1
|
Williamson JN, Mulyana B, Peng RHT, Jain S, Hassaneen W, Miranpuri A, Yang Y. How the Somatosensory System Adapts to the Motor Change in Stroke: A Hemispheric Shift? Med Hypotheses 2024; 192:111487. [PMID: 39525858 PMCID: PMC11542668 DOI: 10.1016/j.mehy.2024.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Previous studies found that post-stroke motor impairments are associated with damage to the lesioned corticospinal tract and a maladaptive increase in indirect contralesional motor pathways. How the somatosensory system adapts to the change in the use of motor pathways and the role of adaptive sensory feedback to the abnormal movement control of the paretic arm remains largely unknown. We hypothesize that following a unilateral stroke, there is an adaptive hemispheric shift of somatosensory processing toward the contralesional sensorimotor areas to provide sensory feedback support to the contralesional indirect motor pathways. This research could provide new insights related to somatosensory reorganization after stroke, which could enrich future hypothesis-driven therapeutic rehabilitation strategies from a sensory or sensory-motor perspective. Understanding how somatosensory information shifts may provide a target for a novel method to therapeutically prevent and mitigate the emergence and expression of upper limb motor impairments, following a stroke.
Collapse
Affiliation(s)
- Jordan N. Williamson
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
| | - Beni Mulyana
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
| | - Rita Huan-Ting Peng
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
| | - Sanjiv Jain
- Carle Foundation Hospital, Dr. Elizabeth Hosick Rehabilitation Center, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, Urbana, IL, USA
- Carle Foundation Hospital, Neuroscience Institute, Urbana, IL, USA
| | - Amrendra Miranpuri
- Carle Illinois College of Medicine, Urbana, IL, USA
- Carle Foundation Hospital, Neuroscience Institute, Urbana, IL, USA
| | - Yuan Yang
- University of Illinois Urbana-Champaign, Grainger College of Engineering, Department of Bioengineering, Urbana, IL, USA
- Carle Foundation Hospital, Stephenson Family Clinical Research Institute, Clinical Imaging Research Center, Urbana, IL, USA
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA
| |
Collapse
|
2
|
Elmaleh M, Yang Z, Ackert-Smith LA, Long MA. Uncoordinated sleep replay across hemispheres in the zebra finch. Curr Biol 2023; 33:4704-4712.e3. [PMID: 37757833 PMCID: PMC10842454 DOI: 10.1016/j.cub.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Bilaterally organized brain regions are often simultaneously active in both humans1,2,3 and animal models,4,5,6,7,8,9 but the extent to which the temporal progression of internally generated dynamics is coordinated across hemispheres and how this coordination changes with brain state remain poorly understood. To address these issues, we investigated the zebra finch courtship song (duration: 0.5-1.0 s), a highly stereotyped complex behavior10,11 produced by a set of bilaterally organized nuclei.12,13,14 Unilateral lesions to these structures can eliminate or degrade singing,13,15,16,17 indicating that both hemispheres are required for song production.18 Additionally, previous work demonstrated broadly coherent and symmetric bilateral premotor signals during song.9 To precisely track the temporal evolution of activity in each hemisphere, we recorded bilaterally in the song production pathway. We targeted the robust nucleus of the arcopallium (RA) in the zebra finch, where population activity reflects the moment-to-moment progression of the courtship song during awake vocalizations19,20,21,22,23,24 and sleep, where song-related network dynamics reemerge in "replay" events.24,25 We found that activity in the left and right RA is synchronized within a fraction of a millisecond throughout song. In stark contrast, the two hemispheres displayed largely independent replay activity during sleep, despite shared interhemispheric arousal levels. These findings demonstrate that the degree of bilateral coordination in the zebra finch song system is dynamically modulated by behavioral state.
Collapse
Affiliation(s)
- Margot Elmaleh
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Zetian Yang
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Lyn A Ackert-Smith
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
3
|
Song Y, Renoul E, Acord S, Johnson YR, Marks W, Alexandrakis G, Papadelis C. Aberrant somatosensory phase synchronization in children with hemiplegic cerebral palsy. Neurosci Lett 2021; 762:136169. [PMID: 34390772 DOI: 10.1016/j.neulet.2021.136169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
Children with hemiplegic cerebral palsy (HCP) often show disturbances of somatosensation. Despite extensive evidence of somatosensory deficits, neurophysiological alterations associated with somatosensory deficits in children with HCP have not been elucidated. Here, we aim to assess phase synchrony within and between contralateral primary (S1) and secondary (S2) somatosensory areas in children with HCP. Intra-regional and inter-regional phase synchronizations within and between S1 and S2 were estimated from somatosensory evoked fields (SEFs) in response to passive pneumatic stimulation of contralateral upper extremities and recorded with pediatric magnetoencephalography (MEG) in children with HCP and typically developing (TD) children. We found aberrant phase synchronizations within S1 and between S1 and S2 in both hemispheres in children with HCP. Specifically, the less-affected (LA) hemisphere demonstrated diminished phase synchronizations after the stimulus onset up to ~120 ms compared to the more-affected (MA) hemisphere and the dominant hemisphere of TD children, while the MA hemisphere showed enhanced phase synchronizations after ~100 ms compared to the LA hemisphere and the TD dominant hemisphere. Our findings indicate abnormal somatosensory functional connectivity in both hemispheres of children with HCP.
Collapse
Affiliation(s)
- Yanlong Song
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Emmanuelle Renoul
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Biomedical Engineering, Université de Paris, Paris, France
| | - Stephanie Acord
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA
| | - Yvette R Johnson
- NEST Developmental Follow-up Center, Neonatology, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Pediatrics, Texas Christian University and University of North Texas Health Science Center School of Medicine, Fort Worth, TX, USA
| | - Warren Marks
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA; Department of Pediatrics, Texas Christian University and University of North Texas Health Science Center School of Medicine, Fort Worth, TX, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Kuwabara M, Kang N, Holy TE, Padoa-Schioppa C. Neural mechanisms of economic choices in mice. eLife 2020; 9:e49669. [PMID: 32096761 PMCID: PMC7062473 DOI: 10.7554/elife.49669] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 02/24/2020] [Indexed: 01/10/2023] Open
Abstract
Economic choices entail computing and comparing subjective values. Evidence from primates indicates that this behavior relies on the orbitofrontal cortex. Conversely, previous work in rodents provided conflicting results. Here we present a mouse model of economic choice behavior, and we show that the lateral orbital (LO) area is intimately related to the decision process. In the experiments, mice chose between different juices offered in variable amounts. Choice patterns closely resembled those measured in primates. Optogenetic inactivation of LO dramatically disrupted choices by inducing erratic changes of relative value and by increasing choice variability. Neuronal recordings revealed that different groups of cells encoded the values of individual options, the binary choice outcome and the chosen value. These groups match those previously identified in primates, except that the neuronal representation in mice is spatial (in monkeys it is good-based). Our results lay the foundations for a circuit-level analysis of economic decisions.
Collapse
Affiliation(s)
- Masaru Kuwabara
- Department of Neuroscience, Washington UniversitySaint LouisUnited States
| | - Ningdong Kang
- Department of Neuroscience, Washington UniversitySaint LouisUnited States
| | - Timothy E Holy
- Department of Neuroscience, Washington UniversitySaint LouisUnited States
| | | |
Collapse
|
5
|
Borna A, Carter TR, Colombo AP, Jau YY, McKay J, Weisend M, Taulu S, Stephen JM, Schwindt PDD. Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System. PLoS One 2020; 15:e0227684. [PMID: 31978102 PMCID: PMC6980641 DOI: 10.1371/journal.pone.0227684] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
A non-invasive functional-brain-imaging system based on optically-pumped-magnetometers (OPM) is presented. The OPM-based magnetoencephalography (MEG) system features 20 OPM channels conforming to the subject's scalp. We have conducted two MEG experiments on three subjects: assessment of somatosensory evoked magnetic field (SEF) and auditory evoked magnetic field (AEF) using our OPM-based MEG system and a commercial MEG system based on superconducting quantum interference devices (SQUIDs). We cross validated the robustness of our system by calculating the distance between the location of the equivalent current dipole (ECD) yielded by our OPM-based MEG system and the ECD location calculated by the commercial SQUID-based MEG system. We achieved sub-centimeter accuracy for both SEF and AEF responses in all three subjects. Due to the proximity (12 mm) of the OPM channels to the scalp, it is anticipated that future OPM-based MEG systems will offer enhanced spatial resolution as they will capture finer spatial features compared to traditional MEG systems employing SQUIDs.
