1
|
Abstract
Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cis-regulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.
Collapse
Affiliation(s)
- Qiushuang Wu
- Stowers Institute for Medical Research, Kansas City, Missouri, USA;
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, Missouri, USA;
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Aubert-Mucca M, Huber C, Baujat G, Michot C, Zarhrate M, Bras M, Boutaud L, Malan V, Attie-Bitach T, Cormier-Daire V. Ellis-Van Creveld Syndrome: Clinical and Molecular Analysis of 50 Individuals. J Med Genet 2023; 60:337-345. [PMID: 35927022 DOI: 10.1136/jmg-2022-108435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Ellis-Van Creveld (EVC) syndrome is one of the entities belonging to the skeletal ciliopathies short rib-polydactyly subgroup. Major signs are ectodermal dysplasia, chondrodysplasia, polydactyly and congenital cardiopathy, with a high degree of variability in phenotypes ranging from lethal to mild clinical presentations. The EVC and EVC2 genes are the major genes causative of EVC syndrome. However, an increased number of genes involved in the ciliopathy complex have been identified in EVC syndrome, leading to a better understanding of its physiopathology, namely, WDR35, GLI1, DYNC2LI1, PRKACA, PRKACB and SMO. They all code for proteins located in the primary cilia, playing a key role in signal transduction of the Hedgehog pathways. METHODS The aim of this study was the analysis of 50 clinically identified EVC cases from 45 families to further define the phenotype and molecular bases of EVC. RESULTS Our detection rate in the cohort of 45 families was of 91.11%, with variants identified in EVC/EVC2 (77.8%), DYNC2H1 (6.7%), DYNC2LI1 (2.2%), SMO (2.2%) or PRKACB (2.2%). No distinctive feature was remarkable of a specific genotype-phenotype correlation. Interestingly, we identified a high proportion of heterozygous deletions in EVC/EVC2 of variable sizes (26.92%), mostly inherited from the mother, and probably resulting from recombinations involving Alu sequences. CONCLUSION We confirmed that EVC and EVC2 are the major genes involved in the EVC phenotype and highlighted the high prevalence of previously unreported CNVs (Copy Number Variation).
Collapse
Affiliation(s)
- Marion Aubert-Mucca
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Céline Huber
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Genevieve Baujat
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Caroline Michot
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Imagine Institute, Paris, France
| | - Marc Bras
- Bioinformatics Platform, Imagine Institute, Paris, France
| | - Lucile Boutaud
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | - Valérie Malan
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | - Tania Attie-Bitach
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hopital Universitaire Necker-Enfants Malades, Paris, France
| | | | - Valerie Cormier-Daire
- Centre de Référence des Maladies Osseuses Constitutionnelles, Service de Médecine Génomique des Maladies Rares, Hôpital Universitaire Necker-Enfants Malades, Paris, France
- Université Paris Cité, INSERM UMR 1163, Imagine Institute, Paris, France
| |
Collapse
|
3
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
4
|
Coursimault J, Cassinari K, Lecoquierre F, Quenez O, Coutant S, Derambure C, Vezain M, Drouot N, Vera G, Schaefer E, Philippe A, Doray B, Lambert L, Ghoumid J, Smol T, Rama M, Legendre M, Lacombe D, Fergelot P, Olaso R, Boland A, Deleuze JF, Goldenberg A, Saugier-Veber P, Nicolas G. Deep intronic NIPBL de novo mutations and differential diagnoses revealed by whole genome and RNA sequencing in Cornelia de Lange syndrome patients. Hum Mutat 2022; 43:1882-1897. [PMID: 35842780 DOI: 10.1002/humu.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/23/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023]
Abstract
Cornelia de Lange syndrome (CdLS; MIM# 122470) is a rare developmental disorder. Pathogenic variants in 5 genes explain approximately 50% cases, leaving the other 50% unsolved. We performed whole genome sequencing (WGS) ± RNA sequencing (RNA-seq) in 5 unsolved trios fulfilling the following criteria: (i) clinical diagnosis of classic CdLS, (ii) negative gene panel sequencing from blood and saliva-isolated DNA, (iii) unaffected parents' DNA samples available and (iv) proband's blood-isolated RNA available. A pathogenic de novo mutation (DNM) was observed in a CdLS differential diagnosis gene in 3/5 patients, namely POU3F3, SPEN, and TAF1. In the other two, we identified two distinct deep intronic DNM in NIPBL predicted to create a novel splice site. RT-PCRs and RNA-Seq showed aberrant transcripts leading to the creation of a novel frameshift exon. Our findings suggest the relevance of WGS in unsolved suspected CdLS cases and that deep intronic variants may account for a proportion of them.
