1
|
Gao A, Qi Y, Luo Y, Hu X, Jiang R, Chang S, Zhou X, Liu L, Zhu L, Feng X, Jiang L, Zhong H. Mass spectrometric monitoring of redox transformation and arylation of tryptophan. Anal Chim Acta 2025; 1349:343822. [PMID: 40074454 DOI: 10.1016/j.aca.2025.343822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways. We described herein a mass spectrometric approach that can not only detect electron transfer-associated changes in masses and charges, but also identify electron-directed bond cleavages and radical-radical cross-coupling reactions in redox transformation of tryptophan. Photoactive TiO2 that is widely applied in cosmetic products is used as electron donor and receptor because of the capability to generate photoelectrons and holes. It was demonstrated tryptophan undergoes redox transformation through the removal of an electron from amino nitrogen atom by hole oxidization along with an electron capture in the indole ring. The back and forth electron-shuttle converts electric energy into chemical energy that enforces bond cleavages. Sodium-coupled electron transfer (SCET) was found in complementary with proton-coupled electron transfer in tryptophan. The movement of sodium ions avoids electric charge buildup caused by electron transfer. Various redox products were detected on both light irradiated TiO2 and skins, among which β-carboline shows extensive radical scavenging ability for diverse cross-coupling with indole derivatives. Light-independent redox products have been detected in vivo such as in mouse brain, indicating the presence of in vivo electron transfer-directed redox transformation. It has also been revealed that tryptophan can be arylated on Cα and Cβ atoms in response to the exposure of halogenated aromatics.
Collapse
Affiliation(s)
- Anji Gao
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yinghua Qi
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yixiang Luo
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xiaoyuan Hu
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ruowei Jiang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Shao Chang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xin Zhou
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Linhui Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Luping Zhu
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xue Feng
- Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ling Jiang
- State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hongying Zhong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
2
|
Zhong J, Guan L, Zou Y, Yu J, Ma X, Liu R, Yu S, Qiu L. Quantification of three neurotransmitters in cerebrospinal fluid, serum and random urine using a robust and simplified liquid chromatography-tandem mass spectrometry method. J Chromatogr A 2025; 1747:465791. [PMID: 40014961 DOI: 10.1016/j.chroma.2025.465791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Imbalance in the monoamine neurotransmitters has been implicated in a variety of neurological disorders, making it necessary to quantify neurotransmitters accurately. Thus, the study aims to develop a robust and validated method for simultaneously quantifying serotonin, 5-Hydroxyindole Acetic Acid (5-HIAA), and homovanillic acid (HVA) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). One-step precipitation with methanol containing 0.2 % formic acid was used for pretreating serum and cerebrospinal fluid samples, while dilution with deionized water was used for pretreating urine samples. Neurotransmitters were detected using an Exion AD liquid chromatography-tandem Qtrap 6500 Plus mass spectrometer, with a total run time of 6.5 mins. The linearity range was 0.5-500.0, 0.2-100.0, 2.0-1000.0 ng/mL for serotonin, 5-HIAA, and HVA in serum and cerebrospinal fluid, and 2.0-500.0, 40.0-10,000.0, 100.0-10,000.0 ng/mL in urine (R2≥0.997). Recovery rate was 81.5-114.4 %, 80.3-114.6 %, and 85.0-115.6 % for serotonin, 5-HIAA, and HVA in three matrices. The matrix effect was compensated by using internal standards. Acceptable intra-assay and inter-assay precision were achieved for all analytes and the total coefficients of variation were 4.9-14.4 %, 6.1-11.2 %, and 4.5-10.5 % for serotonin, 5-HIAA, and HVA. Additionally, we also explored the distribution of neurotransmitters. Patients with motor impairment had higher HVA levels than those without symptoms (P < 0.05), while serotonin and 5-HIAA concentrations were insignificant. Accordingly, a robust LC-MS/MS method combined with easy sample preprocessing was established and systematically validated for quantifying three important neurotransmitters in multiple matrices in a single run, allowing for accurate identification of motor impairment.
