroke. Methods. Prospective multicentre cohort trial. Standardised referral and investigation protocol including assessment of visual acuity, ocular alignment and motility, visual field, and visual perception. Results. 915 patients recruited: mean age 69.18 years (SD 14.19). 498 patients (54%) were diagnosed with ocular motility abnormalities. 207 patients had gaze abnormalities including impaired gaze holding (46), complete gaze palsy (23), horizontal gaze palsy (16), vertical gaze palsy (17), Parinaud's syndrome (8), INO (20), one and half syndrome (3), saccadic palsy (28), and smooth pursuit palsy (46). These were isolated impairments in 50% of cases and in association with other ocular abnormalities in 50% including impaired convergence, nystagmus, and lid or pupil abnormalities. Areas of brain stroke were frequently the cerebellum, brainstem, and diencephalic areas. Strokes causing gaze dysfunction also involved cortical areas including occipital, parietal, and temporal lobes. Symptoms of diplopia and blurred vision were present in 35%. 37 patients were discharged, 29 referred, and 141 offered review appointments. 107 reviewed patients showed full recovery (4%), partial improvement (66%), and static gaze dysfunction (30%). Conclusions. Gaze dysfunction is common following stroke. Approximately one-third of patients complain of visual symptoms, two thirds show some improvement in ocular motility.
Collapse
|
20
|
Bonnet C, Hanuška J, Rusz J, Rivaud-Péchoux S, Sieger T, Majerová V, Serranová T, Gaymard B, Růžička E. Horizontal and vertical eye movement metrics: what is important? Clin Neurophysiol 2013; 124:2216-29. [PMID: 23806744 DOI: 10.1016/j.clinph.2013.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/19/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To assist other eye movement investigators in the design and analysis of their studies. METHODS We examined basic saccadic eye movements and smooth pursuit in the horizontal and vertical directions with video-oculography in a group of 145 healthy subjects between 19 and 82 years of age. RESULTS Gender and education level did not influence eye movement metrics. With age, the latency of leftward and vertical pro- and antisaccades increased (p<0.001), velocity of upward prosaccades decreased (p<0.001), gain of rightward and upward prosaccades diminished (p<0.001), and the error rate of antisaccades increased (p<0.001). Prosaccades and antisaccades were influenced by the direction of the target, resulting in a right/left and up/down asymmetry. The skewness of the saccade velocity profile was stable throughout the lifespan, and within the range of saccades analyzed in the present study, correlated with amplitude and duration only for antisaccades (p<0.001). CONCLUSIONS Some eye movement metrics must be separated by the direction of movement, others according to subject age, while others may be pooled. SIGNIFICANCE This study provides important information for new oculomotor laboratories concerning the constitution of subject groups and the analysis of eye movement metrics.
Collapse
Affiliation(s)
- Cecilia Bonnet
- Dept. of Neurology and Centre of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ptak R, Müri RM. The parietal cortex and saccade planning: lessons from human lesion studies. Front Hum Neurosci 2013; 7:254. [PMID: 23759723 PMCID: PMC3675316 DOI: 10.3389/fnhum.2013.00254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/21/2013] [Indexed: 11/13/2022] Open
Abstract
The parietal cortex is a critical interface for attention and integration of multiple sensory signals that can be used for the implementation of motor plans. Many neurons in this region exhibit strong attention-, reach-, grasp- or saccade-related activity. Here, we review human lesion studies supporting the critical role of the parietal cortex in saccade planning. Studies of patients with unilateral parietal damage and spatial neglect reveal characteristic spatially lateralized deficits of saccade programming when multiple stimuli compete for attention. However, these patients also show bilateral impairments of saccade initiation and control that are difficult to explain in the context of their lateralized deficits of visual attention. These findings are reminiscent of the deficits of oculomotor control observed in patients with Bálint's syndrome consecutive to bilateral parietal damage. We propose that some oculomotor deficits following parietal damage are compatible with a decisive role of the parietal cortex in saccade planning under conditions of sensory competition, while other deficits reflect disinhibition of low-level structures of the oculomotor network in the absence of top-down parietal modulation.
