1
|
Sarasso S, D'Ambrosio S, Russo S, Bernardelli L, Hassan G, Comanducci A, De Giampaulis P, Dalla Vecchia LA, Lanzone J, Massimini M. Reduction of sleep-like perilesional slow waves and clinical evolution after stroke: A TMS-EEG study. Clin Neurophysiol 2025; 175:2110746. [PMID: 40424920 DOI: 10.1016/j.clinph.2025.2110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/27/2025] [Accepted: 05/04/2025] [Indexed: 05/29/2025]
Abstract
OBJECTIVE Recent studies indicate that brain injuries often lead to the occurrence of sleep-like slow waves in perilesional cortical areas. These slow waves may disrupt local cortico-cortical interactions and contribute to behavioral impairments but are, in principle, reversible. This study employs Transcranial Magnetic Stimulation (TMS) combined with Electroencephalography (EEG) to monitor changes in perilesional slow waves and local cortical interactions examining their relation to changes in stroke severity. METHODS Twelve patients with post-acute/chronic unilateral ischemic cortical stroke participated in a longitudinal study with two assessment points. Each assessment included a neurological evaluation using the National Institutes of Health Stroke Scale (NIHSS) and TMS-EEG recordings targeting perilesional cortical areas. Neurophysiological parameters, such as slow wave amplitude (SWa), high-frequency power (HFp) suppression, and the Perturbational Complexity Index-state transition (PCIst), were extracted from the perilesional EEG responses to TMS to quantify local sleep-like slow waves andcortical interactions. RESULTS We observed a perilesional reduction in sleep-like slow waves and a restoration of local cortical interactions. Notably, these changes significantly correlated with patients' clinical evolution as assessed by the NIHSS score. CONCLUSIONS These findings highlight the potential of TMS-EEG as an objective tool for tracking neurological evolution post-stroke. SIGNIFICANCE Targeting sleep-like cortical dynamics may be relevant for devising post-stroke rehabilitation strategies.
Collapse
Affiliation(s)
- S Sarasso
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy.
| | - S D'Ambrosio
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom
| | - S Russo
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy; Department of Philosophy 'Piero Martinetti', University of Milan, Milan, Italy; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - L Bernardelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy; University of Camerino, Center for Neuroscience, Camerino, Italy
| | - G Hassan
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy
| | - A Comanducci
- Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - P De Giampaulis
- Istituti Clinici Scientifici Maugeri, IRCCS, Neurorehabilitation Department, Milano Institute, Milan, Italy; Neurology and Stroke Unit, Azienda Ospedaliera Di Melegnano e Della Martesana, Vizzolo Predabissi, Milan, Italy
| | - L A Dalla Vecchia
- Istituti Clinici Scientifici Maugeri, IRCCS, Department of Cardiology, Milano Institute, Milan, Italy
| | - J Lanzone
- Istituti Clinici Scientifici Maugeri, IRCCS, Neurorehabilitation Department, Milano Institute, Milan, Italy
| | - M Massimini
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
2
|
Wang FX, Dai SY, Mu G, Yu ZH, Chen Y, Zhou J. Beyond organ isolation: The bidirectional crosstalk between cerebral and intestinal ischemia-reperfusion injury via microbiota-gut-brain axis. Biochem Biophys Res Commun 2025; 763:151804. [PMID: 40239544 DOI: 10.1016/j.bbrc.2025.151804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Ischemia-reperfusion injury (IRI) represents a pathophysiological phenomenon of profound clinical relevance that poses considerable threats to patient safety. IRI may manifest in a variety of clinical contexts including, but not limited to, sepsis, organ transplantation, shock, myocardial infarction, cerebral ischemia, and stroke. Critically, IRI exhibits complex interactions across different organs, with effects that surpass mere localized tissue damage. These impacts can amplify damage to both adjacent and remote organs through pathways such as the gut-brain axis and the gut-lung axis, facilitated by intricate signaling mechanisms. Noteworthy is the interaction between gut IRI and brain IRI, which involves sophisticated neuroendocrine, systemic, and immune mechanisms coordinated through the microbiome-gut-brain axis. This review seeks to delve into the intricate interactions between gut and brain IRI, viewed through the lens of the microbiota-gut-brain axis. It aims to assess its translational potential in clinical settings, provide a theoretical foundation for developing relevant therapeutic strategies, and pinpoint novel directions for research.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Shi-Yu Dai
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Guo Mu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, 643000, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People's Hospital, Zigong, Sichuan, 643200, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
