1
|
De Winter J, Van de Vondel L, Ermanoska B, Monticelli A, Isapof A, Cohen E, Stojkovic T, Hackman P, Johari M, Palmio J, Waldrop MA, Meyer AP, Nicolau S, Flanigan KM, Töpf A, Diaz-Manera J, Straub V, Longman C, McWilliam CA, Orbach R, Verma S, Laine R, Donkervoort S, Bonnemann CG, Rebelo A, Züchner S, Grider T, Shy ME, Maystadt I, Demurger F, Cairns A, Beecroft S, Folland C, De Ridder W, Ravenscroft G, Bonne G, Udd B, Baets J. Heterozygous loss-of-function variants in SPTAN1 cause an early childhood onset distal myopathy. Genet Med 2025; 27:101399. [PMID: 40023774 DOI: 10.1016/j.gim.2025.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
PURPOSE Heterozygous pathogenic variants in SPTAN1 cause a diverse spectrum of neurogenetic disorders ranging from peripheral and central nervous system involvement to complex syndromic presentations. We set out to investigate the role of SPTAN1 in genetically unsolved hereditary myopathies. METHODS Through international collaboration we identified 14 families with distal weakness and heterozygous SPTAN1 loss-of-function variants. Clinical data, electrophysiology, muscle computed tomography or magnetic resonance imaging, and muscle biopsy findings were collected and standardized. SPTAN1 protein, messenger RNA expression analysis and copy DNA sequencing was performed on muscle tissue from 2 participants. RESULTS Five families showed autosomal dominant mode of inheritance, whereas in 9 patients the variant was shown to be de novo, including 2 pairs of monozygotic twins. In 2 families, further segregation analysis was not possible. All affected participants presented with early childhood-onset distal weakness and foot abnormalities. Muscle magnetic resonance imaging or computed tomography in 10 patients showed fatty infiltration of the distal lower limb anterior compartment and/or selective involvement of the extensor hallucis longus muscle. Muscle biopsy revealed myopathic changes in 7 patients. Finally, we provide proof for nonsense-mediated decay in muscle tissue derived from 2 patients. CONCLUSION We present evidence linking heterozygous SPTAN1 loss-of-function variants to childhood-onset distal myopathy in 14 unrelated families.
Collapse
Affiliation(s)
- Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Biljana Ermanoska
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Alice Monticelli
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Arnaud Isapof
- Centre de Référence des Maladies Neuromusculaires Nord-Est-Ile de France, Hôpital Armand Trousseau, APHP, Paris, France
| | - Enzo Cohen
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Tanya Stojkovic
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France; Centre de Référence des Maladies Neuromusculaires Nord-Est-Ile de France, Hôpital Pitié-Salpêtrière, Institut de Myologie, APHP, Paris, France
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, Helsinki, Finland; Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Johanna Palmio
- Tampere Neuromuscular Center, Tampere University and Tampere University Hospital Tampere, Finland
| | - Megan A Waldrop
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Wexner Medical Center, Ohio State University, Columbus OH
| | - Alayne P Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Stefan Nicolau
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Kevin M Flanigan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Wexner Medical Center, Ohio State University, Columbus OH
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Cheryl Longman
- West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Catherine A McWilliam
- West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Sumit Verma
- Department of Pediatrics and Neurology, Emory University School of Medicine, Atlanta, GA
| | - Regina Laine
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Adriana Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Tiffany Grider
- Neurology, The University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA
| | - Michael E Shy
- Neurology, The University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium; URPHYM, Department of Medicine, UNamur, Namur, Belgium
| | | | - Anita Cairns
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Sarah Beecroft
- Pawsey Supercomputing Research Centre, Kensington, WA, Australia
| | - Chiara Folland
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Willem De Ridder
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Gina Ravenscroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, Helsinki, Finland; Tampere Neuromuscular Center, Tampere University and Tampere University Hospital Tampere, Finland
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
2
|