Collapse
Affiliation(s)
- Radek Ptak
- Division of Neurorehabilitation, University Hospitals GenevaGeneva, Switzerland
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of GenevaGeneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of GenevaGeneva, Switzerland
| | - René M. Müri
- Division of Cognitive and Restorative Neurology, Department of Neurology, University HospitalInselspital, Bern, Switzerland
| |
Collapse
|
22
|
Burrell JR, Carpenter RHS, Hodges JR, Kiernan MC. Early saccades in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:294-301. [PMID: 23586894 DOI: 10.3109/21678421.2013.783077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Our objective was to correlate saccadic abnormalities, including early saccades, in patients with amyotrophic lateral sclerosis (ALS) with measures of motor and functional impairment. A portable saccadometer was used to record saccades in ALS patients and control subjects. The linear approach to threshold with ergodic rate model was used to characterize saccades, including sub-populations of early saccades. Patients with established cognitive impairment or frontotemporal dementia were excluded. Limb-onset (Limb ALS) and bulbar-onset (Bulbar ALS) patient groups were compared and saccadic abnormalities were correlated with measures of motor and functional impairment. In total, 48 participants were included in the study; 24 patients with ALS (15 males, 9 females; mean age 57.0 +/- 13.9 years; mean symptom duration 22.4 +/- 16.3 months, of whom 62.5% had Limb ALS) and 24 age-matched controls. Early saccades were increased in both Limb ALS and Bulbar ALS patients, but other saccadic parameters were normal in ALS. Saccadic abnormalities did not correlate with motor or functional impairment. In conclusion, ALS patients show increased early saccades, but exhibit no significant differences across ALS phenotypes.
Collapse
|
23
|
Di Noto P, Uta S, DeSouza JFX. Eye exercises enhance accuracy and letter recognition, but not reaction time, in a modified rapid serial visual presentation task. PLoS One 2013; 8:e59244. [PMID: 23527146 PMCID: PMC3602039 DOI: 10.1371/journal.pone.0059244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 02/14/2013] [Indexed: 11/18/2022] Open
Abstract
Eye exercises have been prescribed to resolve a multitude of eye-related problems. However, studies on the efficacy of eye exercises are lacking, mainly due to the absence of simple assessment tools in the clinic. Because similar regions of the brain are responsible for eye movements and visual attention, we used a modified rapid serial visual presentation (RSVP) to assess any measurable effect of short-term eye exercise in improvements within these domains. In the present study, twenty subjects were equally divided into control and experimental groups, each of which performed a pre-training RSVP assessment where target letters, to which subjects were asked to respond to by pressing a spacebar, were serially and rapidly presented. Response time to target letters, accuracy of correctly responding to target letters, and correct identification of target letters in each of 12 sessions was measured. The experimental group then performed active eye exercises, while the control group performed a task that minimized eye movements for 18.5 minutes. A final post-training RSVP assessment was performed by both groups and response time, accuracy, and letter identification were compared between and within subject groups both pre- and post-training. Subjects who performed eye exercises were more accurate in responding to target letters separated by one distractor and in letter identification in the post-training RSVP assessment, while latency of responses were unchanged between and within groups. This suggests that eye exercises may prove useful in enhancing cognitive performance on tasks related to attention and memory over a very brief course of training, and RSVP may be a useful measure of this efficacy. Further research is needed on eye exercises to determine whether they are an effective treatment for patients with cognitive and eye-related disorders.
Collapse
Affiliation(s)
- Paula Di Noto
- Centre for Vision Research, York University, Toronto, Canada
- Neuroscience Graduate Diploma Program, York University, Toronto, Canada
- Department of Psychology, York University, Toronto, Canada
| | - Sorin Uta
- Department of Psychology, York University, Toronto, Canada
| | - Joseph F. X. DeSouza
- Centre for Vision Research, York University, Toronto, Canada
- Neuroscience Graduate Diploma Program, York University, Toronto, Canada
- Department of Psychology, York University, Toronto, Canada
- Department of Biology, York University, Toronto, Canada
- Canadian Action and Perception Network (CAPnet), Toronto, Canada
- * E-mail:
| |
Collapse
|
24
|
Abstract
Saccadic eye movements are central to primate behavior and serve to move the eyes to visual objects of interest. Express saccades, unlike regular saccades, occur with very short reaction times, a behavior necessary for speeded reactions in goal-directed behavior. Previous studies have shown that introduction of a blank interval (gap) between the fixation point offset and the saccadic target onset leads to an increase in the number of express saccades and that the superior colliculus plays a crucial role in the generation of express saccades. A longstanding hypothesis asserted that express saccades are mediated largely by a subcortical circuit, circumventing extrastriate visual cortex. An alternative "posterior pathway" hypothesis proposed the involvement of posterior parietal cortex. In the present study, using a gap saccade task, we investigated the role of nonhuman primate's lateral intraparietal cortex (LIP) in generation of express saccades. We show that roughly half of recorded LIP neurons were modulated during the gap interval. Moreover, a group of neurons with persistent activity in a memory-guided saccade task enhanced their activity during express saccades relative to that during regular saccades. After reducing the target's certainty by increasing the potential target locations, neuronal activity remained in the similar level during express saccades but markedly reduced during regular saccades that correlated with the increase of saccadic reaction time in the regular saccade. Our results suggest that area LIP is directly involved in generating saccades in express mode.