3
|
Alves PN, Nozais V, Hansen JY, Corbetta M, Nachev P, Martins IP, Thiebaut de Schotten M. Neurotransmitters' white matter mapping unveils the neurochemical fingerprints of stroke. Nat Commun 2025; 16:2555. [PMID: 40089467 PMCID: PMC11910582 DOI: 10.1038/s41467-025-57680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Distinctive patterns of brain neurotransmission frame determinant circuits for behavior. Understanding the relationship between their damage and the cognitive impairment provoked by brain lesions could provide insights into the pathophysiology and therapeutics of disabling disorders, like stroke. Yet, the challenges of neurotransmitter circuits mapping in vivo have hampered this investigation. Here, we developed an MRI white matter atlas of neurotransmitter circuits and created a method to chart how stroke damages neurotransmitter systems, which distinguishes pre and postsynaptic disruption. Our model, trained and tested in two large stroke patient samples, identified eight clusters with different neurochemical patterns. The associations with patients' cognitive profiles were scarce, denoting that a particular cognitive deficit might have finer underlying neurochemical disturbances that are unfit to the granularity of our analyses. These findings depict stroke neurochemical diaschisis patterns, provide insights into stroke cognitive deficits and potential treatments, and open a new window for tailored neurotransmitter modulation.
Collapse
Affiliation(s)
- Pedro Nascimento Alves
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
- Unidade de Acidentes Vasculares Cerebrais, Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, ULSSM, Lisbon, Portugal.
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Justine Y Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Fondazione Biomedica, Padova, Italy
| | - Parashkev Nachev
- Queen Square Institute of Neurology, University College London, London, UK
| | - Isabel Pavão Martins
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Unidade de Acidentes Vasculares Cerebrais, Serviço de Neurologia, Departamento de Neurociências e Saúde Mental, Hospital de Santa Maria, ULSSM, Lisbon, Portugal
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| |
Collapse
|
4
|
O'Sullivan M. Localisation of function in the brain: a rethink. Pract Neurol 2025; 25:109-115. [PMID: 39288985 DOI: 10.1136/pn-2023-003773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
A modular view of brain function dominates the teaching of medical students and clinical psychologists and is implicit in day-to-day clinical practice. This view glosses over a long-standing debate. The extent of one-to-one mappings between region and function remains a controversial topic. For the cortex, localisation of function versus 'cerebral equipotentiality' was debated less than 150 years ago, and traces of this debate remain active in systems neuroscience today. The advent of functional brain imaging led to an explosion of evidence on localisation of function studied in vivo, and a gold rush to map an ever-increasing range of 'functions'. Rapid growth in knowledge was accompanied, to some extent, by a flourishing neuromythology. There are currently few clinical applications of brain mapping techniques, but new areas are emerging. An understanding of the central debate on functional localisation will bring a more nuanced view of problems encountered in clinical practice.
Collapse
Affiliation(s)
- Michael O'Sullivan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Dai M, Qian K, Ye Q, Yang J, Gan L, Jia Z, Pan Z, Cai Q, Jiang T, Ma C, Lin X. Specific Mode Electroacupuncture Stimulation Mediates the Delivery of NGF Across the Hippocampus Blood-Brain Barrier Through p65-VEGFA-TJs to Improve the Cognitive Function of MCAO/R Convalescent Rats. Mol Neurobiol 2025; 62:1451-1466. [PMID: 38995444 PMCID: PMC11772513 DOI: 10.1007/s12035-024-04337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Cognitive impairment frequently presents as a prevalent consequence following stroke, imposing significant burdens on patients, families, and society. The objective of this study was to assess the effectiveness and underlying mechanism of nerve growth factor (NGF) in treating post-stroke cognitive dysfunction in rats with cerebral ischemia-reperfusion injury (MCAO/R) through delivery into the brain using specific mode electroacupuncture stimulation (SMES). From the 28th day after modeling, the rats were treated with NGF mediated by SMES, and the cognitive function of the rats was observed after treatment. Learning and memory ability were evaluated using behavioral tests. The impact of SMES on blood-brain barrier (BBB) permeability, the underlying mechanism of cognitive enhancement in rats with MCAO/R, including transmission electron microscopy, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and TUNEL staining. We reported that SMES demonstrates a safe and efficient ability to open the BBB during the cerebral ischemia repair phase, facilitating the delivery of NGF to the brain by the p65-VEGFA-TJs pathway.