De Winter J, Van de Vondel L, Ermanoska B, Monticelli A, Isapof A, Cohen E, Stojkovic T, Hackman P, Johari M, Palmio J, Waldrop MA, Meyer AP, Nicolau S, Flanigan KM, Töpf A, Diaz-Manera J, Straub V, Longman C, McWilliam CA, Orbach R, Verma S, Laine R, Donkervoort S, Bonnemann CG, Rebelo A, Züchner S, Grider T, Shy ME, Maystadt I, Demurger F, Cairns A, Beecroft S, Folland C, De Ridder W, Ravenscroft G, Bonne G, Udd B, Baets J. Heterozygous loss-of-function variants in SPTAN1 cause a novel early childhood onset distal myopathy with chronic neurogenic features. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24313872. [PMID: 39371122 PMCID: PMC11451714 DOI: 10.1101/2024.09.23.24313872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Neurogenetic disorders caused by pathogenic variants in four genes encoding non-erythrocytic spectrins ( SPTAN1, SPTBN1, SPTBN2, SPTBN4) range from peripheral and central nervous system involvement to complex syndromic presentations. Heterozygous pathogenic variants in SPTAN1 are exemplary for this diversity with phenotypes spanning almost the entire spectrum. Methods Through international collaboration we identified 14 families with genetically unsolved distal weakness and unreported heterozygous SPTAN1 loss-of-function variants including frameshift, nonsense and splice-acceptor variants. Clinical data, electrophysiology, muscle CT or MRI and muscle biopsy findings were collected and standardized. SPTAN1 protein, mRNA expression analysis and cDNA sequencing was performed on muscle tissue from two patients. Results All 20 patients presented with early childhood onset distal weakness. The severity varied both within families and between different families. Foot abnormalities ranged from hammer toes and pes cavus to distal arthrogryposis. Electrophysiology showed mixed myogenic and neurogenic features. Muscle MRI or CT in 10 patients showed fatty infiltration of the distal lower limb anterior compartment and/or selective involvement of the extensor hallucis longus muscle. Muscle biopsy revealed myopathic changes with mild dystrophic and chronic neurogenic changes in 7 patients. Finally, we provide proof for nonsense mediated decay in tissues derived from two patients. Conclusions We provide evidence for the association of SPTAN1 loss-of-function variants with childhood onset distal myopathy in 14 families. This finding extends the phenotypic spectrum of SPTAN1 loss-of-function variants ranging from intellectual disability to distal weakness with a predominant myogenic cause. KEY MESSAGES SPTAN1 loss-of-function variants, including frameshift, nonsense and splice site variants cause a novel childhood onset distal weakness syndrome with primarily skeletal muscle involvement. Hereditary motor neuropathies and distal myopathic disorders present a well-known diagnostic challenge as they demonstrate substantial clinical and genetic overlap. The emergence of SPTAN1 loss-of-function variants serves as a noteworthy example, highlighting a growing convergence in the spectrum of genotypes linked to both hereditary motor neuropathies and distal myopathies.
Collapse
|
3
|
Lorenzo DN, Edwards RJ, Slavutsky AL. Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci 2023; 24:195-212. [PMID: 36697767 PMCID: PMC10598481 DOI: 10.1038/s41583-022-00674-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Spectrins are cytoskeletal proteins that are expressed ubiquitously in the mammalian nervous system. Pathogenic variants in SPTAN1, SPTBN1, SPTBN2 and SPTBN4, four of the six genes encoding neuronal spectrins, cause neurological disorders. Despite their structural similarity and shared role as molecular organizers at the cell membrane, spectrins vary in expression, subcellular localization and specialization in neurons, and this variation partly underlies non-overlapping disease presentations across spectrinopathies. Here, we summarize recent progress in discerning the local and long-range organization and diverse functions of neuronal spectrins. We provide an overview of functional studies using mouse models, which, together with growing human genetic and clinical data, are helping to illuminate the aetiology of neurological spectrinopathies. These approaches are all critical on the path to plausible therapeutic solutions.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia L Slavutsky
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Progressive Ataxia, Memory Impairments, and Seizure Episodes in Spna2 R1098Q Mouse Variant Affecting Alpha II Spectrin's Scaffold Stability. Brain Sci 2023; 13:brainsci13020261. [PMID: 36831804 PMCID: PMC9953789 DOI: 10.3390/brainsci13020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