Collapse
|
25
|
Gaymard B. Cortical and sub-cortical control of saccades and clinical application. Rev Neurol (Paris) 2012; 168:734-40. [DOI: 10.1016/j.neurol.2012.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 10/27/2022]
|
26
|
Hutchison RM, Gallivan JP, Culham JC, Gati JS, Menon RS, Everling S. Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. J Neurophysiol 2012; 107:2463-74. [DOI: 10.1152/jn.00891.2011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the frontal eye field (FEF) has been identified in macaque monkeys and humans, practical constraints related to invasiveness and task demands have limited a direct cross-species comparison of its functional connectivity. In this study, we used resting-state functional MRI data collected from both awake humans and anesthetized macaque monkeys to examine and compare the functional connectivity of the FEF. A seed region analysis revealed consistent ipsilateral functional connections of the FEF with fronto-parietal cortical areas across both species. These included the intraparietal sulcus, dorsolateral prefrontal cortex, anterior cingulate cortex, and supplementary eye fields. The analysis also revealed greater lateralization of connectivity with the FEF in both hemispheres in humans than in monkeys. Cortical surface-based transformation of connectivity maps between species further corroborated the remarkably similar organization of the FEF functional connectivity. The results support an evolutionarily preserved fronto-parietal system and provide a bridge for linking data from monkey and human studies.
Collapse
Affiliation(s)
- R. Matthew Hutchison
- Graduate Program in Neuroscience and
- Department of Psychology, University of Western Ontario,
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | - Jody C. Culham
- Graduate Program in Neuroscience and
- Department of Psychology, University of Western Ontario,
| | | | - Ravi S. Menon
- Graduate Program in Neuroscience and
- Robarts Research Institute, and
| | - Stefan Everling
- Graduate Program in Neuroscience and
- Department of Psychology, University of Western Ontario,
- Robarts Research Institute, and
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
27
|
Reuter-Lorenz PA, Herter TM, Guitton D. Control of Reflexive Saccades following Hemispherectomy. J Cogn Neurosci 2011; 23:1368-78. [DOI: 10.1162/jocn.2010.21537] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Individuals who have undergone hemispherectomy for treatment of intractable epilepsy offer a rare and valuable opportunity to examine the ability of a single cortical hemisphere to control oculomotor performance. We used peripheral auditory events to trigger saccades, thereby circumventing dense postsurgical hemianopia. In an antisaccade task, patients generated numerous unintended short-latency saccades toward contralesional auditory events, indicating pronounced limitations in the ability of a single hemicortex to exert normal inhibitory control over ipsilateral (i.e., contralesional) reflexive saccade generation. Despite reflexive errors, patients retained an ability to generate correct antisaccades in both directions. The prosaccade task revealed numerous contralesional express saccades, a robust contralesional gap effect, but the absence of both effects for ipsilesional saccades. These results indicate limits to the saccadic control capabilities following hemispherectomy: A single hemicortex can mediate antisaccades in both directions, but plasticity does not extend fully to the bilateral inhibition of reflexive saccades. We posit that these effects are due to altered control dynamics that reduce the responsivity of the superior colliculus on the intact side and facilitate the release of an auditory-evoked ocular grasp reflex into the blind hemifield that the intact hemicortex has difficulty suppressing.
Collapse
Affiliation(s)
| | - Troy M. Herter
- 2Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Daniel Guitton
- 2Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Terao Y, Fukuda H, Yugeta A, Hikosaka O, Nomura Y, Segawa M, Hanajima R, Tsuji S, Ugawa Y. Initiation and inhibitory control of saccades with the progression of Parkinson's disease - changes in three major drives converging on the superior colliculus. Neuropsychologia 2011; 49:1794-806. [PMID: 21420990 PMCID: PMC11389657 DOI: 10.1016/j.neuropsychologia.2011.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
The cardinal pathophysiology of Parkinson's disease (PD) is considered to be the increase in the activities of basal ganglia (BG) output nuclei, which excessively inhibits the thalamus and superior colliculus (SC) and causes preferential impairment of internal over external movements. Here we recorded saccade performance in 66 patients with PD and 87 age-matched controls, and studied how the abnormality changed with disease progression. PD patients were impaired not only in memory guided saccades, but also in visually guided saccades, beginning in the relatively early stages of the disease. On the other hand, they were impaired in suppressing reflexive saccades (saccades to cue). All these changes deteriorated with disease progression. The frequency of reflexive saccades showed a negative correlation with the latency of visually guided saccades and Unified Parkinson's Disease Rating Scale motor subscores reflecting dopaminergic function. We suggest that three major drives converging on SC determine the saccade abnormalities in PD. The impairment in visually and memory guided saccades may be caused by the excessive inhibition of the SC due to the increased BG output and the decreased activity of the frontal cortex-BG circuit. The impaired suppression of reflexive saccades may be explained if the excessive inhibition of SC is "leaky." Changes in saccade parameters suggest that frontal cortex-BG circuit activity decreases with disease progression, whereas SC inhibition stays relatively mild in comparison throughout the course of the disease. Finally, SC disinhibition due to leaky suppression may represent functional compensation from neural structures outside BG, leading to hyper-reflexivity of saccades and milder clinical symptoms.