Collapse
Affiliation(s)
- Mengyuan Dai
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
- Department of Rehabilitation, Lishui Central Hospital, Lishui, 323000, Zhejiang Province, China
| | - Kecheng Qian
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qinyu Ye
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jinding Yang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Zhaoxing Jia
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Zixing Pan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qian Cai
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Tianxiang Jiang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China.
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Xihu District, Moganshan Road No. 219, Hangzhou, 310000, Zhejiang Province, China.
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China.
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Xihu District, Moganshan Road No. 219, Hangzhou, 310000, Zhejiang Province, China.
- Department of Rehabilitation, Zhejiang Rehabilitation Medical Center, No. 2828, Binsheng Road, Hangzhou, 310051, Zhejiang Province, China.
| |
Collapse
|
6
|
Fang Y, Chao X, Lu Z, Huang H, Shi R, Yin D, Chen H, Lu Y, Wang J, Wang P, Liu X, Sun W. Mechanisms underlying the spontaneous reorganization of depression network after stroke. Neuroimage Clin 2024; 45:103723. [PMID: 39673941 PMCID: PMC11699604 DOI: 10.1016/j.nicl.2024.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Exploring the causal relationship between focal brain lesions and post-stroke depression (PSD) can provide therapeutic insights. However, a gap exists between causal and therapeutic information. Exploring post-stroke brain repair processes post-stroke could bridge this gap. We defined a depression network using the normative connectome and investigated the predictive capacity of lesion-induced network damage on depressive symptoms in discovery cohort of 96 patients, at baseline and six months post-stroke. Stepwise functional connectivity (SFC) was used to examine topological changes in the depression network over time to identify patterns of network reorganization. The predictive value of reorganization information was evaluated for follow-up symptoms in discovery and validation cohort 1 (22 worsening PSD patients) as well as for treatment responsiveness in validation cohort 2 (23 antidepressant-treated patients). We evaluated the consistency of significant reorganization areas with neuromodulation targets. Spatial correlations of network reorganization patterns with gene expression and neurotransmitter maps were analyzed. The predictive power of network damage for symptoms diminished at follow-up compared to baseline (Δadjusted R2 = -0.070, p < 0.001). Reorganization information effectively predicted symptoms at follow-up in the discovery cohort (adjust R2 = 0.217, 95 %CI: 0.010 to 0.431), as well as symptom exacerbation (r = 0.421, p = 0.033) and treatment responsiveness (r = 0.587, p = 0.012) in the validation cohorts. Regions undergoing significant reorganization overlapped with neuromodulatory targets known to be effective in treating depression. The reorganization of the depression network was associated with immune-inflammatory responses gene expressions and gamma-aminobutyric acid. Our findings may yield important insights into the repair mechanisms of PSD and provide a critical context for developing post-stroke treatment strategies.
Collapse
Affiliation(s)
- Yirong Fang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xian Chao
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Zeyu Lu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hongmei Huang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Ran Shi
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dawei Yin
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hao Chen
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yanan Lu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinjing Wang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Xinfeng Liu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Wen Sun
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
7
|
O'Sullivan M. Cognition and maps of injury in small vessel disease: time to move on from the black and white era. Brain 2024; 147:3979-3981. [PMID: 39546624 DOI: 10.1093/brain/awae377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
This scientific commentary refers to ‘Enhancing cognitive performance prediction by white matter hyperintensity connectivity assessment’ by Petersen et al. (https://doi.org/10.1093/brain/awae315).