SPTAN1 spectrinopathies refer to a group of rare, inherited diseases associated with damage to non-erythrocytic α-II spectrin (α-II). They are linked to a range of mild to severe neuropathologies of the central and peripheral nervous systems, such as early infantile epileptic encephalopathy type 5, cerebellar ataxia, inherited peripheral neuropathy, and spastic paraplegia. Modeling human SPTAN1 encephalopathies in laboratory animals has been challenging partially because no haploinsufficiency-related phenotypes unfold in heterozygous Spna2 deficient mice nor stable transgenic lines of mice mimicking missense human SPTAN1 mutations have been created to date. Here, we assess the motor and memory performance of a dominant-negative murine Spna2 (SPTAN1) variant carrying a spontaneous point mutation replacing an arginine 1098 in the repeat 10th of α-II with the glutamine (R1098Q). By comparing groups of heterozygous R1098Q mice at different ages, we find evidence for progressive ataxia, and age-related deterioration of motor performance and muscle strength. We also document stress-induced, long-lasting seizure episodes of R1098Q mice and their poor performance in novel object recognition memory tests. Overall, we propose that the complexity of neuropathology-related phenotypes presented by the R1098Q mice recapitulates a number of symptoms observed in human patients carrying SPTAN1 mutations affecting α-II scaffold stability. This makes the R1098Q mice a valuable animal model for preclinical research.
Collapse
|
5
|
Van de Vondel L, De Winter J, Beijer D, Coarelli G, Wayand M, Palvadeau R, Pauly MG, Klein K, Rautenberg M, Guillot-Noël L, Deconinck T, Vural A, Ertan S, Dogu O, Uysal H, Brankovic V, Herzog R, Brice A, Durr A, Klebe S, Stock F, Bischoff AT, Rattay TW, Sobrido MJ, De Michele G, De Jonghe P, Klopstock T, Lohmann K, Zanni G, Santorelli FM, Timmerman V, Haack TB, Züchner S, Schüle R, Stevanin G, Synofzik M, Basak AN, Baets J. De Novo and Dominantly Inherited SPTAN1 Mutations Cause Spastic Paraplegia and Cerebellar Ataxia. Mov Disord 2022; 37:1175-1186. [PMID: 35150594 DOI: 10.1002/mds.28959] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pathogenic variants in SPTAN1 have been linked to a remarkably broad phenotypical spectrum. Clinical presentations include epileptic syndromes, intellectual disability, and hereditary motor neuropathy. OBJECTIVES We investigated the role of SPTAN1 variants in rare neurological disorders such as ataxia and spastic paraplegia. METHODS We screened 10,000 NGS datasets across two international consortia and one local database, indicative of the level of international collaboration currently required to identify genes causative for rare disease. We performed in silico modeling of the identified SPTAN1 variants. RESULTS We describe 22 patients from 14 families with five novel SPTAN1 variants. Of six patients with cerebellar ataxia, four carry a de novo SPTAN1 variant and two show a sporadic inheritance. In this group, one variant (p.Lys2083del) is recurrent in four patients. Two patients have novel de novo missense mutations (p.Arg1098Cys, p.Arg1624Cys) associated with cerebellar ataxia, in one patient accompanied by intellectual disability and epilepsy. We furthermore report a recurrent missense mutation (p.Arg19Trp) in 15 patients with spastic paraplegia from seven families with a dominant inheritance pattern in four and a de novo origin in one case. One further patient carrying a de novo missense mutation (p.Gln2205Pro) has a complex spastic ataxic phenotype. Through protein modeling we show that mutated amino acids are located at crucial interlinking positions, interconnecting the three-helix bundle of a spectrin repeat. CONCLUSIONS We show that SPTAN1 is a relevant candidate gene for ataxia and spastic paraplegia. We suggest that for the mutations identified in this study, disruption of the interlinking of spectrin helices could be a key feature of the pathomechanism. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Dr John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giulia Coarelli
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Melanie Wayand
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Robin Palvadeau
- Koc University, School of Medicine, Suna and Inan Kirac Foundation, Istanbul, Turkey
| | - Martje G Pauly
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katrin Klein
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Maren Rautenberg
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany
| | - Léna Guillot-Noël
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Tine Deconinck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - Atay Vural
- School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
| | - Sibel Ertan
- School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
| | - Okan Dogu
- Department of Neurology, School of Medicine, Mersin University, Mersin, Turkey
| | - Hilmi Uysal