Collapse
Affiliation(s)
- Yasuo Terao
- Department of Neurology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Özyurt J, Greenlee MW. Neural correlates of inter- and intra-individual saccadic reaction time differences in the gap/overlap paradigm. J Neurophysiol 2011; 105:2438-47. [DOI: 10.1152/jn.00660.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the neural correlates of contextually differing control mechanisms in saccade initiation, we studied 18 subjects who performed two saccade paradigms in a pseudo-random order, while their eye movements were recorded in the MRI scanner (1.5 T). In the gap task the fixation point was extinguished 200 ms before target onset, and in the overlap task the fixation point vanished 500 ms after target onset. Subjects were asked to maintain stable fixation in the fixation period and to quickly saccade to peripherally presented targets. Inter-individual activation differences were assessed using regression analyses at the second level, with mean saccadic reaction time (SRT) of subjects as a covariate. To identify brain regions varying with trial-by-trial changes in SRTs, we included SRTs as a parametric modulation regressor in the general linear model. All analyses were regions of interest based and were performed separately for the gap and overlap conditions. For the gap paradigm, we did not obtain activation in regions previously shown to be involved in preparatory processes with much longer gap periods. Interestingly, both inter- and intra-individual variability analyses revealed a positive correlation of activation in frontal and parietal eye-movement regions with SRTs, indicating that slower saccade performance is possibly associated with higher cortical control. For the overlap paradigm, the trial-by-trial variability analysis revealed a positive correlation of activation in the right opercular inferior frontal gyrus with SRTs, possibly linked to fixation-related processes that have to be overcome to perform a speeded saccade in presence of a fixation point.
Collapse
Affiliation(s)
- Jale Özyurt
- Biological Psychology Laboratory, Department of Psychology, Carl von Ossietzky University, Oldenburg; and
| | - Mark W. Greenlee
- Department of Experimental Psychology, University of Regensburg, Universitätsstraße, Regensburg, Germany
| |
Collapse
|
30
|
Patterns of change in ocular motor development. Exp Brain Res 2011; 210:33-44. [DOI: 10.1007/s00221-011-2601-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 02/08/2011] [Indexed: 11/25/2022]
|
31
|
Abstract
The neural centers in the cerebral hemispheres, both cortex and basal ganglia, involved in the generation of saccadic and smooth pursuit eye movements have been well delineated in terms of their location and function. For the generation of saccades these include the frontal eye fields, the supplementary eye field, and the intraparietal sulcus, and in the basal ganglia the caudate nucleus and the substantia nigra, pars compacta. The generation of pursuit eye movements involves the middle temporal (area V5) and medial superior temporal areas and the frontal eye field. These centers and their connections are disturbed not only in acute and chronic lesions such as cerebral infarction, but also in a wide variety of neurodegenerative diseases. In certain of these conditions, such as patients with cortical dementias and basal ganglia disorders, correct interpretation of the resulting eye movement abnormalities can contribute to differentiating between a range of differential diagnoses.
Collapse
Affiliation(s)
- Christopher Kennard
- Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK.
| |
Collapse
|
32
|
Srimal R, Curtis CE. Secondary adaptation of memory-guided saccades. Exp Brain Res 2010; 206:35-46. [PMID: 20803135 PMCID: PMC3166211 DOI: 10.1007/s00221-010-2394-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Adaptation of saccade gains in response to errors keeps vision and action co-registered in the absence of awareness or effort. Timing is key, as the visual error must be available shortly after the saccade is generated or adaptation does not occur. Here, we tested the hypothesis that when feedback is delayed, learning still occurs, but does so through small secondary corrective saccades. Using a memory-guided saccade task, we gave feedback about the accuracy of saccades that was falsely displaced by a consistent amount, but only after long delays. Despite the delayed feedback, over time subjects improved in accuracy toward the false feedback. They did so not by adjusting their primary saccades, but via directed corrective saccades made before feedback was given. We propose that saccade learning may be driven by different types of feedback teaching signals. One teaching signal relies upon a tight temporal relation with the saccade and contributes to obligatory learning independent of awareness. When this signal is ineffective due to delayed error feedback, a second compensatory teaching signal enables flexible adjustments to the spatial goal of saccades and helps maintain sensorimotor accuracy.