Collapse
Affiliation(s)
- Juliette Coursimault
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Kévin Cassinari
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - François Lecoquierre
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Olivier Quenez
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Sophie Coutant
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Céline Derambure
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Myriam Vezain
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Nathalie Drouot
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Gabriella Vera
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anaïs Philippe
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Bérénice Doray
- Service de Génétique Médicale, Centre Hospitalier Universitaire Félix Guyon, Bellepierre Saint Denis, France
| | - Laëtitia Lambert
- Service de Génétique Clinique, CHRU NANCY, F-54000 France, UMR INSERM U 1256 N-GERE, F-54000, Nancy, France
| | - Jamal Ghoumid
- Université de Lille, ULR7364 RADEME, CHU Lille, Clinique de Génétique « Guy Fontaine », and FHU-G4 Génomique, F-59000, Lille, France
| | - Thomas Smol
- Université de Lille, ULR7364 RADEME, CHU Lille, Institut de Génétique Médicale, and FHU-G4 Génomique, F-59000, Lille, France
| | - Mélanie Rama
- Institut de Génétique Médicale, CHU de Lille, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Didier Lacombe
- INSERM U1211, Université de Bordeaux; Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Patricia Fergelot
- INSERM U1211, Université de Bordeaux; Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Pascale Saugier-Veber
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| |
Collapse
|
5
|
Dhindsa RS, Wang Q, Vitsios D, Burren OS, Hu F, DiCarlo JE, Kruglyak L, MacArthur DG, Hurles ME, Petrovski S. A minimal role for synonymous variation in human disease. Am J Hum Genet 2022; 109:2105-2109. [PMID: 36459978 PMCID: PMC9808499 DOI: 10.1016/j.ajhg.2022.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Synonymous mutations change the DNA sequence of a gene without affecting the amino acid sequence of the encoded protein. Although some synonymous mutations can affect RNA splicing, translational efficiency, and mRNA stability, studies in human genetics, mutagenesis screens, and other experiments and evolutionary analyses have repeatedly shown that most synonymous variants are neutral or only weakly deleterious, with some notable exceptions. Based on a recent study in yeast, there have been claims that synonymous mutations could be as important as nonsynonymous mutations in causing disease, assuming the yeast findings hold up and translate to humans. Here, we argue that there is insufficient evidence to overturn the large, coherent body of knowledge establishing the predominant neutrality of synonymous variants in the human genome.