Collapse
Affiliation(s)
- Michael O'Sullivan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Skandalakis GP, Neudorfer C, Payne CA, Bond E, Tavakkoli AD, Barrios-Martinez J, Trutti AC, Koutsarnakis C, Coenen VA, Komaitis S, Hadjipanayis CG, Stranjalis G, Yeh FC, Banihashemi L, Hong J, Lozano AM, Kogan M, Horn A, Evans LT, Kalyvas A. Establishing connectivity through microdissections of midbrain stimulation-related neural circuits. Brain 2024; 147:3083-3098. [PMID: 38808482 PMCID: PMC11370807 DOI: 10.1093/brain/awae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.
Collapse
Affiliation(s)
- Georgios P Skandalakis
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Caitlin A Payne
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Evalina Bond
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Armin D Tavakkoli
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Anne C Trutti
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam 15926, The Netherlands
| | - Christos Koutsarnakis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg 79106, Germany
- Medical Faculty of the University of Freiburg, Freiburg 79110, Germany
- Center for Deep Brain Stimulation, Medical Center of the University of Freiburg, Freiburg 79106, Germany
| | - Spyridon Komaitis
- Queens Medical Center, Nottingham University Hospitals NHS Foundation Trust, Nottingham NG7 2UH, UK
| | | | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer Hong
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Linton T Evans
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Aristotelis Kalyvas
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
9
|
Andalib S, Divani AA, Ayata C, Baig S, Arsava EM, Topcuoglu MA, Cáceres EL, Parikh V, Desai MJ, Majid A, Girolami S, Di Napoli M. Vagus Nerve Stimulation in Ischemic Stroke. Curr Neurol Neurosci Rep 2023; 23:947-962. [PMID: 38008851 PMCID: PMC10841711 DOI: 10.1007/s11910-023-01323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Vagus nerve stimulation (VNS) has emerged as a potential therapeutic approach for neurological and psychiatric disorders. In recent years, there has been increasing interest in VNS for treating ischemic stroke. This review discusses the evidence supporting VNS as a treatment option for ischemic stroke and elucidates its underlying mechanisms. RECENT FINDINGS Preclinical studies investigating VNS in stroke models have shown reduced infarct volumes and improved neurological deficits. Additionally, VNS has been found to reduce reperfusion injury. VNS may promote neuroprotection by reducing inflammation, enhancing cerebral blood flow, and modulating the release of neurotransmitters. Additionally, VNS may stimulate neuroplasticity, thereby facilitating post-stroke recovery. The Food and Drug Administration has approved invasive VNS (iVNS) combined with rehabilitation for ischemic stroke patients with moderate to severe upper limb deficits. However, iVNS is not feasible in acute stroke due to its time-sensitive nature. Non-invasive VNS (nVNS) may be an alternative approach for treating ischemic stroke. While the evidence from preclinical studies and clinical trials of nVNS is promising, the mechanisms through which VNS exerts its beneficial effects on ischemic stroke are still being elucidated. Therefore, further research is needed to better understand the efficacy and underlying mechanisms of nVNS in ischemic stroke. Moreover, large-scale randomized clinical trials are necessary to determine the optimal nVNS protocols, assess its long-term effects on stroke recovery and outcomes, and identify the potential benefits of combining nVNS with other rehabilitation strategies.