Collapse
Affiliation(s)
- Amir Borna
- Sandia National Laboratories, Albuquerque, NM, United States of America
- * E-mail:
| | - Tony R. Carter
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | | | - Yuan-Yu Jau
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Jim McKay
- Candoo Systems Inc., Coquitlam, BC, Canada
| | | | - Samu Taulu
- University of Washington Seattle, Seattle, WA, United States of America
| | - Julia M. Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States of America
| | | |
Collapse
|
6
|
Cheng CH, Liu CY, Hsu SC. Altered functional connectivity between primary and secondary somatosensory areas in panic disorder. Psychiatry Res 2020; 285:112808. [PMID: 32004761 DOI: 10.1016/j.psychres.2020.112808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/30/2022]
Abstract
Disturbance in the interpretation of bodily sensation has been widely reported in patients with panic disorder (PD). However, it remains substantially unknown whether patients with PD exhibit any defect in cortical somatosensory processing of non-threatening stimuli. Thus, the present study aimed to examine the functional integrity of the cortical somatosensory system in patients with PD using neurophysiological recordings. A total of 20 patients with PD and 20 healthy controls (HC) were recruited to investigate the cortical responses to median nerve stimulation through whole-head magnetoencephalographic (MEG) imaging. To comprehensively investigate all somatosensory functioning, we studied the regional activation of the primary somatosensory cortex (SI), contralateral (SIIc), and ipsilateral (SIIi) secondary somatosensory cortices, as well as functional connectivity among the SI, SIIc, and SIIi in alpha, beta, and gamma frequency bands. We found that patients with PD demonstrated a reduction in SI activity compared with those in the HC group. Furthermore, a significantly weaker gamma-band functional connectivity between SI and SIIc was found in the PD group relative to the HC group. Our data suggest that patients with PD exhibit abnormal responses to non-threatening (i.e., pain-free) stimuli in the cortical somatosensory system.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chieh Hsu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Fuchigami T, Morioka S. Differences between the Influence of Observing One's Own Movements and Those of Others in Patients with Stroke. Stroke Res Treat 2019; 2019:3083248. [PMID: 31354933 PMCID: PMC6633964 DOI: 10.1155/2019/3083248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
We aimed to investigate differences between the influence of observing one's own actions and those of others in patients with stroke with hemiplegia. Thirty-four patients with stroke who had experienced a right or left hemispheric lesion (RHL: n = 17; LHL: n = 17) participated in this study. Participants viewed video clips (0.5× speed) of their own stepping movements (SO) as well as those of others (OO). After viewing the video clips, participants were asked to evaluate the vividness of the mental image of the observed stepping movement using a five-point scale, in accordance with that utilized in the Kinesthetic and Visual Imagery Questionnaire (KVIQ). We also examined changes in imagery and execution times following action observation. When all patients were considered, there were no significant differences between SO and OO conditions. However, in the RHL subgroup, KVIQ kinesthetic subscore and changes in imagery and execution times were greater in the OO condition than in the SO condition. In the LHL subgroup, changes in imagery times were greater in the SO condition than in the OO condition. These findings indicated that viewing the movements of others led to more vivid imagery and alteration in performance in patients with right-sided stroke, when compared to viewing one's own movements. Therefore, the present study suggests that clinicians should consider the side of the damaged hemisphere when implementing action observation therapy for patients with stroke.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara 635-0832, Japan
- Department of Rehabilitation, Kishiwada Rehabilitation Hospital, Kishiwada 596-0827, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara 635-0832, Japan
| |
Collapse
|
8
|
Chaudhary R, Rema V. Deficits in Behavioral Functions of Intact Barrel Cortex Following Lesions of Homotopic Contralateral Cortex. Front Syst Neurosci 2018; 12:57. [PMID: 30524251 PMCID: PMC6262316 DOI: 10.3389/fnsys.2018.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
Focal unilateral injuries to the somatosensory whisker barrel cortex have been shown cause long-lasting deficits in the activity and experience-dependent plasticity of neurons in the intact contralateral barrel cortex. However, the long-term effect of these deficits on behavioral functions of the intact contralesional cortex is not clear. In this study, we used the “Gap-crossing task” a barrel cortex-dependent, whisker-sensitive, tactile behavior to test the hypothesis that unilateral lesions of the somatosensory cortex would affect behavioral functions of the intact somatosensory cortex and degrade the execution of a bilaterally learnt behavior. Adult rats were trained to perform the Gap-crossing task using whiskers on both sides of the face. The barrel cortex was then lesioned unilaterally by subpial aspiration. As observed in other studies, when rats used whiskers that directly projected to the lesioned hemisphere the performance of Gap-crossing was drastically compromised, perhaps due to direct effect of lesion. Significant and persistent deficits were present when the lesioned rats performed Gap-crossing task using whiskers that projected to the intact cortex. The deficits were specific to performance of the task at the highest levels of sensitivity. Comparable deficits were seen when normal, bilaterally trained, rats performed the Gap-crossing task with only the whiskers on one side of the face or when they used only two rows of whiskers (D row and E row) intact on both side of the face. These findings indicate that the prolonged impairment in execution of the learnt task by rats with unilateral lesions of somatosensory cortex could be because sensory inputs from one set of whiskers to the intact cortex is insufficient to provide adequate sensory information at higher thresholds of detection. Our data suggest that optimal performance of somatosensory behavior requires dynamic activity-driven interhemispheric interactions from the entire somatosensory inputs between homotopic areas of the cerebral cortex. These results imply that focal unilateral cortical injuries, including those in humans, are likely to have widespread bilateral effects on information processing including in intact areas of the cortex.
Collapse
Affiliation(s)
| | - V Rema
- National Brain Research Centre, Manesar, India
| |
Collapse
|
9
|
A systematic review investigating the relationship of electroencephalography and magnetoencephalography measurements with sensorimotor upper limb impairments after stroke. J Neurosci Methods 2018; 311:318-330. [PMID: 30118725 DOI: 10.1016/j.jneumeth.2018.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/17/2018] [Accepted: 08/09/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Predicting sensorimotor upper limb outcome receives continued attention in stroke. Neurophysiological measures by electroencephalography (EEG) and magnetoencephalography (MEG) could increase the accuracy of predicting sensorimotor upper limb recovery. NEW METHOD The aim of this systematic review was to summarize the current evidence for EEG/MEG-based measures to index neural activity after stroke and the relationship between abnormal neural activity and sensorimotor upper limb impairment. Relevant papers from databases EMBASE, CINHAL, MEDLINE and pubMED were identified. Methodological quality of selected studies was assessed with the Modified Downs and Black form. Data collected was reported descriptively. RESULTS Seventeen papers were included; 13 used EEG and 4 used MEG applications. Findings showed that: (a) the presence of somatosensory evoked potentials in the acute stage are related to better outcome of upper limb motor impairment from 10 weeks to 6 months post-stroke; (b) an interhemispheric imbalance of cortical oscillatory signals associated with upper limb impairment; and (c) predictive models including beta oscillatory cortical signal factors with corticospinal integrity and clinical measures could enhance upper limb motor prognosis. COMPARING WITH EXISTING METHOD The combination of neurological biomarkers with clinical measures results in higher statistical power than using neurological biomarkers alone when predicting motor recovery in stroke. CONCLUSIONS Alterations in neural activity by means of EEG and MEG are demonstrated from the early post-stroke stage onwards, and related to sensorimotor upper limb impairment. Future work exploring cortical oscillatory signals in the acute stage could provide further insight about prediction of upper limb sensorimotor recovery.