Collapse
Affiliation(s)
- Ryan S. Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA,Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA,Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA,Corresponding author
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
| | - Dimitrios Vitsios
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Oliver S. Burren
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Fengyuan Hu
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - James E. DiCarlo
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Leonid Kruglyak
- Department of Human Genetics and Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Daniel G. MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, NSW, Australia,Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | | | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK,Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia,Corresponding author
| |
Collapse
|
6
|
Synonymous mutation rs1129293 is associated with PIK3CG expression and PI3Kγ activation in patients with chronic Chagas cardiomyopathy. Immunobiology 2022; 227:152242. [PMID: 35870262 DOI: 10.1016/j.imbio.2022.152242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Single nucleotide polymorphisms (SNPs) that do not change the composition of amino acids and cause synonymous mutations (sSNPs) were previously considered to lack any functional roles. However, sSNPs have recently been shown to interfere with protein expression owing to a myriad of factors related to the regulation of transcription, mRNA stability, and protein translation processes. In patients with Chagas disease, the presence of the synonymous mutation rs1129293 in phosphatidylinositol-4,5-bisphosphate 3-kinase gamma (PIK3CG) gene contributes to the development of the chronic Chagas cardiomyopathy (CCC), instead of the digestive or asymptomatic forms. In this study, we aimed to investigate whether rs1129293 is associated with the transcription of PIK3CG mRNA and its activity by quantifying AKT phosphorylation in the heart samples of 26 chagasic patients with CCC. Our results showed an association between rs1129293 and decreased PIK3CG mRNA expression levels in the cardiac tissues of patients with CCC. The phosphorylation levels of AKT, the protein target of PI3K, were also reduced in patients with this mutation, but were not correlated with PI3KCG mRNA expression levels. Moreover, bioinformatics analysis showed that rs1129293 and other SNPs in linkage disequilibrium (LD) were associated with the transcriptional regulatory elements, post-transcriptional modifications, and cell-specific splicing expression of PIK3CG mRNA. Therefore, our data demonstrates that the synonymous SNP rs1129293 is capable of affecting the PIK3CG mRNA expression and PI3Kγ activation.
Collapse
|
7
|
Traynor BJ, Al-Chalabi A. The Neurogenetics Collection: emerging themes and future considerations for the field in Brain. Brain 2022; 145:e31-e35. [PMID: 35403674 PMCID: PMC9630880 DOI: 10.1093/brain/awac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 11/13/2022] Open
Abstract
Genomics has emerged over the last two decades as a fundamental approach to understanding the molecular basis of human diseases. This Collection brings together some recent articles published in Brain, selected to illustrate the impact of genomics on neurology and to highlight emerging themes in the neurogenetics space.
Collapse
Affiliation(s)
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Kings College London, London, SE5 8AF, UK
- King's College Hospital, London, SE5 9RS, UK
| |
Collapse
|
8
|
de Castro VF, Mattos D, de Carvalho FM, Cavalcanti DP, Duenas-Roque MM, Llerena J, Cosentino VR, Honjo RS, Leite JCL, Sanseverino MT, de Souza MPA, Bernardi P, Bolognese AM, Santana da Silva LC, Barbero P, Correia PS, Bueno LSM, Savastano CP, Orioli IM. New SHH and Known SIX3 Variants in a Series of Latin American Patients with Holoprosencephaly. Mol Syndromol 2021; 12:219-233. [PMID: 34421500 DOI: 10.1159/000515044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Holoprosencephaly (HPE) is the failure of the embryonic forebrain to develop into 2 hemispheres promoting midline cerebral and facial defects. The wide phenotypic variability and causal heterogeneity make genetic counseling difficult. Heterozygous variants with incomplete penetrance and variable expressivity in the SHH, SIX3, ZIC2, and TGIF1 genes explain ∼25% of the known causes of nonchromosomal HPE. We studied these 4 genes and clinically described 27 Latin American families presenting with nonchromosomal HPE. Three new SHH variants and a third known SIX3 likely pathogenic variant found by Sanger sequencing explained 15% of our cases. Genotype-phenotype correlation in these 4 families and published families with identical or similar driver gene, mutated domain, conservation of residue in other species, and the type of variant explain the pathogenicity but not the phenotypic variability. Nine patients, including 2 with SHH pathogenic variants, presented benign variants of the SHH, SIX3, ZIC2, and TGIF1 genes with potential alteration of splicing, a causal proposition in need of further studies. Finding more families with the same SIX3 variant may allow further identification of genetic or environmental modifiers explaining its variable phenotypic expression.
