1
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
2
|
Sánchez‐Moreno B, Zhang L, Mateo G, Moldenhauer F, Brudfors M, Ashburner J, Nachev P, de Asúa DR, Strange BA. Voxel-based dysconnectomic brain morphometry with computed tomography in Down syndrome. Ann Clin Transl Neurol 2024; 11:143-155. [PMID: 38158639 PMCID: PMC10791030 DOI: 10.1002/acn3.51940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/23/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is a major health concern for aging adults with Down syndrome (DS), but conventional diagnostic techniques are less reliable in those with severe baseline disability. Likewise, acquisition of magnetic resonance imaging to evaluate cerebral atrophy is not straightforward, as prolonged scanning times are less tolerated in this population. Computed tomography (CT) scans can be obtained faster, but poor contrast resolution limits its function for morphometric analysis. We implemented an automated analysis of CT scans to characterize differences across dementia stages in a cross-sectional study of an adult DS cohort. METHODS CT scans of 98 individuals were analyzed using an automatic algorithm. Voxel-based correlations with clinical dementia stages and AD plasma biomarkers (phosphorylated tau-181 and neurofilament light chain) were identified, and their dysconnectomic patterns delineated. RESULTS Dementia severity was negatively correlated with gray (GM) and white matter (WM) volumes in temporal lobe regions, including parahippocampal gyri. Dysconnectome analysis revealed an association between WM loss and temporal lobe GM volume reduction. AD biomarkers were negatively associated with GM volume in hippocampal and cingulate gyri. INTERPRETATION Our automated algorithm and novel dysconnectomic analysis of CT scans successfully described brain morphometric differences related to AD in adults with DS, providing a new avenue for neuroimaging analysis in populations for whom magnetic resonance imaging is difficult to obtain.
Collapse
Affiliation(s)
- Beatriz Sánchez‐Moreno
- Adult Down Syndrome Unit, Department of Internal MedicineHospital Universitario de La PrincesaMadridSpain
| | - Linda Zhang
- Alzheimer Disease Research UnitCIEN Foundation, Queen Sofia Foundation Alzheimer CentreMadridSpain
| | - Gloria Mateo
- Adult Down Syndrome Unit, Department of Internal MedicineHospital Universitario de La PrincesaMadridSpain
| | - Fernando Moldenhauer
- Adult Down Syndrome Unit, Department of Internal MedicineHospital Universitario de La PrincesaMadridSpain
| | - Mikael Brudfors
- Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
| | - John Ashburner
- Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
| | - Parashkev Nachev
- High‐Dimensional Neurology GroupUniversity College London Queen Square Institute of NeurologyLondonUK
| | - Diego Real de Asúa
- Adult Down Syndrome Unit, Department of Internal MedicineHospital Universitario de La PrincesaMadridSpain
| | - Bryan A. Strange
- Alzheimer Disease Research UnitCIEN Foundation, Queen Sofia Foundation Alzheimer CentreMadridSpain
- Laboratory for Clinical NeuroscienceCTB, Universidad Politécnica de MadridMadridSpain
| |
Collapse
|
3
|
Tung H, Tsai SC, Huang PR, Hsieh PF, Lin YC, Peng SJ. Morphological and metabolic asymmetries of the thalamic subregions in temporal lobe epilepsy predict cognitive functions. Sci Rep 2023; 13:22611. [PMID: 38114641 PMCID: PMC10730825 DOI: 10.1038/s41598-023-49856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Both morphological and metabolic imaging were used to determine how asymmetrical changes of thalamic subregions are involved in cognition in temporal lobe epilepsy (TLE). We retrospectively recruited 24 left-TLE and 15 right-TLE patients. Six thalamic subnuclei were segmented by magnetic resonance imaging, and then co-registered onto Positron emission tomography images. We calculated the asymmetrical indexes of the volumes and normalized standard uptake value ratio (SUVR) of the entire and individual thalamic subnuclei. The SUVR of ipsilateral subnuclei were extensively and prominently decreased compared with the volume loss. The posterior and medial subnuclei had persistently lower SUVR in both TLE cases. Processing speed is the cognitive function most related to the metabolic asymmetry. It negatively correlated with the metabolic asymmetrical indexes of subregions in left-TLE, while positively correlated with the subnuclei volume asymmetrical indexes in right-TLE. Epilepsy duration negatively correlated with the volume asymmetry of most thalamic subregions in left-TLE and the SUVR asymmetry of ventral and intralaminar subnuclei in right-TLE. Preserved metabolic activity of contralateral thalamic subregions is the key to maintain the processing speed in both TLEs. R-TLE had relatively preserved volume of the ipsilateral thalamic volume, while L-TLE had relatively decline of volume and metabolism in posterior subnucleus.