Collapse
|
10
|
Hari R, Baillet S, Barnes G, Burgess R, Forss N, Gross J, Hämäläinen M, Jensen O, Kakigi R, Mauguière F, Nakasato N, Puce A, Romani GL, Schnitzler A, Taulu S. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin Neurophysiol 2018; 129:1720-1747. [PMID: 29724661 PMCID: PMC6045462 DOI: 10.1016/j.clinph.2018.03.042] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 03/18/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022]
Abstract
Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG.
Collapse
Affiliation(s)
- Riitta Hari
- Department of Art, Aalto University, Helsinki, Finland.
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gareth Barnes
- Wellcome Centre for Human Neuroimaging, University College of London, London, UK
| | - Richard Burgess
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Forss
- Clinical Neuroscience, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK; Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute of Physiological Sciences, Okazaki, Japan
| | - François Mauguière
- Department of Functional Neurology and Epileptology, Neurological Hospital & University of Lyon, Lyon, France
| | | | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Gian-Luca Romani
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, and Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Samu Taulu
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Physics, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Barratt EL, Francis ST, Morris PG, Brookes MJ. Mapping the topological organisation of beta oscillations in motor cortex using MEG. Neuroimage 2018; 181:831-844. [PMID: 29960087 PMCID: PMC6150950 DOI: 10.1016/j.neuroimage.2018.06.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022] Open
Abstract
The spatial topology of the human motor cortex has been well studied, particularly using functional Magnetic Resonance Imaging (fMRI) which allows spatial separation of haemodynamic responses arising from stimulation of different body parts, individual digits and even spatially separate areas of the same digit. However, the spatial organisation of electrophysiological responses, particularly neural oscillations (rhythmic changes in electrical potential across cellular assemblies) has been less well studied. Mapping the spatial signature of neural oscillations is possible using magnetoencephalography (MEG), however spatial differentiation of responses induced by movement of separate digits is a challenge, because the brain regions involved are separated by only a few millimetres. In this paper we first show, in simulation, how to optimise experimental design and beamformer spatial filtering techniques to increase the spatial specificity of MEG derived functional images. Combining this result with experimental data, we then capture the organisation of the post-movement beta band (13–30 Hz) oscillatory response to movement of digits 2 and 5 of the dominant hand, in individual subjects. By comparing these MEG results to ultra-high field (7T) fMRI, we also show significant spatial agreement between beta modulation and the blood oxygenation level dependent (BOLD) response. Our results show that, when using an optimised inverse solution and controlling subject movement (using custom fitted foam padding) the spatial resolution of MEG can be of order 3–5 mm. The method described offers exciting potential to understand better the cortical organisation of oscillations, and to probe such organisation in patient populations where those oscillations are known to be abnormal. Aim is to map the topological organisation of neural oscillations in motor cortex. MEG spatial resolution optimised by temporal separation of sources. Subject motion controlled using foam headcasts. Cortical representation of Digit 2 and Digit 5 separated spatially. Post movement beta rebound maps motortopically in agreement with BOLD responses.
Collapse
Affiliation(s)
- Eleanor L Barratt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
12
|
Hautasaari P, Saloranta H, Savić AM, Korniloff K, Kujala UM, Tarkka IM. Bilateral activations in operculo-insular area show temporal dissociation after peripheral electrical stimulation in healthy adults. Eur J Neurosci 2018; 52:4604-4612. [PMID: 29766591 DOI: 10.1111/ejn.13946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/26/2023]
Abstract
Interhemispheric transfer is necessary for sensory integration and coordination of body sides. We studied how somatosensory input from one body side may reach both body sides. First, we investigated with 17 healthy adults in which uni- and bilateral brain areas were involved in consecutive stages of automatic sensory processing of non-nociceptive peripheral stimulation. Somatosensory evoked fields (SEFs) to electrical stimulation were recorded with 306-channel magnetoencephalography in two conditions. First, SEFs were registered following sensory radial nerve (RN) stimulation to dorsal surface of the right hand and second, following median nerve (MN) stimulation at the right wrist. Cortical activations were located in contralateral postcentral gyrus after MN and RN stimulations and in bilateral operculo-insular area after RN stimulation. First component occurred earlier after MN than RN stimulation. Middle latency components had similar latencies with stronger activation in contralateral postcentral gyrus after MN than RN stimulation. Interestingly, long latency components located in bilateral operculo-insular area after RN stimulation showed latency difference between hemispheres, i.e. activation peaked earlier in contralateral than in ipsilateral side. Additional experiments comparing novel intracutaneous nociceptive, RN and MN electrical stimuli confirmed bilateral long latency activation elicited by each stimulus type and highlighted latency differences between hemispheres. Variations in activation of bilateral operculo-insular areas may corroborate their role in pain network and in multisensory integration. Our findings imply that these areas present a relay station in multisensory stimulus detection.
Collapse
Affiliation(s)
- Pekka Hautasaari
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Harri Saloranta
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Andrej M Savić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia.,Tecnalia Serbia Ltd., Belgrade, Serbia
| | - Katariina Korniloff
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Urho M Kujala
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
13
|
Kalogianni K, de Munck JC, Nolte G, Vardy AN, van der Helm FC, Daffertshofer A. Spatial resolution for EEG source reconstruction—A simulation study on SEPs. J Neurosci Methods 2018; 301:9-17. [DOI: 10.1016/j.jneumeth.2018.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/22/2018] [Accepted: 02/24/2018] [Indexed: 11/28/2022]
|
14
|
Disentangling Somatosensory Evoked Potentials of the Fingers: Limitations and Clinical Potential. Brain Topogr 2018; 31:498-512. [PMID: 29353446 PMCID: PMC5889784 DOI: 10.1007/s10548-017-0617-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 12/30/2017] [Indexed: 12/21/2022]
Abstract
In searching for clinical biomarkers of the somatosensory function, we studied reproducibility of somatosensory potentials (SEP) evoked by finger stimulation in healthy subjects. SEPs induced by electrical stimulation and especially after median nerve stimulation is a method widely used in the literature. It is unclear, however, if the EEG recordings after finger stimulation are reproducible within the same subject. We tested in five healthy subjects the consistency and reproducibility of responses through bootstrapping as well as test–retest recordings. We further evaluated the possibility to discriminate activity of different fingers both at electrode and at source level. The lack of consistency and reproducibility suggest responses to finger stimulation to be unreliable, even with reasonably high signal-to-noise ratio and adequate number of trials. At sources level, somatotopic arrangement of the fingers representation was only found in one of the subjects. Although finding distinct locations of the different fingers activation was possible, our protocol did not allow for non-overlapping dipole representations of the fingers. We conclude that despite its theoretical advantages, we cannot recommend the use of somatosensory potentials evoked by finger stimulation to extract clinical biomarkers.
Collapse
|
15
|
Dowell CJ, Norman JF, Moment JR, Shain LM, Norman HF, Phillips F, Kappers AML. Haptic shape discrimination and interhemispheric communication. Sci Rep 2018; 8:377. [PMID: 29321557 PMCID: PMC5762789 DOI: 10.1038/s41598-017-18691-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/15/2017] [Indexed: 11/09/2022] Open
Abstract
In three experiments participants haptically discriminated object shape using unimanual (single hand explored two objects) and bimanual exploration (both hands were used, but each hand, left or right, explored a separate object). Such haptic exploration (one versus two hands) requires somatosensory processing in either only one or both cerebral hemispheres; previous studies related to the perception of shape/curvature found superior performance for unimanual exploration, indicating that shape comparison is more effective when only one hemisphere is utilized. The current results, obtained for naturally shaped solid objects (bell peppers, Capsicum annuum) and simple cylindrical surfaces demonstrate otherwise: bimanual haptic exploration can be as effective as unimanual exploration, showing that there is no necessary reduction in ability when haptic shape comparison requires interhemispheric communication. We found that while successive bimanual exploration produced high shape discriminability, the participants’ bimanual performance deteriorated for simultaneous shape comparisons. This outcome suggests that either interhemispheric interference or the need to attend to multiple objects simultaneously reduces shape discrimination ability. The current results also reveal a significant effect of age: older adults’ shape discrimination abilities are moderately reduced relative to younger adults, regardless of how objects are manipulated (left hand only, right hand only, or bimanual exploration).