- Department of Neurology, School of Medicine, Akdeniz University, Antalya, Turkey
| | - Vesna Brankovic
- Clinic for Child Neurology and Psychiatry, University of Belgrade, Belgrade, Serbia
| | - Rebecca Herzog
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Alexis Brice
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Alexandra Durr
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Friedrich Stock
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | | | - Tim W Rattay
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - María-Jesús Sobrido
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Neurogenetics Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario, SERGAS, Santiago de Compostela, Spain
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Peter De Jonghe
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Vincent Timmerman
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Stephan Züchner
- Dr John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Giovanni Stevanin
- Sorbonne University, ICM-Paris Brain Institute, INSERM, CNRS, APHP, Pitié Salpêtrière Hospital, Paris, France.,Paris Sciences Lettres Research University, Ecole Pratique des Hautes Etudes, Paris, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research (HIH), Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - A Nazli Basak
- Koc University, School of Medicine, Suna and Inan Kirac Foundation, Istanbul, Turkey
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
6
|
SPTAN1 variants likely cause autosomal recessive complicated hereditary spastic paraplegia. J Hum Genet 2021; 67:165-168. [PMID: 34526651 DOI: 10.1038/s10038-021-00975-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/09/2022]
Abstract
Heterozygous mutations in SPTAN1 are associated with a broad phenotypical spectrum ranging from axonal neuropathy phenotypes to neurodevelopmental phenotypes with or without epilepsy. Recently, biallelic mutations in SPTAN1 were reported as a potential cause of autosomal recessive pure hereditary spastic paraplegia (HSP). However, no further HSP cases with biallelic SPTAN1 mutations have been reported. Herein, we report the clinical and genetic findings of a patient with complicated HSP likely caused by a novel homozygous SPTAN1 mutation. A patient with complicated HSP from a consanguineous family was recruited. The proband underwent detailed neurological examinations. Homozygosity mapping was performed in the proband and her healthy sister. Whole exome sequencing was performed in the proband. Our patient had early onset motor symptoms with upper motor neuron paralysis and intellectual disability, which is compatible with complicated HSP. Genetic analysis identified a rare homozygous missense mutation in SPTAN1 (c.4162A>G, p.I1388V), which was predicted to be deleterious by in silico tools. Her healthy parents and sister all carried the heterozygous mutation. Our results provided further support for the association of biallelic SPTAN1 variants with HSP and suggested that screening for the SPTAN1 gene should be considered not only in patients with pure HSP but also in patients with complicated HSP.
Collapse
|
7
|
Fujitani M, Otani Y, Miyajima H. Pathophysiological Roles of Abnormal Axon Initial Segments in Neurodevelopmental Disorders. Cells 2021; 10:2110. [PMID: 34440880 PMCID: PMC8392614 DOI: 10.3390/cells10082110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/17/2022] Open
Abstract
The 20-60 μm axon initial segment (AIS) is proximally located at the interface between the axon and cell body. AIS has characteristic molecular and structural properties regulated by the crucial protein, ankyrin-G. The AIS contains a high density of Na+ channels relative to the cell body, which allows low thresholds for the initiation of action potential (AP). Molecular and physiological studies have shown that the AIS is also a key domain for the control of neuronal excitability by homeostatic mechanisms. The AIS has high plasticity in normal developmental processes and pathological activities, such as injury, neurodegeneration, and neurodevelopmental disorders (NDDs). In the first half of this review, we provide an overview of the molecular, structural, and ion-channel characteristics of AIS, AIS regulation through axo-axonic synapses, and axo-glial interactions. In the second half, to understand the relationship between NDDs and AIS, we discuss the activity-dependent plasticity of AIS, the human mutation of AIS regulatory genes, and the pathophysiological role of an abnormal AIS in NDD model animals and patients. We propose that the AIS may provide a potentially valuable structural biomarker in response to abnormal network activity in vivo as well as a new treatment concept at the neural circuit level.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|