Collapse
Affiliation(s)
- Hsin Tung
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Chuan Tsai
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Technology, Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Pu-Rong Huang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Peiyuan F Hsieh
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ching Lin
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Imaging and Radiological Technology, Institute of Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei City, 110, Taiwan.
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
López-Barroso D, Paredes-Pacheco J, Torres-Prioris MJ, Dávila G, Berthier ML. Brain structural and functional correlates of the heterogenous progression of mixed transcortical aphasia. Brain Struct Funct 2023:10.1007/s00429-023-02655-6. [PMID: 37256346 DOI: 10.1007/s00429-023-02655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/13/2023] [Indexed: 06/01/2023]
Abstract
Mixed transcortical aphasia (MTCA) is characterized by non-fluent speech and comprehension deficits coexisting with preserved repetition. MTCA may evolve to less severe variants of aphasias or even to full language recovery. Mechanistically, MCTA has traditionally been attributed to a disconnection between the spared left perisylvian language network (PSLN) responsible for preserved verbal repetition, and damaged left extrasylvian networks, which are responsible for language production and comprehension impairments. However, despite significant advances in in vivo neuroimaging, the structural and functional status of the PSLN network in MTCA and its evolution has not been investigated. Thus, the aim of the present study is to examine the status of the PSLN, both in terms of its functional activity and structural integrity, in four cases who developed acute post-stroke MTCA and progressed to different types of aphasia. For it, we conducted a neuroimaging-behavioral study performed in the chronic stage of four patients. The behavioral profile of MTCA persisted in one patient, whereas the other three patients progressed to less severe types of aphasias. Neuroimaging findings suggest that preserved verbal repetition in MTCA does not always depend on the optimal status of the PSLN and its dorsal connections. Instead, the right hemisphere or the left ventral pathway may also play a role in supporting verbal repetition. The variability in the clinical evolution of MTCA may be explained by the varying degree of PSLN alteration and individual premorbid neuroanatomical language substrates. This study offers a fresh perspective of MTCA through the lens of modern neuroscience and unveils novel insights into the neural underpinnings of repetition.
Collapse
Affiliation(s)
- Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - José Paredes-Pacheco
- Radiology and Psychiatry Department, Faculty of Medicine, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Molecular Imaging Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), General Foundation of the University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias (CIMES), University of Malaga, Malaga, Spain.
- Research Laboratory on the Neuroscience of Language, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
- Instituto de Investigación Biomédica de Málaga - IBIMA, Malaga, Spain.
| |
Collapse
|
5
|
Elmalem MS, Moody H, Ruffle JK, de Schotten MT, Haggard P, Diehl B, Nachev P, Jha A. A framework for focal and connectomic mapping of transiently disrupted brain function. Commun Biol 2023; 6:430. [PMID: 37076578 PMCID: PMC10115870 DOI: 10.1038/s42003-023-04787-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
The distributed nature of the neural substrate, and the difficulty of establishing necessity from correlative data, combine to render the mapping of brain function a far harder task than it seems. Methods capable of combining connective anatomical information with focal disruption of function are needed to disambiguate local from global neural dependence, and critical from merely coincidental activity. Here we present a comprehensive framework for focal and connective spatial inference based on sparse disruptive data, and demonstrate its application in the context of transient direct electrical stimulation of the human medial frontal wall during the pre-surgical evaluation of patients with focal epilepsy. Our framework formalizes voxel-wise mass-univariate inference on sparsely sampled data within the statistical parametric mapping framework, encompassing the analysis of distributed maps defined by any criterion of connectivity. Applied to the medial frontal wall, this transient dysconnectome approach reveals marked discrepancies between local and distributed associations of major categories of motor and sensory behaviour, revealing differentiation by remote connectivity to which purely local analysis is blind. Our framework enables disruptive mapping of the human brain based on sparsely sampled data with minimal spatial assumptions, good statistical efficiency, flexible model formulation, and explicit comparison of local and distributed effects.
