1
|
Mofatteh M, Mohamed A, Mashayekhi MS, Skandalakis GP, Neudorfer C, Arfaie S, MohanaSundaram A, Sabahi M, Anand A, Aboulhosn R, Liao X, Horn A, Ashkan K. Deep brain stimulation of the hypothalamic region: a systematic review. Acta Neurochir (Wien) 2025; 167:33. [PMID: 39904782 PMCID: PMC11794333 DOI: 10.1007/s00701-025-06430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Deep brain stimulation (DBS) has been successfully used for the treatment of circuitopathies including movement, anxiety, and behavioral disorders. The hypothalamus is a crucial integration center for many peripheral and central pathways relating to cardiovascular, metabolic, and behavioral functions and constitutes a potential target for neuromodulation in treatment-refractory conditions. To conduct a systematic review, investigating hypothalamic targets in DBS, their indications, and the primary clinical findings. METHODS PubMed, Scopus, and Web of Science databases were searched in accordance with the PRISMA guideline to identify papers published in English studying DBS of the hypothalamus in humans. RESULTS After screening 3,148 papers, 34 studies consisting of 412 patients published over two decades were included in the final review. Hypothalamic DBS was indicated in refractory headaches (n = 238, 57.8%), aggressive behavior (n = 100, 24.3%), mild Alzheimer's disease (n = 58, 14.1%), trigeminal neuralgia in multiple sclerosis (n = 5, 1.2%), Prader-Willi syndrome (n = 4, 0.97%), and atypical facial pain (n = 3, 0.73%). The posterior hypothalamus was the most common DBS target site across 30 studies (88.2%). 262 (63.6%) participants were males, and 110 (26.7%) were females. 303 (73.5%) patients were adults whereas 33 (8.0%) were pediatrics. The lowest mean age of participants was 15.25 ± 4.6 years for chronic refractory aggressiveness, and the highest was 68.5 ± 7.9 years in Alzheimer's disease patients. The mean duration of the disease ranged from 2.2 ± 1.7 (mild Alzheimer's disease) to 19.8 ± 10.1 years (refractory headaches). 213 (51.7%) patients across 29 studies (85.3%) reported symptom improvements which ranged from 23.1% to 100%. 25 (73.5%) studies reported complications, most of which were associated with higher voltage stimulations. CONCLUSIONS DBS of the hypothalamus is feasible in selected patients with various refractory conditions ranging from headaches to aggression in both pediatric and adult populations. Future large-scale studies with long-term follow-up are required to validate the safety and efficacy data and extend these findings.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- Neuro International Collaboration (NIC), London, UK.
| | - Abdulkadir Mohamed
- Medical Sciences Division, University of Oxford, Oxford, UK
- Neuro International Collaboration (NIC), Oxford, UK
| | - Mohammad Sadegh Mashayekhi
- Faculty of Medicine, Division of Neurosurgery, University of Ottawa, Ottawa, ON, Canada
- Neuro International Collaboration (NIC), Vancouver, Ottawa, ON, Canada
| | - Georgios P Skandalakis
- Department of Neurosurgery, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Clemens Neudorfer
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, corporate member of, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Neurosurgery, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Neuro International Collaboration (NIC), Montreal, QC, Canada
| | | | - Mohammadmahdi Sabahi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
| | - Ayush Anand
- Koirala Institute of Health Sciences, B. P, Dharan, Nepal
| | | | - Xuxing Liao
- Department of Neurosurgery, First People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Keyoumars Ashkan
- Neuro International Collaboration (NIC), London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- King's Health Partners Academic Health Sciences Centre, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Naesström M, Blomstedt P, Johansson V. Deep Brain Stimulation in the Bed Nucleus of Stria Terminalis and Medial Forebrain Bundle in Two Patients With Treatment-Resistant Depression and Generalized Anxiety Disorder-A Long-Term Follow-Up. Clin Case Rep 2025; 13:e70179. [PMID: 39917375 PMCID: PMC11798865 DOI: 10.1002/ccr3.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
This case report presents positive outcomes from deep brain stimulation (DBS) targeting the bed nucleus of the stria terminalis (BNST) in two patients with treatment-resistant depression and generalized anxiety disorder. DBS effects in the medial forebrain bundle (MFB) area were unclear. Further research into DBS's efficacy when comorbid anxiety is present is required.