Collapse
Affiliation(s)
- Catherine J Dowell
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA
| | - J Farley Norman
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA.
| | - Jackie R Moment
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA
| | - Lindsey M Shain
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA
| | - Hideko F Norman
- Western Kentucky University, Department of Psychological Sciences, Ogden College of Science and Engineering, Bowling Green, Kentucky, 42101-2030, USA
| | - Flip Phillips
- Skidmore College, Department of Psychology & Neuroscience Program, Saratoga Springs, New York, 12866, USA
| | - Astrid M L Kappers
- Vrije Universiteit, Department of Human Movement Sciences, MOVE Research Institute, 1081 HV, Amsterdam, Netherlands
| |
Collapse
|
16
|
Wegrzyk J, Ranjeva JP, Fouré A, Kavounoudias A, Vilmen C, Mattei JP, Guye M, Maffiuletti NA, Place N, Bendahan D, Gondin J. Specific brain activation patterns associated with two neuromuscular electrical stimulation protocols. Sci Rep 2017; 7:2742. [PMID: 28577338 PMCID: PMC5457446 DOI: 10.1038/s41598-017-03188-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The influence of neuromuscular electrical stimulation (NMES) parameters on brain activation has been scarcely investigated. We aimed at comparing two frequently used NMES protocols - designed to vary in the extent of sensory input. Whole-brain functional magnetic resonance imaging was performed in sixteen healthy subjects during wide-pulse high-frequency (WPHF, 100 Hz–1 ms) and conventional (CONV, 25 Hz–0.05 ms) NMES applied over the triceps surae. Each protocol included 20 isometric contractions performed at 10% of maximal force. Voluntary plantar flexions (VOL) were performed as control trial. Mean force was not different among the three protocols, however, total current charge was higher for WPHF than for CONV. All protocols elicited significant activations of the sensorimotor network, cerebellum and thalamus. WPHF resulted in lower deactivation in the secondary somatosensory cortex and precuneus. Bilateral thalami and caudate nuclei were hyperactivated for CONV. The modulation of the NMES parameters resulted in differently activated/deactivated regions related to total current charge of the stimulation but not to mean force. By targeting different cerebral brain regions, the two NMES protocols might allow for individually-designed rehabilitation training in patients who can no longer execute voluntary movements.
Collapse
Affiliation(s)
- Jennifer Wegrzyk
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | | | - Alexandre Fouré
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, Laboratoire Neurosciences Intégratives et Adaptatives, UMR 7260, 13385, Marseille, France
| | | | - Jean-Pierre Mattei
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de Sainte Marguerite, Service de Rhumatologie, Pôle Appareil Locomoteur, 13005, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de la Timone, CEMEREM, Pôle Imagerie Médicale, 13005, Marseille, France
| | | | - Nicolas Place
- University of Lausanne, Faculty of Biology and Medicine, Institute of Sport Sciences and Department of Physiology, Lausanne, Switzerland
| | - David Bendahan
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Julien Gondin
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France. .,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France.
| |
Collapse
|
17
|
Kwon HG, Jang SH, Lee MY. Effects of visual information regarding tactile stimulation on the somatosensory cortical activation: a functional MRI study. Neural Regen Res 2017; 12:1119-1123. [PMID: 28852394 PMCID: PMC5558491 DOI: 10.4103/1673-5374.211191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions. However, few studies have reported on the effects of visuo-tactile multisensory integration on the amount of brain activation on the somatosensory cortical regions. The aim of this study was to examine whether coincidental information obtained by tactile stimulation can affect the somatosensory cortical activation using functional MRI. Ten right-handed healthy subjects were recruited for this study. Two tasks (tactile stimulation and visuotactile stimulation) were performed using a block paradigm during fMRI scanning. In the tactile stimulation task, in subjects with eyes closed, tactile stimulation was applied on the dorsum of the right hand, corresponding to the proximal to distal directions, using a rubber brush. In the visuotactile stimulation task, tactile stimulation was applied to observe the attached mirror in the MRI chamber reflecting their hands being touched with the brush. In the result of SPM group analysis, we found brain activation on the somatosensory cortical area. Tactile stimulation task induced brain activations in the left primary sensory-motor cortex (SM1) and secondary somatosensory cortex (S2). In the visuo-tactile stimulation task, brain activations were observed in the both SM1, both S2, and right posterior parietal cortex. In all tasks, the peak activation was detected in the contralateral SM1. We examined the effects of visuo-tactile multisensory integration on the SM1 and found that visual information during tactile stimulation could enhance activations on SM1 compared to the tactile unisensory stimulation.
Collapse
Affiliation(s)
- Hyeok Gyu Kwon
- Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan, Pusan, Republic of Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Mi Young Lee
- Department of Physical Therapy, College of Health and Therapy, Daegu Haany University, Gyeongsansi, Republic of Korea
| |
Collapse
|
18
|
Jang SH, Jang WH. Difference in cortical activation during use of volar and dorsal hand splints: a functional magnetic resonance imaging study. Neural Regen Res 2016; 11:1274-7. [PMID: 27651775 PMCID: PMC5020826 DOI: 10.4103/1673-5374.189192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There have been no studies reported on the difference in cortical activation during use of volar and dorsal hand splints. We attempted to investigate the difference in cortical activation in the somatosensory cortical area during use of volar and dorsal hand splints by functional magnetic resonance imaging (fMRI). We recruited eight healthy volunteers. fMRI was performed while subjects who were fitted with volar or dorsal hand splints performed grasp-release movements. Regions of interest were placed on the primary motor cortex (M1), primary somatosensory cortex (S1), posterior parietal cortex (PPC), and secondary somatosensory cortex (S2). Results of group analysis of fMRI data showed that the total numbers of activated voxels in all ROIs were significantly higher during use of volar hand splint (3,376) compared with that (1,416) during use of dorsal hand splint. In each ROI, use of volar hand splint induced greater activation in all ROIs (M1: 1,748, S1: 1,455, PPC: 23, and S2: 150) compared with use of dorsal hand splint (M1: 783, S1: 625, PPC: 0, and S2: 8). The peak activated value was also higher during use of volar hand splint (t-value: 17.29) compared with that during use of dorsal hand splint (t-value: 13.11). Taken together, use of volar hand splint induced greater cortical activation relevant to somatosensory function than use of dorsal hand splint. This result would be important for the physiatrist and therapist to apply appropriate somatosensory input in patients with brain injury.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu, South Korea
| | - Woo Hyuk Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daemyungdong, Namku, Daegu, South Korea
| |
Collapse
|
19
|
Distinct Somatic Discrimination Reflected by Laser-Evoked Potentials Using Scalp EEG Leads. J Med Biol Eng 2016; 36:460-469. [PMID: 27656118 PMCID: PMC5016541 DOI: 10.1007/s40846-016-0159-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 11/28/2022]
Abstract
Discrimination is an important function in pain processing of the somatic cortex. The involvement of the somatic cortex has been studied using equivalent dipole analysis and neuroimaging, but the results are inconsistent. Scalp electroencephalography (EEG) can reflect functional changes of particular brain regions underneath a lead. However, the responses of EEG leads close to the somatic cortex in response to pain have not been systematically evaluated. The present study applied CO2 laser stimulation to the dorsum of the left hand. Laser-evoked potentials (LEPs) of C4, T3, and T4 leads and pain ratings in response to four stimulus intensities were analyzed. LEPs started earlier at the C4 and T4 leads. The onset latency and peak latency of LEPs for C4 and T4 leads were the same. Only 10 of 22 subjects (45 %) presented equivalent current dipoles within the primary somatosensory or motor cortices. LEP amplitudes of these leads increased as stimulation intensity increased. The stimulus–response pattern of the C4 lead was highly correlated with pain rating. In contrast, an S-shaped stimulus–response curve was obtained for the T3 and T4 leads. The present study provides supporting evidence that particular scalp channels are able to reflect the functional characteristics of their underlying cortical areas. Our data strengthen the clinical application of somatic-cortex-related leads for pain discrimination.