Collapse
Affiliation(s)
- Jian Zhong
- Department of Laboratory Medicine; Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lihua Guan
- Department of Laboratory Medicine; Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yutong Zou
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Jialei Yu
- Department of Laboratory Medicine; Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoli Ma
- Department of Laboratory Medicine; Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ruichen Liu
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine; Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine; Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
3
|
Harkin EF, Grossman CD, Cohen JY, Béïque JC, Naud R. A prospective code for value in the serotonin system. Nature 2025:10.1038/s41586-025-08731-7. [PMID: 40140568 DOI: 10.1038/s41586-025-08731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025]
Abstract
The in vivo responses of dorsal raphe nucleus serotonin neurons to emotionally salient stimuli are a puzzle1. Existing theories centring on reward2, surprise3, salience4 and uncertainty5 individually account for some aspects of serotonergic activity but not others. Merging ideas from reinforcement learning theory6 with recent insights into the filtering properties of the dorsal raphe nucleus7, here we find a unifying perspective in a prospective code for value. This biological code for near-future reward explains why serotonin neurons are activated by both rewards and punishments3,4,8-13, and why these neurons are more strongly activated by surprising rewards but have no such surprise preference for punishments3,9-observations that previous theories have failed to reconcile. Finally, our model quantitatively predicts in vivo population activity better than previous theories. By reconciling previous theories and establishing a precise connection with reinforcement learning, our work represents an important step towards understanding the role of serotonin in learning and behaviour.
Collapse
Affiliation(s)
- Emerson F Harkin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa's Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | | | - Jeremiah Y Cohen
- Allen Institute for Neural Dynamics, Seattle, WA, USA
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa's Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa's Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Corcoran AW, Perrykkad K, Feuerriegel D, Robinson JE. Body as First Teacher: The Role of Rhythmic Visceral Dynamics in Early Cognitive Development. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:45-75. [PMID: 37694720 PMCID: PMC11720274 DOI: 10.1177/17456916231185343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Embodied cognition-the idea that mental states and processes should be understood in relation to one's bodily constitution and interactions with the world-remains a controversial topic within cognitive science. Recently, however, increasing interest in predictive processing theories among proponents and critics of embodiment alike has raised hopes of a reconciliation. This article sets out to appraise the unificatory potential of predictive processing, focusing in particular on embodied formulations of active inference. Our analysis suggests that most active-inference accounts invoke weak, potentially trivial conceptions of embodiment; those making stronger claims do so independently of the theoretical commitments of the active-inference framework. We argue that a more compelling version of embodied active inference can be motivated by adopting a diachronic perspective on the way rhythmic physiological activity shapes neural development in utero. According to this visceral afferent training hypothesis, early-emerging physiological processes are essential not only for supporting the biophysical development of neural structures but also for configuring the cognitive architecture those structures entail. Focusing in particular on the cardiovascular system, we propose three candidate mechanisms through which visceral afferent training might operate: (a) activity-dependent neuronal development, (b) periodic signal modeling, and (c) oscillatory network coordination.
Collapse
Affiliation(s)
- Andrew W. Corcoran
- Monash Centre for Consciousness and Contemplative Studies, Monash University
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| | - Kelsey Perrykkad
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| | | | - Jonathan E. Robinson
- Cognition and Philosophy Laboratory, School of Philosophical, Historical, and International Studies, Monash University
| |
Collapse
|
5
|
Manzoor N, Samad N, Bhatti SA, Irfan A, Ahmad S, Shazly GA, Bin Jardan YA. Neuroprotective effect of niacin in a rat model of obesity induced by high-fat-rich diet. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03687-3. [PMID: 39680102 DOI: 10.1007/s00210-024-03687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