Collapse
Affiliation(s)
- Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Afshin A Divani
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sheharyar Baig
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ethem Murat Arsava
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | | | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Masoom J Desai
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sara Girolami
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| |
Collapse
|
10
|
Zhou J, Fangma Y, Chen Z, Zheng Y. Post-Stroke Neuropsychiatric Complications: Types, Pathogenesis, and Therapeutic Intervention. Aging Dis 2023; 14:2127-2152. [PMID: 37199575 PMCID: PMC10676799 DOI: 10.14336/ad.2023.0310-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023] Open
Abstract
Almost all stroke survivors suffer physical disabilities and neuropsychiatric disturbances, which can be briefly divided into post-stroke neurological diseases and post-stroke psychiatric disorders. The former type mainly includes post-stroke pain, post-stroke epilepsy, and post-stroke dementia while the latter one includes post-stroke depression, post-stroke anxiety, post-stroke apathy and post-stroke fatigue. Multiple risk factors are related to these post-stroke neuropsychiatric complications, such as age, gender, lifestyle, stroke type, medication, lesion location, and comorbidities. Recent studies have revealed several critical mechanisms underlying these complications, namely inflammatory response, dysregulation of the hypothalamic pituitary adrenal axis, cholinergic dysfunction, reduced level of 5-hydroxytryptamine, glutamate-mediated excitotoxicity and mitochondrial dysfunction. Moreover, clinical efforts have successfully given birth to many practical pharmaceutic strategies, such as anti-inflammatory medications, acetylcholinesterase inhibitors, and selective serotonin reuptake inhibitors, as well as diverse rehabilitative modalities to help patients physically and mentally. However, the efficacy of these interventions is still under debate. Further investigations into these post-stroke neuropsychiatric complications, from both basic and clinical perspectives, are urgent for the development of effective treatment strategies.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Correspondence should be addressed to: Prof. Zhong Chen () and Dr. Yanrong Zheng (), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Dávila G, Torres-Prioris MJ, López-Barroso D, Berthier ML. Turning the Spotlight to Cholinergic Pharmacotherapy of the Human Language System. CNS Drugs 2023; 37:599-637. [PMID: 37341896 PMCID: PMC10374790 DOI: 10.1007/s40263-023-01017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Even though language is essential in human communication, research on pharmacological therapies for language deficits in highly prevalent neurodegenerative and vascular brain diseases has received little attention. Emerging scientific evidence suggests that disruption of the cholinergic system may play an essential role in language deficits associated with Alzheimer's disease and vascular cognitive impairment, including post-stroke aphasia. Therefore, current models of cognitive processing are beginning to appraise the implications of the brain modulator acetylcholine in human language functions. Future work should be directed further to analyze the interplay between the cholinergic system and language, focusing on identifying brain regions receiving cholinergic innervation susceptible to modulation with pharmacotherapy to improve affected language domains. The evaluation of language deficits in pharmacological cholinergic trials for Alzheimer's disease and vascular cognitive impairment has thus far been limited to coarse-grained methods. More precise, fine-grained language testing is needed to refine patient selection for pharmacotherapy to detect subtle deficits in the initial phases of cognitive decline. Additionally, noninvasive biomarkers can help identify cholinergic depletion. However, despite the investigation of cholinergic treatment for language deficits in Alzheimer's disease and vascular cognitive impairment, data on its effectiveness are insufficient and controversial. In the case of post-stroke aphasia, cholinergic agents are showing promise, particularly when combined with speech-language therapy to promote trained-dependent neural plasticity. Future research should explore the potential benefits of cholinergic pharmacotherapy in language deficits and investigate optimal strategies for combining these agents with other therapeutic approaches.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain.
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| |
Collapse
|
12
|
Abstract
Memory impairment occurs in over a third of patients after symptomatic stroke. Memory deficits rarely occur in isolation but are an important component of the poststroke cognitive syndrome because of the strong relationship with the risk of poststroke dementia. In this review, we summarize available data on impairment of episodic memory, with a particular emphasis on the natural history of memory impairment after stroke and the factors influencing trajectory informed by an updated systematic review. We next discuss the pathophysiology of memory impairment and mechanisms of both decline and recovery of function. We then turn to the practical issue of measurement of memory deficits after stroke, emerging biomarkers, and therapeutic approaches. Our review identifies critical gaps, particularly in studies of the natural history that properly map the long-term trajectory of memory and the associations with factors that modulate prognosis. Few studies have used advanced neuroimaging and this, in conjunction with other biomarker approaches, has the potential to provide a much richer understanding of the mechanisms at play and promising therapeutic avenues.