Collapse
Affiliation(s)
- Matilda Naesström
- Department of Clinical Sciences, PsychiatryUmeå UniversityUmeåSweden
| | - Patric Blomstedt
- Department of Clinical Sciences, NeurosciencesUmeå UniversityUmeåSweden
| | - Viktoria Johansson
- Department of Clinical Sciences, PsychiatryUmeå UniversityUmeåSweden
- Centre for Pharmacoepidemiology, Department of Medicine SolnaKarolinska InstitutetStockholmSweden
| |
Collapse
|
3
|
Stawiski M, Bucciarelli V, Vogel D, Hemm S. Optimizing neuroscience data management by combining REDCap, BIDS and SQLite: a case study in Deep Brain Stimulation. Front Neuroinform 2024; 18:1435971. [PMID: 39301120 PMCID: PMC11410584 DOI: 10.3389/fninf.2024.1435971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Neuroscience studies entail the generation of massive collections of heterogeneous data (e.g. demographics, clinical records, medical images). Integration and analysis of such data in research centers is pivotal for elucidating disease mechanisms and improving clinical outcomes. However, data collection in clinics often relies on non-standardized methods, such as paper-based documentation. Moreover, diverse data types are collected in different departments hindering efficient data organization, secure sharing and compliance to the FAIR (Findable, Accessible, Interoperable, Reusable) principles. Henceforth, in this manuscript we present a specialized data management system designed to enhance research workflows in Deep Brain Stimulation (DBS), a state-of-the-art neurosurgical procedure employed to treat symptoms of movement and psychiatric disorders. The system leverages REDCap to promote accurate data capture in hospital settings and secure sharing with research institutes, Brain Imaging Data Structure (BIDS) as image storing standard and a DBS-specific SQLite database as comprehensive data store and unified interface to all data types. A self-developed Python tool automates the data flow between these three components, ensuring their full interoperability. The proposed framework has already been successfully employed for capturing and analyzing data of 107 patients from 2 medical institutions. It effectively addresses the challenges of managing, sharing and retrieving diverse data types, fostering advancements in data quality, organization, analysis, and collaboration among medical and research institutions.
Collapse
Affiliation(s)
- Marc Stawiski
- Neuroengineering Group, Institute for Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Vittoria Bucciarelli
- Neuroengineering Group, Institute for Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Dorian Vogel
- Neuroengineering Group, Institute for Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Simone Hemm
- Neuroengineering Group, Institute for Medical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| |
Collapse
|
4
|
Skandalakis GP, Neudorfer C, Payne CA, Bond E, Tavakkoli AD, Barrios-Martinez J, Trutti AC, Koutsarnakis C, Coenen VA, Komaitis S, Hadjipanayis CG, Stranjalis G, Yeh FC, Banihashemi L, Hong J, Lozano AM, Kogan M, Horn A, Evans LT, Kalyvas A. Establishing connectivity through microdissections of midbrain stimulation-related neural circuits. Brain 2024; 147:3083-3098. [PMID: 38808482 PMCID: PMC11370807 DOI: 10.1093/brain/awae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.
Collapse
Affiliation(s)
- Georgios P Skandalakis
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Caitlin A Payne
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Evalina Bond
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Armin D Tavakkoli
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Anne C Trutti
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam 15926, The Netherlands
| | - Christos Koutsarnakis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg 79106, Germany
- Medical Faculty of the University of Freiburg, Freiburg 79110, Germany
- Center for Deep Brain Stimulation, Medical Center of the University of Freiburg, Freiburg 79106, Germany
| | - Spyridon Komaitis
- Queens Medical Center, Nottingham University Hospitals NHS Foundation Trust, Nottingham NG7 2UH, UK
| | | | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer Hong
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Linton T Evans
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Aristotelis Kalyvas
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
5
|
Meyer GM, Hollunder B, Li N, Butenko K, Dembek TA, Hart L, Nombela C, Mosley P, Akram H, Acevedo N, Borron BM, Chou T, Castaño Montoya JP, Strange B, Barcia JA, Tyagi H, Castle DJ, Smith AH, Choi KS, Kopell BH, Mayberg HS, Sheth SA, Goodman WK, Leentjens AFG, Richardson RM, Rossell SL, Bosanac P, Cosgrove GR, Kuhn J, Visser-Vandewalle V, Figee M, Dougherty DD, Siddiqi SH, Zrinzo L, Joyce E, Baldermann JC, Fox MD, Neudorfer C, Horn A. Deep Brain Stimulation for Obsessive-Compulsive Disorder: Optimal Stimulation Sites. Biol Psychiatry 2024; 96:101-113. [PMID: 38141909 PMCID: PMC11190041 DOI: 10.1016/j.biopsych.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.