This study investigates the impact of a high-fat-rich diet (HFRD) on behavioral, biochemical, neurochemical, and histopathological studies using the hypothalamus of rats following niacin (NCN) administration. The rats were divided into HFRD and normal diet (ND)-fed groups and administered selected doses of NCN, i.e., 25 mg/mL/kg (low dose) and 50 mg/mL/kg (high dose), for 8 weeks. The grouping of male rats (n = 8) was as follows: (i) Vehicle (Veh) + ND; (ii) ND + NCN (low dose); (iii) ND + NCN (high dose); (iv) Veh + HFRD; (v) HFRD + NCN (low dose); and (vi) HFRD + NCN (high dose). Behavioral tests assessed depression-like symptoms and spatial memory; after that, the hypothalamus was isolated for various analyses of sacrificed animals. NCN at both doses decreased food intake and growth rate in both diet groups and demonstrated antidepressant and memory-enhancing effects. HFRD-induced oxido-neuroinflammation decreased with both doses of NCN. HFRD-induced decreases in serotonergic neurotransmission, 5-HT1A receptor expression, and morphological alterations in the rat's hypothalamus were normalized by both doses of NCN. In conclusion, NCN, as a potential antioxidant and neuromodulator, can normalize feeding behavior and produce antidepressant and memory-improving effects in a rat model of obesity following HFRD intake.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sadaf Ahmad
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
6
|
Zuñiga-Martínez BS, Domínguez-Avila JA, Montiel-Herrera M, Villegas-Ochoa MA, Robles-Sánchez RM, Ayala-Zavala JF, Viuda-Martos M, González-Aguilar GA. Consumption of Plant-Derived Phenolic Acids Modulates Hunger and Satiety Responses Due to Chemical Interactions with Enteroendocrine Mediators. Foods 2024; 13:3640. [PMID: 39594055 PMCID: PMC11593637 DOI: 10.3390/foods13223640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Energy-dense foods are commonly rich in fat and simple sugars and poor in dietary fiber and micronutrients; regularly consuming them decreases the concentration and/or effect of anorexigenic hormones and may increase that of orexigenic ones, thereby decreasing satiety. In contrast, plant-derived phenolic-rich foods exert positive effects on satiety. In silico, in vitro, and in vivo investigations on some of most representative phenolic acids like chlorogenic acid (CGA), gallic acid (GA), ferulic acid (FA), and protocatechuic acid (PCA) have shown that they are able to modulate various hunger and satiety processes; however, there are few studies that show how their chemical structure contributes to achieve such effects. The objective of this review is to summarize how these phenolic acids can favorably modulate hormones and other satiety mediators, with emphasis on the chemical interactions exerted between the core of these compounds and their biological targets. The evidence suggests that they form interactions with certain hormones, their receptors, and/or enzymes involved in regulating hunger and satiety, which are attributed to their chemical structure (such as the position of hydroxyl groups). Further research is needed to continue understanding these molecular mechanisms of action and to utilize the knowledge in the development of health-promoting foods.
Collapse
Affiliation(s)
- B. Shain Zuñiga-Martínez
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- CONAHCYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico
| | - Marcelino Montiel-Herrera
- Departmento de Medicina y Ciencias de la Salud, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col Centro, Hermosillo 83000, SO, Mexico;
| | - Mónica A. Villegas-Ochoa
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - Rosario Maribel Robles-Sánchez
- Departmento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col Centro, Hermosillo 83000, SO, Mexico;
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain;
| | - Gustavo A. González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| |
Collapse
|
7
|
Omaliko PC, Ferket PR, Ogundare TE, Apalowo OO, Enenya IG, Iwuozo OC, Han J, Fasina YO. Impact of dietary fat types on expression levels of dopamine and serotonin transporters in the ileum of broiler chickens. Poult Sci 2024; 103:104114. [PMID: 39214056 PMCID: PMC11402036 DOI: 10.1016/j.psj.2024.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Various types of dietary fats undergo distinct fermentation processes by gut microbes, potentially leading to the production of neurotransmitters that can influence the gut. Serotonin and dopamine are recognized neurotransmitters with positive effects on gut function. A broiler chicken trial was conducted to evaluate the influence of dietary fat types on protein expression of 2 neurotransmitter transporters, dopamine (DAT) and serotonin (5-HTT). A total of 560 day-old (Ross 708) male broiler chicks were randomly assigned to 7 dietary treatments. The experimental treatments included a basal diet of corn-soybean meal (SBM), supplemented with 3% of various fats: poultry fat (CON), olive oil (OLIV), fish oil (FISH), canola oil (CANO), lard (LARD), coconut oil (COCO), or flaxseed oil (FLAX). Bodyweight (BW) and feed conversion ratio (FCR) were recorded. Ileal tissues were aseptically collected to determine the expression levels of DAT and 5-HTT through western blot analysis. In addition, plasma samples were analyzed for reactive oxygen metabolites (d-ROM) tests on d 55. Results showed that dietary fat type inclusion did not have any detrimental effect on growth performance parameters. The expression levels of DAT were higher (P < 0.05) in FLAX treatments compared to CON treatments on d 20 and d 55, respectively. Similarly, with 5-HTT levels, FLAX, CANO, and LARD treatments were higher (P < 0.05) than CON treatments on d 20 and d 55. However, higher levels of oxidative stress (d-ROM values) were recorded in COCO (32.75 Carr U), CANO (29 Carr U), and CON treatments (25.5 Carr U) compared to FLAX (18.5 Carr U; P < 0.05) treatment. These findings suggest that incorporating dietary flaxseed oil at a 3% level in the diet has significant potential to elevate the expression levels of intestinal DAT and 5-HTT without inducing oxidative stress.