Collapse
Affiliation(s)
- Michael J O'Sullivan
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia (M.J.O.).,UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, Australia (M.J.O., X.L., D.G.).,Department of Neurology, Royal Brisbane and Women's Hospital, QLD, Australia (M.J.O.)
| | - Xuqian Li
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, Australia (M.J.O., X.L., D.G.)
| | - Dana Galligan
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, Australia (M.J.O., X.L., D.G.)
| | - Sarah T Pendlebury
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (S.T.P.).,Departments of Medicine and Geratology and UK National Institute for Health and Care Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, United Kingdom (S.T.P.)
| |
Collapse
|
13
|
Abstract
Stroke recovery therapeutics include many classes of intervention and numerous treatment targets. Stroke is a very heterogeneous disease. As such, stroke recovery therapeutics benefit from a personalized medicine approach that considers intersubject differences, such as in infarct location or stroke severity, when assigning treatment. Prediction of treatment responders can be improved by incorporating biological measures, such as neural injury and neural function, as the bedside behavioral phenotype has an incomplete relationship with the biological events underlying stroke recovery. Another ramification of high variability between patients is the need to examine effects of restorative therapies in relation to dose, time poststroke, and stroke severity in clinical trials. For example, enrollment across a wide time interval poststroke or in a population with a very broad range of deficits means high variance across patients in the biological state of the brain. The doses of rehabilitation therapy being studied are often low; it takes substantial practice to acquire a skill in the healthy brain; this is more, not less, pronounced after a stroke. Recognition and treatment of poststroke depression represents a major unmet need. These points are considered in the context of a review of recent advances in stroke recovery therapeutics.
Collapse
Affiliation(s)
- Lorie G Richards
- Department of Occupational and Recreational Therapies, University of Utah, Salt Lake City (L.G.R.)
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles (S.C.C.).,California Rehabilitation Institute, Los Angeles (S.C.C.)
| |
Collapse
|
14
|
Cotter KM, Bancroft GL, Haas HA, Shi R, Clarkson AN, Croxall ME, Stowe AM, Yun S, Eisch AJ. Use of an Automated Mouse Touchscreen Platform for Quantification of Cognitive Deficits After Central Nervous System Injury. Methods Mol Biol 2023; 2616:279-326. [PMID: 36715942 DOI: 10.1007/978-1-0716-2926-0_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Analyzing cognitive performance is an important aspect of assessing physiological deficits after stroke or other central nervous system (CNS) injuries in both humans and in basic science animal models. Cognitive testing on an automated touchscreen operant platform began in humans but is now increasingly popular in preclinical studies as it enables testing in many cognitive domains in a highly reproducible way while minimizing stress to the laboratory animal. Here, we describe the step-by-step setup and application of four operant touchscreen tests used on adult mice. In brief, mice are trained to touch a graphical image on a lit screen and initiate subsequent trials for a reward. Following initial training, mice can be tested on tasks that probe performance in many cognitive domains and thus infer the integrity of brain circuits and regions. There are already many outstanding published protocols on touchscreen cognitive testing. This chapter is designed to add to the literature in two specific ways. First, this chapter provides in a single location practical, behind-the-scenes tips for setup and testing of mice in four touchscreen tasks that are useful to assess in CNS injury models: Paired Associates Learning (PAL), a task of episodic, associative (object-location) memory; Location Discrimination Reversal (LDR), a test for mnemonic discrimination (also called behavioral pattern separation) and cognitive flexibility; Autoshaping (AUTO), a test of Pavlovian or classical conditioning; and Extinction (EXT), tasks of stimulus-response and response inhibition, respectively. Second, this chapter summarizes issues to consider when performing touchscreen tests in mouse models of CNS injury. Quantifying gross and fine aspects of cognitive function is essential to improved treatment for brain dysfunction after stroke or CNS injury as well as other brain diseases, and touchscreen testing provides a sensitive, reliable, and robust way to achieve this.
Collapse
Affiliation(s)
- Katherine M Cotter
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | | | | | - Raymon Shi
- University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | | | - Ann M Stowe
- Department of Neurology, Department of Neuroscience, The University of Kentucky, Lexington, KY, USA
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Geranmayeh F. Cholinergic neurotransmitter system: a potential marker for post-stroke cognitive recovery. Brain 2022; 145:1576-1578. [PMID: 35438715 PMCID: PMC9166539 DOI: 10.1093/brain/awac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Cholinergic and hippocampal systems facilitate cross-domain cognitive recovery after stroke’ by O’Sullivan et al. (https://doi.org/10.1093/brain/awac070).
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- Clinical Language and Cognition Group, Department of Brain Sciences, Imperial
College, London, UK,E-mail:
| |
Collapse
|