Collapse
Affiliation(s)
- Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Barbara Hollunder
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lauren Hart
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina Nombela
- Biological and Health Psychology, School of Psychology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Philip Mosley
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia; Neurosciences Queensland, St. Andrew's War Memorial Hospital, Spring Hill, Queensland, Australia; Queensland Brain Institute, University of Queensland, St. Lucia, Brisbane, Queensland, Australia; Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Herston, Queensland, Australia
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Nicola Acevedo
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia; St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Benjamin M Borron
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tina Chou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juan Pablo Castaño Montoya
- Department of Neurosurgery, Hospital Clínico San Carlos, Instituto de Investigacion Sanitaria San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Bryan Strange
- Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Hospital Clínico San Carlos, Instituto de Investigacion Sanitaria San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Himanshu Tyagi
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - David J Castle
- University of Tasmania and Centre for Mental Health Service Innovation, Tasmania, Australia; State-wide Mental Health Service, Tasmania, Australia
| | - Andrew H Smith
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sameer A Sheth
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, Texas
| | - Wayne K Goodman
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, Texas
| | - Albert F G Leentjens
- Department of Psychiatry, Maastricht University Medical Center, Maastricht, the Netherlands
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susan L Rossell
- Centre for Mental Health, Swinburne University, Melbourne, Victoria, Australia; St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Peter Bosanac
- St. Vincent's Hospital, Melbourne, Victoria, Australia; Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - G Rees Cosgrove
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Eileen Joyce
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
In A, Strohman A, Payne B, Legon W. Low-intensity focused ultrasound to the posterior insula reduces temporal summation of pain. Brain Stimul 2024; 17:911-924. [PMID: 39089647 PMCID: PMC11452899 DOI: 10.1016/j.brs.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The insula and dorsal anterior cingulate cortex (dACC) are core brain regions involved in pain processing and central sensitization, a shared mechanism across various chronic pain conditions. Methods to modulate these regions may serve to reduce central sensitization, though it is unclear which target may be most efficacious for different measures of central sensitization. OBJECTIVE/HYPOTHESIS Investigate the effect of low-intensity focused ultrasound (LIFU) to the anterior insula (AI), posterior insula (PI), or dACC on conditioned pain modulation (CPM) and temporal summation of pain (TSP). METHODS N = 16 volunteers underwent TSP and CPM pain tasks pre/post a 10 min LIFU intervention to either the AI, PI, dACC or Sham stimulation. Pain ratings were collected pre/post LIFU. RESULTS Only LIFU to the PI significantly attenuated pain ratings during the TSP protocol. No effects were found for the CPM task for any of the LIFU targets. LIFU pressure modulated group means but did not affect overall group differences. CONCLUSIONS LIFU to the PI reduced temporal summation of pain. This may, in part, be due to dosing (pressure) of LIFU. Inhibition of the PI with LIFU may be a future potential therapy in chronic pain populations demonstrating central sensitization. The minimal effective dose of LIFU for efficacious neuromodulation will help to translate LIFU for therapeutic options.
Collapse
Affiliation(s)
- Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA.
| |
Collapse
|
7
|
Ahn SH, Koh CS, Park M, Jun SB, Chang JW, Kim SJ, Jung HH, Jeong J. Liquid Crystal Polymer-Based Miniaturized Fully Implantable Deep Brain Stimulator. Polymers (Basel) 2023; 15:4439. [PMID: 38006163 PMCID: PMC10675735 DOI: 10.3390/polym15224439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
A significant challenge in improving the deep brain stimulation (DBS) system is the miniaturization of the device, aiming to integrate both the stimulator and the electrode into a compact unit with a wireless charging capability to reduce invasiveness. We present a miniaturized, fully implantable, and battery-free DBS system designed for rats, using a liquid crystal polymer (LCP), a biocompatible and long-term reliable material. The system integrates the simulator circuit, the receiver coil, and a 20 mm long depth-type microelectrode array in a dome-shaped LCP package that is 13 mm in diameter and 5 mm in height. Wireless powering and control via an inductive link enable device miniaturization, allowing for full implantation and, thus, the free behavior of untethered animals. The eight-channel stimulation electrode array was microfabricated on an LCP substrate to form a multilayered system substrate, which was monolithically encapsulated by a domed LCP lid using a specialized spot-welding process. The device functionality was validated via an in vivo animal experiment using a neuropathic pain model in rats. This experiment demonstrated an increase in the mechanical withdrawal threshold of the rats with microelectrical stimulation delivered using the fully implanted device, highlighting the effectiveness of the system.