Collapse
Affiliation(s)
- Riju Srimal
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | | |
Collapse
|
33
|
Contribution of the superior colliculi to post-stroke unilateral spatial neglect and recovery. Neuropsychologia 2010; 48:2407-16. [PMID: 20542045 DOI: 10.1016/j.neuropsychologia.2010.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 05/03/2010] [Accepted: 06/03/2010] [Indexed: 11/24/2022]
Abstract
Unilateral spatial neglect (USN) is a highly prevalent and disabling consequence of stroke that often responds poorly to existing interventions. Its underlying neural mechanisms are still unclear. Recent work suggests that post-stroke USN may be partly related to a disruption of top-down and bottom-up control of visual attention mediated in part through the midbrain superior colliculi (SC). With mounting evidence from animal and human research, our objectives were: (1) to synthesize the literature implicating the SC in USN; (2) to review the rationale and potential for using eye patching and prism adaptation as USN treatment approaches that recruit SC involvement; and (3) to provide recommendations for research on the potential of therapeutic interventions that involve and/or target the retino-collicular pathway. Given the paucity of human studies, the contribution of the SC in USN, while plausible, remains to be confirmed. Further exploration of the mechanisms involved and their impact on USN in human subjects will help develop theoretically based intervention strategies tailored to USN type.
Collapse
|
34
|
|
35
|
|
36
|
|
37
|
|
38
|
|
39
|
Warning signals, response specificity and the gap effect: Implications for a nonattentional account. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00031782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
|
41
|
Abstract
AbstractOne of the most intriguing and controversial observations in oculomotor research in recent years is the phenomenon of express saccades in monkeys and man. These are saccades with such short reaction times (100 msec in man, 70 msec in monkeys) that some experts on eye movements still regard them as artifacts or as anticipatory reactions that do not need any further explanation. On the other hand, some research groups consider them not only authentic but also a valuable means of investigating the mechanisms of saccade generation, the coordination of vision and eye movements, and the mechanisms of visual attention.This target article puts together pieces of experimental evidence in oculomotor and related research – with special emphasis on the express saccade – to enhance our present understanding of the coordination of vision, visual attention, and the eye movements subserving visual perception and cognition.We hypothesize that an optomotor reflex is responsible for the occurrence of express saccades, one that is controlled by higher brain functions involved in disengaged visual attention and decision making. We propose a neural network as the basis for more elaborate mathematical models or computer simulations of the optomotor system in primates.
Collapse
|
42
|
|
43
|
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
Halliday J, Carpenter RHS. The Effect of Cognitive Distraction on Saccadic Latency. Perception 2010; 39:41-50. [DOI: 10.1068/p6547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Saccadic initiation is increasingly being studied as a surrogate for more general neural mechanisms of decision-making. Visual ‘decision-making’ is thought to be controlled by higher cortical functions. Lower areas such as the superior colliculus are thought to be involved with more primitive optomotor reflexes that can generate short-latency saccades. It is now well established that imposition of fronto-executive load on subjects performing a saccadic task which, in particular, involves suppression of saccades (the no-go saccadic task), increases the number of errors made. It is theorised that a weakening of cortical control of the superior colliculus is responsible for the increase in error rate. One way to test this theory is to measure the latency of incorrect saccades made in a no-go saccadic task in relation to error rate under different conditions of fronto-executive load. A high error rate combined with an increased number of short-latency saccades in the range of express or early saccades would indicate that subjects have an inability to inhibit these short-latency more reflexive saccades, which seem to originate in the superior colliculus. Hence the normal cortical control of the superior colliculus is weakened. We used a saccadic go/no-go task under fronto-executive load and found that the proportion of short-latency saccades increased with audio-verbal interference, in conjunction with an increase in error rate. These findings provide strong empirical evidence to support the theory that maintenance of cortical functions is key to the control of saccadic responses. Under conditions of fronto-executive loading such cortical control is weakened, leaving subjects with a reduced ability to inhibit short-latency more reflexive saccades.
Collapse
Affiliation(s)
- Jane Halliday
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Roger H S Carpenter
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|