Collapse
Affiliation(s)
- Viviane Freitas de Castro
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Daniel Mattos
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Flavia Martinez de Carvalho
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Laboratorio Epidemiol. Malformações Congênitas, IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Milagros M Duenas-Roque
- ECLAMC at Servicio de Genética, Hospital Nacional Edgardo Rebagliati Martins/EsSalud, Lima, Peru
| | - Juan Llerena
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Centro de Genética Médica, IFF/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Pricila Bernardi
- Núcleo de Genética Clínica, Departamento de Clínica Médica/UFSC, Florianópolis, Brazil
| | - Ana Maria Bolognese
- Departamento de Ortodontia, Faculdade de Odontologia/UFRJ, Rio de Janeiro, Brazil
| | - Luiz Carlos Santana da Silva
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,Laboratório de Erros Inatos de Metabolismo, Instituto de Ciências Biológicas/UFP, Belém, Brazil
| | - Pablo Barbero
- RENAC, Centro Nacional de Genética Médica Dr. Eduardo E. Castilla/MS, Buenos Aires, Argentina
| | | | | | | | - Iêda Maria Orioli
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
9
|
Kotulak-Chrząszcz A, Kmieć Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med 2021; 47:106. [PMID: 33907821 PMCID: PMC8057295 DOI: 10.3892/ijmm.2021.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023] Open
Abstract
Cancers of the urinary tract, as well as those of the female and male reproductive systems, account for a large percentage of malignancies worldwide. Mortality is frequently affected by late diagnosis or therapeutic difficulties. The Sonic Hedgehog (SHH) pathway is an evolutionary conserved molecular cascade, which is mainly associated with the development of the central nervous system in fetal life. The present review aimed to provide an in‑depth summary of the SHH signaling pathway, including the characterization of its major components, the mechanism of its upstream regulation and non‑canonical activation, as well as its interactions with other cellular pathways. In addition, the three possible mechanisms of the cellular SHH cascade in cancer tissue are discussed. The aim of the present review was to summarize significant findings with regards to the expression of the SHH pathway components in kidney, bladder, ovarian, cervical and prostate cancer. Reports associated with common deficits and de‑regulations of the SHH pathway were summarized, despite the differences in molecular and histological patterns among these malignancies. However, currently, neither are SHH pathway elements included in panels of prognostic/therapeutic molecular patterns in any of the discussed cancers, nor have the drugs targeting SMO or GLIs been approved for therapy. The findings of the present review may support future studies on the treatment of and/or molecular targets for gynecological and genitourinary cancers.
Collapse
Affiliation(s)
| | | | - Piotr M. Wierzbicki
- Correspondence to: Dr Piotr M. Wierzbicki, Department of Histology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80211 Gdansk, Poland, E-mail:
| |
Collapse
|
10
|
Alonso AM, Diambra L. SARS-CoV-2 Codon Usage Bias Downregulates Host Expressed Genes With Similar Codon Usage. Front Cell Dev Biol 2020; 8:831. [PMID: 32974353 PMCID: PMC7468442 DOI: 10.3389/fcell.2020.00831] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome has spread quickly throughout the world and was declared a pandemic by the World Health Organization (WHO). The pathogenic agent is a new coronavirus (SARS-CoV-2) that infects pulmonary cells with great effectiveness. In this study we focus on the codon composition for the viral protein synthesis and its relationship with the protein synthesis of the host. Our analysis reveals that SARS-CoV-2 preferred codons have poor representation of G or C nucleotides in the third position, a characteristic which could result in an unbalance in the tRNAs pools of the infected cells with serious implications in host protein synthesis. By integrating this observation with proteomic data from infected cells, we observe a reduced translation rate of host proteins associated with highly expressed genes and that they share the codon usage bias of the virus. The functional analysis of these genes suggests that this mechanism of epistasis can contribute to understanding how this virus evades the immune response and the etiology of some deleterious collateral effect as a result of the viral replication. In this manner, our finding contributes to the understanding of the SARS-CoV-2 pathogeny and could be useful for the design of a vaccine based on the live attenuated strategy.
Collapse
Affiliation(s)
- Andres Mariano Alonso
- InTech, Universidad Nacional de San Martin, Chascomús, Argentina
- CONICET, Chascomús, Argentina
| | - Luis Diambra
- CONICET, Chascomús, Argentina
- CREG, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|