Collapse
Affiliation(s)
- Seung-Hee Ahn
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sung June Kim
- Department of Electrical and Computer Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Joonsoo Jeong
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
8
|
Lead-DBS v3.0: Mapping deep brain stimulation effects to local anatomy and global networks. Neuroimage 2023; 268:119862. [PMID: 36610682 PMCID: PMC10144063 DOI: 10.1016/j.neuroimage.2023.119862] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics.
Collapse
|
9
|
Shu Q, Wang SY, Chen PP, Zhang F, Wang QY, Wei X, Zhou J, Zhou X, Yu Q, Cai RL. Glutamatergic neurons in lateral hypothalamus play a vital role in acupuncture preconditioning to alleviate MIRI. J Neurophysiol 2023; 129:320-332. [PMID: 36541603 DOI: 10.1152/jn.00424.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) has high morbidity and mortality worldwide. Increasing evidence has shown that electroacupuncture (EA) plays a critical role in alleviating MIRI. The aim of this study is to investigate whether glutamatergic neurons in the lateral hypothalamus (LH) have vital effect on MIRI as well as the underlying mechanism during the EA pretreatment. The MIRI model was established by ligating the left anterior descending (LAD) coronary artery for 30 min followed by reperfusion for 2 h. Chemogenetics, electrocardiogram (ECG) recording, ELISA, multichannel physiology recording, and immunofluorescence staining methods were combined to demonstrate that firing frequencies of neurons in the LH and expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the percentage of infarct size and the levels of cardiac troponin I (cTnI) and creatine kinase isoenzymes (CK-MB) were similar to inhibition of glutamatergic neurons in LH, also attenuated morphology of myocardial tissue was induced by MIRI. However, activation of glutamatergic neurons in LH weakened the above effects of EA pretreatment.NEW & NOTEWORTHY This study demonstrates that EA preconditioning can attenuate myocardial injury for MIRI, which is similar to inhibition of glutamatergic neurons in LH. However, chemical activation of glutamatergic neurons in LH attenuates the protective effect of EA pretreatment. These findings help better understand the mechanisms of EA to regulate cardiac function.
Collapse
Affiliation(s)
- Qi Shu
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Shuai-Ya Wang
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Pian-Pian Chen
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Fan Zhang
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Qian-Yi Wang
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Xia Wei
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Jie Zhou
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Zhou
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Qing Yu
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| | - Rong-Lin Cai
- Institute of Acupuncture and Moxibustion Meridian, Medical College of Acu-Moxi, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Ríos AS, Oxenford S, Neudorfer C, Butenko K, Li N, Rajamani N, Boutet A, Elias GJB, Germann J, Loh A, Deeb W, Wang F, Setsompop K, Salvato B, Almeida LBD, Foote KD, Amaral R, Rosenberg PB, Tang-Wai DF, Wolk DA, Burke AD, Salloway S, Sabbagh MN, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Anderson WS, Mari Z, Ponce FA, Lozano AM, Horn A. Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer's disease. Nat Commun 2022; 13:7707. [PMID: 36517479 PMCID: PMC9751139 DOI: 10.1038/s41467-022-34510-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Deep brain stimulation (DBS) to the fornix is an investigational treatment for patients with mild Alzheimer's Disease. Outcomes from randomized clinical trials have shown that cognitive function improved in some patients but deteriorated in others. This could be explained by variance in electrode placement leading to differential engagement of neural circuits. To investigate this, we performed a post-hoc analysis on a multi-center cohort of 46 patients with DBS to the fornix (NCT00658125, NCT01608061). Using normative structural and functional connectivity data, we found that stimulation of the circuit of Papez and stria terminalis robustly associated with cognitive improvement (R = 0.53, p < 0.001). On a local level, the optimal stimulation site resided at the direct interface between these structures (R = 0.48, p < 0.001). Finally, modulating specific distributed brain networks related to memory accounted for optimal outcomes (R = 0.48, p < 0.001). Findings were robust to multiple cross-validation designs and may define an optimal network target that could refine DBS surgery and programming.