Collapse
|
20
|
Abstract
In this review, we examine how tactile misperceptions provide evidence regarding body representations. First, we propose that tactile detection and localization are serial processes, in contrast to parallel processing hypotheses based on patients with numbsense. Second, we discuss how information in primary somatosensory maps projects to body size and shape representations to localize touch on the skin surface, and how responses after use-dependent plasticity reflect changes in this mapping. Third, we review situations in which our body representations are inconsistent with our actual body shape, specifically discussing phantom limb phenomena and anesthetization. We discuss problems with the traditional remapping hypothesis in amputees, factors that modulate perceived body size and shape, and how changes in perceived body form influence tactile localization. Finally, we review studies in which brain-damaged individuals perceive touch on the opposite side of the body, and demonstrate how interhemispheric mechanisms can give rise to these anomalous percepts.
Collapse
Affiliation(s)
- Jared Medina
- a Department of Psychology , University of Delaware , Newark , DE , USA
| | - H Branch Coslett
- b Department of Neurology, Center for Cognitive Neuroscience , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
21
|
The Neural Correlates of Long-Term Carryover following Functional Electrical Stimulation for Stroke. Neural Plast 2016; 2016:4192718. [PMID: 27073701 PMCID: PMC4814690 DOI: 10.1155/2016/4192718] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023] Open
Abstract
Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network, sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover mechanism of action is based on movement prediction and sense of agency/body ownership—the ability of a patient to plan the movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place.
Collapse
|
22
|
Abstract
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.
Collapse
|
23
|
Uppal N, Foxe JJ, Butler JS, Acluche F, Molholm S. The neural dynamics of somatosensory processing and adaptation across childhood: a high-density electrical mapping study. J Neurophysiol 2016; 115:1605-19. [PMID: 26763781 DOI: 10.1152/jn.01059.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 11/22/2022] Open
Abstract
Young children are often hyperreactive to somatosensory inputs hardly noticed by adults, as exemplified by irritation to seams or labels in clothing. The neurodevelopmental mechanisms underlying changes in sensory reactivity are not well understood. Based on the idea that neurodevelopmental changes in somatosensory processing and/or changes in sensory adaptation might underlie developmental differences in somatosensory reactivity, high-density electroencephalography was used to examine how the nervous system responds and adapts to repeated vibrotactile stimulation over childhood. Participants aged 6-18 yr old were presented with 50-ms vibrotactile stimuli to the right wrist over the median nerve at 5 blocked interstimulus intervals (ranging from ∼7 to ∼1 stimulus per second). Somatosensory evoked potentials (SEPs) revealed three major phases of activation within the first 200 ms, with scalp topographies suggestive of neural generators in contralateral somatosensory cortex. Although overall SEPs were highly similar for younger, middle, and older age groups (6.1-9.8, 10.0-12.9, and 13.0-17.8 yr old), there were significant age-related amplitude differences in initial and later phases of the SEP. In contrast, robust adaptation effects for fast vs. slow presentation rates were observed that did not differ as a function of age. A greater amplitude response in the later portion of the SEP was observed for the youngest group and may be related to developmental changes in responsivity to somatosensory stimuli. These data suggest the protracted development of the somatosensory system over childhood, whereas adaptation, as assayed in this study, is largely in place by ∼7 yr of age.
Collapse
Affiliation(s)
- Neha Uppal
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; Leadership Education in Neurodevelopmental Disabilities Program, Albert Einstein College of Medicine, Bronx, New York
| | - John J Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York; The Ernest J. Del Monte Neuromedicine Institute, Department of Neuroscience, University of Rochester Medical Center, Rochester, New York; and
| | - John S Butler
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland
| | - Frantzy Acluche
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Sophie Molholm
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York;
| |
Collapse
|
24
|
Age-Related Reduced Somatosensory Gating Is Associated with Altered Alpha Frequency Desynchronization. Neural Plast 2015; 2015:302878. [PMID: 26417458 PMCID: PMC4568376 DOI: 10.1155/2015/302878] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 11/18/2022] Open
Abstract
Sensory gating (SG), referring to an attenuated neural response to the second identical stimulus, is considered as preattentive processing in the central nervous system to filter redundant sensory inputs. Insufficient somatosensory SG has been found in the aged adults, particularly in the secondary somatosensory cortex (SII). However, it remains unclear which variables leading to the age-related somatosensory SG decline. There has been evidence showing a relationship between brain oscillations and cortical evoked excitability. Thus, this study used whole-head magnetoencephalography to record responses to paired-pulse electrical stimulation to the left median nerve in healthy young and elderly participants to test whether insufficient stimulus 1- (S1-) induced event-related desynchronization (ERD) contributes to a less-suppressed stimulus 2- (S2-) evoked response. Our analysis revealed that the minimum norm estimates showed age-related reduction of SG in the bilateral SII regions. Spectral power analysis showed that the elderly demonstrated significantly reduced alpha ERD in the contralateral SII (SIIc). Moreover, it was striking to note that lower S1-induced alpha ERD was associated with higher S2-evoked amplitudes in the SIIc among the aged adults. Conclusively, our findings suggest that age-related decline of somatosensory SG is partially attributed to the altered S1-induced oscillatory activity.
Collapse
|
25
|
Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke: Adaptive versus maladaptive reorganization. Neuroscience 2014; 283:178-201. [DOI: 10.1016/j.neuroscience.2014.06.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022]
|
26
|
Nakamura K, Makuuchi M, Nakajima Y. Mirror-image discrimination in the literate brain: a causal role for the left occpitotemporal cortex. Front Psychol 2014; 5:478. [PMID: 24904491 PMCID: PMC4033049 DOI: 10.3389/fpsyg.2014.00478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/02/2014] [Indexed: 12/02/2022] Open
Abstract
Previous studies show that the primate and human visual system automatically generates a common and invariant representation from a visual object image and its mirror reflection. For humans, however, this mirror-image generalization seems to be partially suppressed through literacy acquisition, since literate adults have greater difficulty in recognizing mirror images of letters than those of other visual objects. At the neural level, such category-specific effect on mirror-image processing has been associated with the left occpitotemporal cortex (L-OTC), but it remains unclear whether the apparent “inhibition” on mirror letters is mediated by suppressing mirror-image representations covertly generated from normal letter stimuli. Using transcranial magnetic stimulation (TMS), we examined how transient disruption of the L-OTC affects mirror-image recognition during a same-different judgment task, while varying the semantic category (letters and non-letter objects), identity (same or different), and orientation (same or mirror-reversed) of the first and second stimuli. We found that magnetic stimulation of the L-OTC produced a significant delay in mirror-image recognition for letter-strings but not for other objects. By contrast, this category specific impact was not observed when TMS was applied to other control sites, including the right homologous area and vertex. These results thus demonstrate a causal link between the L-OTC and mirror-image discrimination in literate people. We further suggest that left-right sensitivity for letters is not achieved by a local inhibitory mechanism in the L-OTC but probably relies on the inter-regional coupling with other orientation-sensitive occipito-parietal regions.