Collapse
Affiliation(s)
- Paul C Omaliko
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Peter R Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Tunde E Ogundare
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Oluwabunmi O Apalowo
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Ikenna G Enenya
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Odinaka C Iwuozo
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, 27411, USA
| | - Yewande O Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| |
Collapse
|
8
|
Fisher EL, Smith R, Conn K, Corcoran AW, Milton LK, Hohwy J, Foldi CJ. Psilocybin increases optimistic engagement over time: computational modelling of behaviour in rats. Transl Psychiatry 2024; 14:394. [PMID: 39349428 PMCID: PMC11442808 DOI: 10.1038/s41398-024-03103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Psilocybin has shown promise as a novel pharmacological intervention for treatment of depression, where post-acute effects of psilocybin treatment have been associated with increased positive mood and decreased pessimism. Although psilocybin is proving to be effective in clinical trials for treatment of psychiatric disorders, the information processing mechanisms affected by psilocybin are not well understood. Here, we fit active inference and reinforcement learning computational models to a novel two-armed bandit reversal learning task capable of capturing engagement behaviour in rats. The model revealed that after receiving psilocybin, rats achieve more rewards through increased task engagement, mediated by modification of forgetting rates and reduced loss aversion. These findings suggest that psilocybin may afford an optimism bias that arises through altered belief updating, with translational potential for clinical populations characterised by lack of optimism.
Collapse
Affiliation(s)
- Elizabeth L Fisher
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, VIC, Australia.
| | - Ryan Smith
- Laureate Institute for Brain Research, University of Tulsa, Tulsa Oklahoma, OK, USA
| | - Kyna Conn
- Anorexia and Feeding Disorders Laboratory, Department of Physiology, Monash University, Melbourne, VIC, Australia
- Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Andrew W Corcoran
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, VIC, Australia
| | - Laura K Milton
- Anorexia and Feeding Disorders Laboratory, Department of Physiology, Monash University, Melbourne, VIC, Australia
- Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jakob Hohwy
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, VIC, Australia
| | - Claire J Foldi
- Anorexia and Feeding Disorders Laboratory, Department of Physiology, Monash University, Melbourne, VIC, Australia
- Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
9
|
de Cates AN, Harmer CJ, Harrison PJ, Cowen PJ, Emmanuel A, Travis S, Murphy SE, Taquet M. Association between a selective 5-HT 4 receptor agonist and incidence of major depressive disorder: emulated target trial. Br J Psychiatry 2024; 225:371-378. [PMID: 39109752 PMCID: PMC7616487 DOI: 10.1192/bjp.2024.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND The serotonin 4 receptor (5-HT4R) is a promising target for the treatment of depression. Highly selective 5-HT4R agonists, such as prucalopride, have antidepressant-like and procognitive effects in preclinical models, but their clinical effects are not yet established. AIMS To determine whether prucalopride (a 5-HT4R agonist and licensed treatment for constipation) is associated with reduced incidence of depression in individuals with no past history of mental illness, compared with anti-constipation agents with no effect on the central nervous system. METHOD Using anonymised routinely collected data from a large-scale USA electronic health records network, we conducted an emulated target trial comparing depression incidence over 1 year in individuals without prior diagnoses of major mental illness, who initiated treatment with prucalopride versus two alternative anti-constipation agents that act by different mechanisms (linaclotide and lubiprostone). Cohorts were matched for 121 covariates capturing sociodemographic factors, and historical and/or concurrent comorbidities and medications. The primary outcome was a first diagnosis of major depressive disorder (ICD-10 code F32) within 1 year of the index date. Robustness of the results to changes in model and population specification was tested. Secondary outcomes included a first diagnosis of six other neuropsychiatric disorders. RESULTS Treatment with prucalopride was associated with significantly lower incidence of depression in the following year compared with linaclotide (hazard ratio 0.87, 95% CI 0.76-0.99; P = 0.038; n = 8572 in each matched cohort) and lubiprostone (hazard ratio 0.79, 95% CI 0.69-0.91; P < 0.001; n = 8281). Significantly lower risks of all mood disorders and psychosis were also observed. Results were similar across robustness analyses. CONCLUSIONS These findings support preclinical data and suggest a role for 5-HT4R agonists as novel agents in the prevention of major depression. These findings should stimulate randomised controlled trials to confirm if these agents can serve as a novel class of antidepressant within a clinical setting.