Collapse
Grants
- P30 AG066507 NIA NIH HHS
- R01 NS127892 NINDS NIH HHS
- R01 MH113929 NIMH NIH HHS
- R01 MH130666 NIMH NIH HHS
- P30 AG072979 NIA NIH HHS
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Received grants and personal fees from Medtronic and Boston Scientific, grants from Abbott/St. Jude, and Functional Neuromodulation outside the submitted work.
- Received grants from Functional Neuromodulation during conduct of this study, grants and personal fees from Avid/Lily, and Merck, personal fees from Jannsen, GE Healthcare, Biogen and Neuronix outside the submitted work.
- Receives personal fees from Elsai, Lilly, Roche Novartis and Biogen outside the submitted work.
- Received personal fees from Allergan, Biogen, Roche-Genentech, Cortexyme, Bracket, Sanofi, and other type of support from Brain Health Inc and uMethod Health outside of the submitted work.
- Received grants from Functional Neuromodulation Inc. during conduct of this study, from Avanir and Eli Lily and NFL Benefits Office outside of the submitted work.
- Received grants from NIH, Tourette Association of America Grant, Parkinson’s Alliance, Smallwood Foundation, and personal fees from Parkinson’s Foundation Medical Director, Books4Patients, American Academy of Neurology, Peerview, WebMD/Medscape, Mededicus, Movement Disorders Society, Taylor and Francis, Demos, Robert Rose and non-financial support from Medtronic outside of the submitted work.
- Received grants from Medtronic and Functional Neuromodulation during conduct of this study, personal fees from Medtronic, St. Jude, Boston Scientific, and Functional Neuromodulation outside of submitted work
- Deutsches Zentrum für Luft- und Raumfahrt (German Centre for Air and Space Travel)
- National Institutes of Health (R01 13478451, 1R01NS127892-01 & 2R01 MH113929) New Venture Fund (FFOR Seed Grant).
Collapse
Affiliation(s)
- Ana Sofía Ríos
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin Butenko
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, M5T1W7, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Jurgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Wissam Deeb
- UMass Chan Medical School, Department of Neurology, Worcester, MA, 01655, USA
- UMass Memorial Health, Department of Neurology, Worcester, MA, 01655, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bryan Salvato
- University of Florida Health Jacksonville, Jacksonville, FL, USA
| | - Leonardo Brito de Almeida
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Robert Amaral
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David F Tang-Wai
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Department of Medicine, Division of Neurology, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Memory & Aging Program, Butler Hospital, Providence, USA
| | | | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | | | - Zoltan Mari
- Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Kang J, Cao L, Yuan T, Jin L, He Y, Liu X, Zhang C, Chen N, Ma G, Qiao N, Zhang B, Wu W, Shi Y, Gao H, Li C, Zhang Y, Zuo Z, Gui S. Fornix alterations induce the disruption of default mode network in patients with adamantinomatous craniopharyngiomas. Neuroimage Clin 2022; 36:103215. [PMID: 36201952 PMCID: PMC9668598 DOI: 10.1016/j.nicl.2022.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Adamantinomatous craniopharyngioma (ACPs) are rare embryonic tumors and often involve the hypothalamus. The underlying neural substrate of the hypothalamic involvement (HI)-related cognitive decline in patients with ACP is still unclear. We aimed to combine the multi-modal neuroimaging and histological characteristics of the ACP to explore the potential neural substrate of the HI-related cognitive decline. 45 patients with primary ACPs (invasive, 23; noninvasive, 22) and 52 healthy control subjects (HCs) were admitted to the cross-sectional study. No significant difference in cognitive domains was observed between HCs and patients with noninvasive ACPs (NACP). Patients with invasive ACPs (IACP) showed significantly lower working memory performance (WM, p = 0.002) than patients with NACP. The WM decline was correlated with the disruption of the medial temporal lobe (MTL) subsystem in the default mode network (DMN) (r = 0.45, p = 0.004). The increased radial diffusivity of the fornix, indicating demyelinating process, was correlated with the disruption of the MTL subsystem (r = -0.48, p = 0.002). Our study demonstrated that the fornix alterations link DMN disruption to HI-related cognitive decline in patients with ACPs. ACPs that invade the hypothalamus can provide a natural disease model to investigate the potential neural substrate of HI-related cognitive decline.