Collapse
Affiliation(s)
- Kimihiro Nakamura
- Human Brain Research Center, Graduate School of Medicine, Kyoto University Kyoto, Japan ; National Rehabilitation Center for Persons with Disabilities Tokorozawa, Japan
| | - Michiru Makuuchi
- National Rehabilitation Center for Persons with Disabilities Tokorozawa, Japan
| | - Yasoichi Nakajima
- National Rehabilitation Center for Persons with Disabilities Tokorozawa, Japan
| |
Collapse
|
27
|
Palmer LM, Schulz JM, Larkum ME. Layer-specific regulation of cortical neurons by interhemispheric inhibition. Commun Integr Biol 2013; 6:e23545. [PMID: 23713083 PMCID: PMC3656007 DOI: 10.4161/cib.23545] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/08/2013] [Indexed: 01/11/2023] Open
Abstract
Processing of sensory information from both sides of the body requires coordination of sensory input between the two hemispheres. This coordination is achieved by transcallosal (interhemispheric) fibers that course though the upper cortical layers. In a recent study by Palmer et al. (2012), we investigated the role of this interhemispheric input on the dendritic and somatic activity of cortical pyramidal neurons. This study showed that interhemispheric input evokes GABAB-mediated inhibition in the distal dendrites of layer 5 pyramidal neurons, decreasing the action potential output when paired with contralateral sensory stimulation. In contrast, layer 2/3 pyramidal neurons were not inhibited by interhemispheric input, possibly due to transcallosal fibers evoking more excitation in these neurons than layer 5 neurons. These results highlight both the precise nature of the microcircuitry of interhemispheric inhibition and how the balance between excitation and inhibition is different in the different layers of the cortex. Identifying the cellular and molecular elements involved in interhemipsheric inhibition is crucial not only for understanding higher brain function and but also dysfunction in the diseased brain.
Collapse
Affiliation(s)
- Lucy M Palmer
- Physiologisches Institut; Universität Bern; Bern, Switzerland
| | | | | |
Collapse
|
28
|
Jang SH, Seo JP, Ahn SH, Lee MY. Comparison of cortical activation patterns by somatosensory stimulation on the palm and dorsum of the hand. Somatosens Mot Res 2013; 30:109-13. [DOI: 10.3109/08990220.2013.775117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Somatotopic finger mapping using MEG: toward an optimal stimulation paradigm. Clin Neurophysiol 2013; 124:1659-70. [PMID: 23518470 DOI: 10.1016/j.clinph.2013.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/19/2012] [Accepted: 01/15/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE In non-invasive somatotopic mapping based on neuromagnetic source analysis, the recording time can be shortened and accuracy improved by applying simultaneously vibrotactile stimuli at different frequencies to multiple body sites and recording multiple steady-state responses. This study compared the reliability of sensory evoked responses, source localization performance, and reproducibility of digit maps for three different stimulation paradigms. METHODS Vibrotactile stimuli were applied to the fingertip and neuromagnetic steady-state responses were recorded. Index and middle fingers were stimulated either sequentially in separate blocks, simultaneously at different frequencies, or in alternating temporal order within a block. RESULTS Response amplitudes were largest and source localization was most accurate between 21 and 23 Hz. Separation of adjacent digits was significant for all paradigms in all participants. Suppressive interactions occurred between simultaneously applied stimuli. However, when frequently alternating between stimulus sites, the higher stimulus novelty resulted in increased amplitudes and superior localization performance. CONCLUSIONS When receptive fields are strongly overlapping, the alternating stimulation is preferable over recording multiple steady state responses. SIGNIFICANCE The new paradigm improved the measurement of the distance of somatotopic finger representation in human primary somatosensory cortex, which is an important metric for neuroplastic reorganization after learning and rehabilitation training.
Collapse
|
30
|
Recovery mechanisms of somatosensory function in stroke patients: implications of brain imaging studies. Neurosci Bull 2013; 29:366-72. [PMID: 23471867 DOI: 10.1007/s12264-013-1315-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022] Open
Abstract
Somatosensory dysfunction is associated with a high incidence of functional impairment and safety in patients with stroke. With developments in brain mapping techniques, many studies have addressed the recovery of various functions in such patients. However, relatively little is known about the mechanisms of recovery of somatosensory function. Based on the previous human studies, a review of 11 relevant studies on the mechanisms underlying the recovery of somatosensory function in stroke patients was conducted based on the following topics: (1) recovery of an injured somatosensory pathway, (2) peri-lesional reorganization, (3) contribution of the unaffected somatosensory cortex, (4) contribution of the secondary somatosensory cortex, and (5) mechanisms of recovery in patients with thalamic lesions. We believe that further studies in this field using combinations of diffusion tensor imaging, functional neuroimaging, and magnetoencephalography are needed. In addition, the clinical significance, critical period, and facilitatory strategies for each recovery mechanism should be clarified.
Collapse
|
31
|
Aging-related decline in somatosensory inhibition of the human cerebral cortex. Exp Brain Res 2013; 226:145-52. [PMID: 23377148 DOI: 10.1007/s00221-013-3420-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Primary somatosensory (SI) cortical inhibition to repetitive stimuli tends to decline with increasing age. However, aging effects on the inhibition mechanism of secondary somatosensory cortex (SII) remain elusive. We aimed to study the aging-related changes of cortical inhibition in the human somatosensory system. Neuromagnetic responses to paired-pulse electrical stimulation to the median nerve were recorded in 21 young and 20 elderly male adults. Paired-pulse suppression (PPS) of SI and SII activities was estimated by the ratio of the response to Stimulus 2 to the response to Stimulus 1. Based on equivalent current dipole modeling, PPS ratios of the contralateral (SIIc) and ipsilateral (SIIi) secondary somatosensory cortices were higher in elderly than in young subjects (p < 0.001 in SIIc and p = 0.034 in SIIi). At an individual basis, a higher PPS ratio in SIIc than in SI was found in 16 (80 %) out of the 20 elderly participants; in contrast, the PPS ratios of SIIc and SI cortices were similar in young participants (p = 0.031). In conclusion, a larger PPS ratio in elderly suggests an aging-related decline in somatosensory cortical inhibition. Furthermore, compared to SI, the electrophysiological responses of SII cortex are especially vulnerable to aging in terms of cortical inhibition to repetitive stimulation.
Collapse
|
32
|
Jang SH, Lee MY. Correlation between somatosensory function and cortical activation induced by touch stimulation in patients with intracerebral hemorrhage. Int J Neurosci 2013; 123:248-52. [PMID: 23227782 DOI: 10.3109/00207454.2012.755968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The correlation between somatosensory function and cortical activation induced by touch stimulation in patients with intracerebral hemorrhage (ICH) was investigated by functional magnetic resonance imaging (fMRI). METHODS Thirty-two chronic ICH patients with somatosensory deficits in tactile sensation were enrolled. For fMRI, touch stimulation was applied on the dorsum of the affected hand (contralateral to the ICH), using a rubber brush at a frequency of 1 Hz. Regions of interests (ROIs) were set at the primary sensory-motor cortex [SM1: Brodmann's area (BA) 1, 2, 3, 4], the posterior parietal cortex (PPC: BA 5, 7) and the secondary somatosensory cortex (S2: BA 43) in both hemispheres. The tactile sensation subscale of the Nottingham Sensory Assessment (NSA) was used to determine somatosensory function. RESULTS Significant correlations were found between NSA scores and voxel counts in the contralateral (ipsilesional) SM1 (r = 0.642; p < 0.05), the contralateral PPC (r = 0.507; p < 0.05) and the ipsilateral (contralesional) SM1 (r = 0.466; p < 0.05). However, no correlation was found between NSA scores and the contralateral S2 (r = 0.323; p > 0.05), the ipsilateral PPC (r = 0.252; p > 0.05) or the ipsilateral S2 (r = 0.280; p > 0.05). CONCLUSIONS It was found that somatosensory functions were positively correlated with degrees of blood oxygenation level dependent signal change of the following ROIs: the contralateral SM1, the contralateral PPC and the ipsilateral SM1. Opposingly, the S2 showed no correlation on either side of the brain.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Taegu, Republic of Korea
| | | |
Collapse
|
33
|
Abstract
Stroke represents a major cause of death and disability. In just the last two decades, science has begun to appreciate the central nervous system's attempts to repair itself through a process termed neuroplasticity. The remodeling is a dynamic process subject to endogenous and exogenous forces. Rehabilitation has started to implement approaches based on objective measures such as diffusion tensor imaging and functional magnetic resonance. Newer modalities such as constraint-induced movement therapy and robotic interventions are being used for both short- and long-term functional gains. This review describes the various studies on neuroplasticity and the variety of interventions now available.