Collapse
Affiliation(s)
- Michael S Elmalem
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Hanna Moody
- UCL Queen Square Institute of Neurology, London, UK
| | - James K Ruffle
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénérative, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | | | - Beate Diehl
- UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Parashkev Nachev
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
| | - Ashwani Jha
- UCL Queen Square Institute of Neurology, London, UK.
- National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
6
|
Whatley BP, Winston JS, Allen LA, Vos SB, Jha A, Scott CA, Smith AL, Chowdhury FA, Bomanji JB, Lhatoo SD, Harper RM, Diehl B. Distinct Patterns of Brain Metabolism in Patients at Risk of Sudden Unexpected Death in Epilepsy. Front Neurol 2021; 12:623358. [PMID: 34899550 PMCID: PMC8651549 DOI: 10.3389/fneur.2021.623358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: To characterize regional brain metabolic differences in patients at high risk of sudden unexpected death in epilepsy (SUDEP), using fluorine-18-fluorodeoxyglucose positron emission tomography (18FDG-PET). Methods: We studied patients with refractory focal epilepsy at high (n = 56) and low (n = 69) risk of SUDEP who underwent interictal 18FDG-PET as part of their pre-surgical evaluation. Binary SUDEP risk was ascertained by thresholding frequency of focal to bilateral tonic-clonic seizures (FBTCS). A whole brain analysis was employed to explore regional differences in interictal metabolic patterns. We contrasted these findings with regional brain metabolism more directly related to frequency of FBTCS. Results: Regions associated with cardiorespiratory and somatomotor regulation differed in interictal metabolism. In patients at relatively high risk of SUDEP, fluorodeoxyglucose (FDG) uptake was increased in the basal ganglia, ventral diencephalon, midbrain, pons, and deep cerebellar nuclei; uptake was decreased in the left planum temporale. These patterns were distinct from the effect of FBTCS frequency, where increasing frequency was associated with decreased uptake in bilateral medial superior frontal gyri, extending into the left dorsal anterior cingulate cortex. Significance: Regions critical to cardiorespiratory and somatomotor regulation and to recovery from vital challenges show altered interictal metabolic activity in patients with frequent FBTCS considered to be at relatively high-risk of SUDEP, and shed light on the processes that may predispose patients to SUDEP.
Collapse
Affiliation(s)
- Benjamin P Whatley
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Division of Neurology, Dalhousie University, Halifax, NS, Canada
| | - Joel S Winston
- Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Wellcome Trust Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Clinical Neurophysiology, King's College Hospital, London, United Kingdom
| | - Luke A Allen
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom.,The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Sjoerd B Vos
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom.,The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States.,Neuroradiological Academic Unit, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Ashwani Jha
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Catherine A Scott
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - April-Louise Smith
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Fahmida A Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jamshed B Bomanji
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Samden D Lhatoo
- The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States.,Epilepsy Center, Neurological Institute, University Hospitals Case Medical Center, Cleveland, OH, United States.,Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, United States
| | - Ronald M Harper
- The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom.,The Center for SUDEP Research, National Institutes of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
7
|
Forkel SJ, Thiebaut de Schotten M. Towards metabolic disconnection - symptom mapping. Brain 2020; 143:718-721. [PMID: 32203573 DOI: 10.1093/brain/awaa060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This scientific commentary refers to ‘Metabolic lesion-deficit mapping of human cognition’ by Jha etal. (doi:10.1093/brain/awaa032).
Collapse
Affiliation(s)
- Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.,Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| |
Collapse
|