Collapse
Affiliation(s)
- Jie Kang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lei Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Taoyang Yuan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lu Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjiao He
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing Key Brain Tumor Laboratory, Beijing, China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Brain Tumor Center, Beijing Institute for Brain Disorders, Beijing Key Brain Tumor Laboratory, Beijing, China
| | - Cuiping Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Nan Chen
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, 100096 Beijing, China
| | - Guofo Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Qiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bochao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wentao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanyu Shi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China,Corresponding authors at: Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China (S. Gui). State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, No.15 Datun Road, Chaoyang District, Beijing, China (Z. Zuo).
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Corresponding authors at: Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China (S. Gui). State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, No.15 Datun Road, Chaoyang District, Beijing, China (Z. Zuo).
| |
Collapse
|
13
|
Li LM, Vichayanrat E, Del Giovane M, Lai HHL, Iodice V. Autonomic dysfunction after moderate-to-severe traumatic brain injury: symptom spectrum and clinical testing outcomes. BMJ Neurol Open 2022; 4:e000308. [PMID: 35530658 PMCID: PMC9039351 DOI: 10.1136/bmjno-2022-000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Background Survivors of moderate-to-severe traumatic brain injury (msTBI) frequently experience troublesome unexplained somatic symptoms. Autonomic dysfunction may contribute to these symptoms. However, there is no previous study of clinical subjective and objective autonomic dysfunction in msTBI. Methods We present results from two groups of patients with msTBI. The first, a case–control comparative study, comprises prospectively recruited msTBI outpatients, in whom we measured burden of autonomic symptoms using the Composite Autonomic Symptom Score (COMPASS31) questionnaire. The second, a descriptive case series, comprises retrospectively identified msTBI outpatients who had formal clinical autonomic function testing at a national referral autonomics unit. Results Group 1 comprises 39 patients with msTBI (10F:20M, median age 40 years, range 19–76), median time from injury 19 months (range 6–299) and 44 controls (22F:22M, median age 45, range 25–71). Patients had significantly higher mean weighted total COMPASS-31 score than controls (p<0.001), and higher gastrointestinal, orthostatic and secretomotor subscores (corrected p<0.05). Total COMPASS31 score inversely correlated with subjective rating of general health (p<0.001, rs=−0.84). Group 2 comprises 18 patients with msTBI (7F:11M, median age 44 years, range 21–64), median time from injury 57.5 months (range 2–416). Clinical autonomic function testing revealed a broad spectrum of autonomic dysfunction in 13/18 patients. Conclusions There is clinically relevant autonomic dysfunction after msTBI, even at the chronic stage. We advocate for routine enquiry about potential autonomic symptoms, and demonstrate the utility of formal autonomic testing in providing diagnoses. Larger prospective studies are warranted, which should explore the causes and clinical correlates of post-TBI autonomic dysfunction.