Collapse
|
34
|
Lim M, Kim JS, Chung CK. Modulation of somatosensory evoked magnetic fields by intensity of interfering stimuli in human somatosensory cortex: An MEG study. Neuroimage 2012; 61:660-9. [DOI: 10.1016/j.neuroimage.2012.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022] Open
|
35
|
Spatiotemporal dynamics of bimanual integration in human somatosensory cortex and their relevance to bimanual object manipulation. J Neurosci 2012; 32:5667-77. [PMID: 22514328 DOI: 10.1523/jneurosci.5957-11.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Little is known about the spatiotemporal dynamics of cortical responses that integrate slightly asynchronous somatosensory inputs from both hands. This study aimed to clarify the timing and magnitude of interhemispheric interactions during early integration of bimanual somatosensory information in different somatosensory regions and their relevance for bimanual object manipulation and exploration. Using multi-fiber probabilistic diffusion tractography and MEG source analysis of conditioning-test (C-T) median nerve somatosensory evoked fields in healthy human subjects, we sought to extract measures of structural and effective callosal connectivity between different somatosensory cortical regions and correlated them with bimanual tactile task performance. Neuromagnetic responses were found in major somatosensory regions, i.e., primary somatosensory cortex SI, secondary somatosensory cortex SII, posterior parietal cortex, and premotor cortex. Contralateral to the test stimulus, SII activity was maximally suppressed by 51% at C-T intervals of 40 and 60 ms. This interhemispheric inhibition of the contralateral SII source activity correlated directly and topographically specifically with the fractional anisotropy of callosal fibers interconnecting SII. Thus, the putative pathway that mediated inhibitory interhemispheric interactions in SII was a transcallosal route from ipsilateral to contralateral SII. Moreover, interhemispheric inhibition of SII source activity correlated directly with bimanual tactile task performance. These findings were exclusive to SII. Our data suggest that early interhemispheric somatosensory integration primarily occurs in SII, is mediated by callosal fibers that interconnect homologous SII areas, and has behavioral importance for bimanual object manipulation and exploration.
Collapse
|
36
|
Abstract
The human brain is characterized by the lateralization of cognitive functions. Multiple lines of evidence suggest the deployment of visuospatial attention is controlled by a frontoparietal network, with a right hemisphere dominance. Among cortical areas included in the network, the right posterior parietal cortex (PPC) has been proposed to be a crucial node and has also been implicated on clinical grounds. Here, the authors provide an overview of the existent literature giving evidence to a functional asymmetry of the parietal cortices in directing visuospatial attention, focusing on those studies seeking to characterize the causal role of PPC, applying transcranial magnetic stimulation and its combination with imaging techniques, such as electroencephalography and fMRI. First, the role of PPC and how this region exerts its control over remote areas of both hemispheres is discussed. The second part discusses studies involving neglect patients shedding light on the complex interplay between left and right PPC, strongly supporting the hemispheric rivalry theory. Finally, studies demonstrating changes of neglect disorders following the manipulation of the unaffected hemisphere activation will be discussed.
Collapse
Affiliation(s)
- Giacomo Koch
- Laboratory of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Stroke Unit, Policlinico Tor Vergata, Rome, Italy
| | - Domenica Veniero
- Laboratory of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Carlo Caltagirone
- Laboratory of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
37
|
Nevalainen P, Pihko E, Mäenpää H, Valanne L, Nummenmaa L, Lauronen L. Bilateral alterations in somatosensory cortical processing in hemiplegic cerebral palsy. Dev Med Child Neurol 2012; 54:361-7. [PMID: 22211315 DOI: 10.1111/j.1469-8749.2011.04165.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AIM In individuals with cerebral palsy (CP), cerebral insults during early development may induce profound reorganization of the motor representation. This study determined the extent of alterations in cortical somatosensory functions in adolescents with hemiplegic CP with subcortical brain lesions. METHOD We recorded somatosensory evoked magnetic fields in response to hand area stimulation from eight adolescents with hemiplegic CP (five females and three males; mean age 14y 6mo, SD 2y 3mo) and eight age- and sex-matched healthy comparison adolescents (mean age 15y 4mo, SD 2y 4mo). All participants in the CP group had purely subcortical brain lesions in magnetic resonance images. RESULTS The somatosensory representation of the affected limb was contralateral (i.e. ipsilesional), but detailed inspection of the evoked responses showed alterations bilaterally. In the primary somatosensory cortex, the representation areas of digits II and V were in both hemispheres closer to each other in participants with CP than in comparison participants [ANOVA main effect group F(1,14) =5.58; p=0.03]. In addition, the morphology of median nerve evoked fields was altered in the participants with CP. INTERPRETATION In hemiplegic CP, modification of the somatosensory cortical network extends beyond what would be expected based on the unilateral symptoms and the anatomical lesion. Further understanding of the functional alterations in the sensorimotor networks may aid in developing more precisely designed rehabilitation strategies.
Collapse
|
38
|
Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME. The cellular basis of GABA(B)-mediated interhemispheric inhibition. Science 2012; 335:989-93. [PMID: 22363012 DOI: 10.1126/science.1217276] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Interhemispheric inhibition is thought to mediate cortical rivalry between the two hemispheres through callosal input. The long-lasting form of this inhibition is believed to operate via γ-aminobutyric acid type B (GABA(B)) receptors, but the process is poorly understood at the cellular level. We found that the firing of layer 5 pyramidal neurons in rat somatosensory cortex due to contralateral sensory stimulation was inhibited for hundreds of milliseconds when paired with ipsilateral stimulation. The inhibition acted directly on apical dendrites via layer 1 interneurons but was silent in the absence of pyramidal cell firing, relying on metabotropic inhibition of active dendritic currents recruited during neuronal activity. The results not only reveal the microcircuitry underlying interhemispheric inhibition but also demonstrate the importance of active dendritic properties for cortical output.
Collapse
Affiliation(s)
- Lucy M Palmer
- Physiologisches Institut, Universität Bern, Bühlplatz 5, CH-3012 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Popescu EA, Barlow SM, Venkatesan L, Wang J, Popescu M. Adaptive changes in the neuromagnetic response of the primary and association somatosensory areas following repetitive tactile hand stimulation in humans. Hum Brain Mapp 2012; 34:1415-26. [PMID: 22331631 DOI: 10.1002/hbm.21519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 09/07/2011] [Accepted: 10/25/2011] [Indexed: 11/11/2022] Open
Abstract
Cortical adaptation in the primary somatosensory cortex (SI) has been probed using different stimulation modalities and recording techniques, in both human and animal studies. In contrast, considerably less knowledge has been gained about the adaptation profiles in other areas of the cortical somatosensory network. Using magnetoencephalography (MEG), we examined the patterns of short-term adaptation for evoked responses in SI and somatosensory association areas during tactile stimulation applied to the glabrous skin of the hand. Cutaneous stimuli were delivered as trains of serial pulses with a constant frequency of 2 Hz and 4 Hz in separate runs, and a constant inter-train interval of 5 s. The unilateral stimuli elicited transient responses to the serial pulses in the train, with several response components that were separated by independent component analysis. Subsequent source reconstruction techniques identified regional generators in the contralateral SI and somatosensory association areas in the posterior parietal cortex (PPC). Activity in the bilateral secondary somatosensory cortex (i.e., SII/PV) was also identified, although less consistently across subjects. The dynamics of the evoked activity in each area and the frequency-dependent adaptation effects were assessed from the changes in the relative amplitude of serial responses in each train. We show that the adaptation profiles in SI and PPC areas can be quantitatively characterized from neuromagnetic recordings using tactile stimulation, with the sensitivity to repetitive stimulation increasing from SI to PPC. A similar approach for SII/PV has proven less straightforward, potentially due to the tendency of these areas to respond selectively to certain stimuli.