Collapse
Affiliation(s)
- Lucia M Li
- Division of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Ekawat Vichayanrat
- Autonomics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Martina Del Giovane
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Helen Hoi Lun Lai
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London, UK
| | - Valeria Iodice
- Autonomics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
14
|
Parvizi J, Veit MJ, Barbosa DA, Kucyi A, Perry C, Parker JJ, Shivacharan RS, Chen F, Yih J, Gross JJ, Fisher R, McNab JA, Falco-Walter J, Halpern CH. Complex negative emotions induced by electrical stimulation of the human hypothalamus. Brain Stimul 2022; 15:615-623. [DOI: 10.1016/j.brs.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022] Open
|
15
|
Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcriptomics. Cancers (Basel) 2022; 14:cancers14030464. [PMID: 35158732 PMCID: PMC8833690 DOI: 10.3390/cancers14030464] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Brain imaging, specifically magnetic resonance imaging (MRI), plays a key role in the clinical and research aspects of neuro-oncology. Novel neuroimaging techniques enable the transformation of a brain MRI into a so-called average brain. This allows projects using already acquired brain MRIs to perform group analyses and draw conclusions. Once the data are in this average brain, several types of analyses can be performed. For example, determining the most vulnerable locations for certain tumor types or perhaps even the underlying circuitry and gene expression that might cause predisposition to tumor growth. This information may further our understanding of tumor behavior, leading to better patient counseling, surgery timing, and treatment monitoring. Abstract Neuro-oncology research is broad and includes several branches, one of which is neuroimaging. Magnetic resonance imaging (MRI) is instrumental for the diagnosis and treatment monitoring of patients with brain tumors. Most commonly, structural and perfusion MRI sequences are acquired to characterize tumors and understand their behaviors. Thanks to technological advances, structural brain MRI can now be transformed into a so-called average brain accounting for individual morphological differences, which enables retrospective group analysis. These normative analyses are uncommonly used in neuro-oncology research. Once the data have been normalized, voxel-wise analyses and spatial mapping can be performed. Additionally, investigations of underlying connectomics can be performed using functional and structural templates. Additionally, a recently available template of spatial transcriptomics has enabled the assessment of associated gene expression. The few published normative analyses have shown relationships between tumor characteristics and spatial localization, as well as insights into the circuitry associated with epileptogenic tumors and depression after cingulate tumor resection. The wide breadth of possibilities with normative analyses remain largely unexplored, specifically in terms of connectomics and imaging transcriptomics. We provide a framework for performing normative analyses in oncology while also highlighting their limitations. Normative analyses are an opportunity to address neuro-oncology questions from a different perspective.
Collapse
|
16
|
Coenen VA, Döbrössy MD, Teo SJ, Wessolleck J, Sajonz BEA, Reinacher PC, Thierauf-Emberger A, Spittau B, Leupold J, von Elverfeldt D, Schlaepfer TE, Reisert M. Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo high resolution) 7T DTI. Brain Struct Funct 2021; 227:23-47. [PMID: 34482443 PMCID: PMC8741702 DOI: 10.1007/s00429-021-02373-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Uncertainties
concerning anatomy and function of cortico-subcortical projections have arisen during the recent years. A clear distinction between cortico-subthalamic (hyperdirect) and cortico-tegmental projections (superolateral medial forebrain bundle, slMFB) so far is elusive. Deep Brain Stimulation (DBS) of the slMFB (for major depression, MD and obsessive compulsive disorders, OCD) has on the one hand been interpreted as actually involving limbic (prefrontal) hyperdirect pathways. On the other hand slMFB’s stimulation region in the mesencephalic ventral tegmentum is said to impact on other structures too, going beyond the antidepressant (or anti OCD) efficacy of sole modulation of the cortico-tegmental reward-associated pathways. We have here used a normative diffusion MRT template (HCP, n = 80) for long-range tractography and augmented this dataset with ex-vivo high resolution data (n = 1) in a stochastic brain space. We compared this data with histological information and used the high resolution ex-vivo data set to scrutinize the mesencephalic tegmentum for small fiber pathways present. Our work resolves an existing ambiguity between slMFB and prefrontal hyperdirect pathways which—for the first time—are described as co-existent. DBS of the slMFB does not appear to modulate prefrontal hyperdirect cortico-subthalamic but rather cortico-tegmental projections. Smaller fiber structures in the target region—as far as they can be discerned—appear not to be involved in slMFB DBS. Our work enfeebles previous anatomical criticism and strengthens the position of the slMFB DBS target for its use in MD and OCD.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany. .,Medical Faculty of Freiburg University, Freiburg, Germany. .,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany. .,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany.
| | - Máté D Döbrössy
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Shi Jia Teo
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna Wessolleck
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Annette Thierauf-Emberger
- Medical Faculty of Freiburg University, Freiburg, Germany.,Institute of Forensic Medicine, Medical Center of Freiburg University, Freiburg, Germany
| | - Björn Spittau
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, Bielefeld, Germany.,Institute for Anatomy and Cell Biology, Department of Molecular Embryologie, Faculty of Medicine, Freiburg University, Freiburg, Germany
| | - Jochen Leupold
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Dominik von Elverfeldt
- Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas E Schlaepfer
- Medical Faculty of Freiburg University, Freiburg, Germany.,Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.,Division of Interventional Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical Center of Freiburg University, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher STraße 64, 79106, Freiburg, Germany.,Medical Faculty of Freiburg University, Freiburg, Germany.,Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|