Collapse
Affiliation(s)
- Elena Anda Popescu
- Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
40
|
Zhang Y, Su YY, Ye H, Xiao SY, Chen WB, Zhao JW. Predicting comatose patients with acute stroke outcome using middle-latency somatosensory evoked potentials. Clin Neurophysiol 2011; 122:1645-9. [DOI: 10.1016/j.clinph.2010.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 10/26/2010] [Accepted: 11/23/2010] [Indexed: 11/30/2022]
|
41
|
Forss N, Mustanoja S, Roiha K, Kirveskari E, Mäkelä JP, Salonen O, Tatlisumak T, Kaste M. Activation in parietal operculum parallels motor recovery in stroke. Hum Brain Mapp 2011; 33:534-41. [PMID: 21425393 DOI: 10.1002/hbm.21230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/21/2010] [Accepted: 11/18/2010] [Indexed: 11/08/2022] Open
Abstract
Motor recovery after stroke requires continuous interaction of motor and somatosensory systems. Integration of somatosensory feedback with motor programs is needed for the automatic adjustment of the speed, range, and strength of the movement. We recorded somatosensory evoked fields (SEFs) to tactile finger stimulation with whole-scalp magnetoencephalography in 23 acute stroke patients at 1 week, 1 month, and 3 months after stroke to investigate how deficits in the somatosensory cortical network affect motor recovery. SEFs were generated in the contralateral primary somatosensory cortex (SI) and in the bilateral parietal opercula (PO) in controls and patients. In the patients, SI amplitude or latency did not correlate with any of the functional outcome measures used. In contrast, the contralateral PO (cPO) amplitude to the affected hand stimuli correlated significantly with hand function in the acute phase and during recovery; the weaker the PO activation, the clumsier the hand was. At 1 and 3 months, enhancement of the cPO activation paralleled the improvement of the hand function. Whole-scalp magnetoencephalography measurements revealed that dysfunction of somatosensory cortical areas distant from the ischemic lesion may affect the motor recovery. Activation strength of the PO paralleled motor recovery after stroke, suggesting that the PO area is an important hub in mediating modulatory afferent input to motor cortex.
Collapse
Affiliation(s)
- Nina Forss
- Brain Research Unit, Low Temperature Laboratory, Aalto University, Espoo, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Symmetrical hemispheric priming in spatial neglect: a hyperactive left-hemisphere phenomenon? Cortex 2010; 48:421-8. [PMID: 21292251 DOI: 10.1016/j.cortex.2010.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/28/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
Hemispheric rivalry models of spatial neglect suggest that the left hemisphere becomes hyperactive following right-hemisphere lesions since the two hemispheres normally exert an inhibitory influence on each other via callosal connections. Using a masked hemifield priming paradigm, we investigated whether the putative change in hemispheric balance involves other, higher-order abstract representational systems in spatial neglect. Participants consisted of 12 neglect patients with right-hemisphere damage and three groups of control participants, i.e., 12 young healthy controls, 10 age-matched healthy controls and 10 right-hemisphere patients without spatial neglect. In each trial, participants made semantic categorization about a centrally presented target word which was preceded by a masked prime flashed either to the left or right visual field. All three control groups exhibited strong left-hemisphere advantage in inhibitory syllabic priming, consistent with the known left-hemisphere dominance in lexical inhibition during reading. By contrast, neglect patients exhibited a symmetrical pattern of priming between the left and right visual fields. These results suggest that (1) the neglected hemifield can rapidly extract abstract information even from weak and normally non-perceptible visual stimuli, but that (2) the normal left hemispheric dominance in reading is absent in neglect patients probably because of the generalized hyperactivity of the left hemisphere. Our results demonstrate a covert behavioral change in spatial neglect which may reflect the altered inter-hemispheric balance in the bilateral word recognition system encompassing lexico-semantic memory.
Collapse
|
43
|
A magnetoencephalographic study of sensorimotor activity differences during unilateral and bilateral forearm movements. Int J Rehabil Res 2010; 33:254-60. [DOI: 10.1097/mrr.0b013e328333de7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Hagiwara K, Okamoto T, Shigeto H, Ogata K, Somehara Y, Matsushita T, Kira JI, Tobimatsu S. Oscillatory gamma synchronization binds the primary and secondary somatosensory areas in humans. Neuroimage 2010; 51:412-20. [DOI: 10.1016/j.neuroimage.2010.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/14/2009] [Accepted: 02/02/2010] [Indexed: 11/26/2022] Open
|
45
|
Onishi H, Oyama M, Soma T, Kubo M, Kirimoto H, Murakami H, Kameyama S. Neuromagnetic activation of primary and secondary somatosensory cortex following tactile-on and tactile-off stimulation. Clin Neurophysiol 2010; 121:588-93. [DOI: 10.1016/j.clinph.2009.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 11/24/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
|
46
|
Jablonka J, Burnat K, Witte O, Kossut M. Remapping of the somatosensory cortex after a photothrombotic stroke: dynamics of the compensatory reorganization. Neuroscience 2010; 165:90-100. [DOI: 10.1016/j.neuroscience.2009.09.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/25/2009] [Accepted: 09/26/2009] [Indexed: 10/20/2022]
|
47
|
Jung P, Baumgärtner U, Stoeter P, Treede RD. Structural and functional asymmetry in the human parietal opercular cortex. J Neurophysiol 2009; 101:3246-57. [PMID: 19357343 DOI: 10.1152/jn.91264.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this combined electroencephalographic and magnetic resonance imaging (MRI) study, the asymmetry of functional and structural measures in the human parietal operculum (PO) were investigated. Median nerve somatosensory evoked potential recordings showed maximum scalp potentials over contralateral (N80, N110) and ipsilateral (N100, N130) temporal electrode positions. In accordance, MRI-coregistered source analysis revealed two electrical sources in the contralateral (N80, N110) and two in the ipsilateral (N100, N130) PO. The dipole orientations of the contra- and ipsilateral sources with earlier peak activation, N80 and N100, were more tangential than those of the later peaking N110 and N130 sources. The most prominent contralateral N110 source exhibited pronounced left lateralized dipole strengths in the 80- to 120-ms latency range, in contrast to symmetrical N80 and ipsilateral source responses. The asymmetry of the N110 source activity explained both the asymmetry of N110 and N100 scalp potentials. Morphometric analysis demonstrated no interhemispheric differences in the sizes of the anterior PO (aPO), containing the cytoarchitectonic areas OP3 and OP4, but left lateralized sizes of the posterior PO (pPO), which encompasses the anatomically defined areas OP1 and OP2. The N110 source was located in the pPO and its asymmetry was significantly correlated with the structural pPO asymmetry but not with handedness and auditory lateralization. Thus both structural and functional asymmetries exist in the human PO and they are closely related to each other but not to measures of brain asymmetry in other functional systems, i.e., auditory lateralization and handedness.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Neurology, Johann Wolfgang Goethe University, 60528 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
48
|
Johansen-Berg H. Functional imaging of stroke recovery: what have we learnt and where do we go from here? Int J Stroke 2008; 2:7-16. [PMID: 18705982 DOI: 10.1111/j.1747-4949.2007.00093.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional brain imaging techniques have been used to visualise patterns of activity following stroke and to characterise how these patterns change with recovery or rehabilitation. Some consensus is now emerging on patterns that are predictive of improved outcome, and therapeutic strategies are beginning to be guided by such findings. However, patient heterogeneity predicts that the same approach will not be appropriate for all. Future studies should aim to characterise the factors that influence this heterogeneity, and to individualise rehabilitation strategies based in part on early imaging findings. Functional imaging studies of stroke should also embrace recent methodological and conceptual advances that allow for fuller characterisation of the structural and functional properties of distributed brain networks.
Collapse
Affiliation(s)
- Heidi Johansen-Berg
- Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
49
|
Sakamoto K, Nakata H, Kakigi R. Somatotopic representation of the tongue in human secondary somatosensory cortex. Clin Neurophysiol 2008; 119:2125-34. [DOI: 10.1016/j.clinph.2008.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/25/2008] [Accepted: 05/02/2008] [Indexed: 10/21/2022]
|
50
|
Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R. Evoked magnetic fields following noxious laser stimulation of the thigh in humans. Neuroimage 2008; 42:858-68. [DOI: 10.1016/j.neuroimage.2008.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/23/2008] [Accepted: 05/09/2008] [Indexed: 01/29/2023] Open
|