Collapse
Affiliation(s)
- Angharad N. de Cates
- Department of Psychiatry, Warneford Hospital, University of Oxford, UK; and Institute for Mental Health, University of Birmingham, UK
| | - Catherine J. Harmer
- Department of Psychiatry, Warneford Hospital, University of Oxford, UK; Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK; and Oxford Centre for Human Brain Activity and Oxford Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK
| | - Paul J. Harrison
- Department of Psychiatry, Warneford Hospital, University of Oxford, UK; Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK; and Oxford Centre for Human Brain Activity and Oxford Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, UK
| | - Philip J. Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, UK; and Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Anton Emmanuel
- GI Physiology Unit, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon Travis
- Kennedy Institute of Rheumatology, University of Oxford, UK; and Translational Gastroenterology and Liver Unit, University of Oxford, UK
| | - Susannah E. Murphy
- Department of Psychiatry, Warneford Hospital, University of Oxford, UK; and Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Maxime Taquet
- Department of Psychiatry, Warneford Hospital, University of Oxford, UK; and Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
10
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
11
|
Hirsch F, Bumanglag Â, Zhang Y, Wohlschlaeger A. Diverging functional connectivity timescales: Capturing distinct aspects of cognitive performance in early psychosis. Neuroimage Clin 2024; 43:103657. [PMID: 39208481 PMCID: PMC11401179 DOI: 10.1016/j.nicl.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Psychosis spectrum disorders (PSDs) are marked by cognitive impairments, the neurobiological correlates of which remain poorly understood. Here, we investigate the entropy of time-varying functional connectivity (TVFC) patterns from resting-state functional magnetic resonance imaging (rs-fMRI) as potential biomarker for cognitive performance in PSDs. By combining our results with multimodal reference data, we hope to generate new insights into the mechanisms underlying cognitive dysfunction in PSDs. We hypothesized that low-entropy TVFC patterns (LEN) would be more behaviorally informative than high-entropy TVFC patterns (HEN), especially for tasks that require extensive integration across diverse cognitive subdomains. METHODS rs-fMRI and behavioral data from 97 patients in the early phases of psychosis and 53 controls were analyzed. Positron emission tomography (PET) and magnetoencephalography (MEG) data were taken from a public repository (Hansen et al., 2022). Multivariate analyses were conducted to examine relationships between TVFC patterns at multiple spatial scales and cognitive performance in patients. RESULTS Compared to HEN, LEN explained significantly more cognitive variance on average in PSD patients, driven by superior encoding of information on psychometrically more integrated tasks. HEN better captured information in specific subdomains of executive functioning. Nodal HEN-LEN transitions were spatially aligned with neurobiological gradients reflecting monoaminergic transporter densities and MEG beta-power. Exploratory analyses revealed a close statistical relationship between LEN and positive symptom severity in patients. CONCLUSION Our entropy-based analysis of TVFC patterns dissociates distinct aspects of cognition in PSDs. By linking topographies of neurotransmission and oscillatory dynamics with cognitive performance, it enhances our understanding of the mechanisms underlying cognitive deficits in PSDs.
Collapse
Affiliation(s)
- Fabian Hirsch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany.
| | - Ângelo Bumanglag
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Yifei Zhang
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
12
|
Sancho-Alonso M, Sarriés-Serrano U, Miquel-Rio L, Yanes Castilla C, Paz V, Meana JJ, Perello M, Bortolozzi A. New insights into the effects of serotonin on Parkinson's disease and depression through its role in the gastrointestinal tract. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00039-5. [PMID: 38992345 DOI: 10.1016/j.sjpmh.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Neuropsychiatric and neurodegenerative disorders are frequently associated with gastrointestinal (GI) co-pathologies. Although the central and enteric nervous systems (CNS and ENS, respectively) have been studied separately, there is increasing interest in factors that may contribute to conditions affecting both systems. There is compelling evidence that serotonin (5-HT) may play an important role in several gut-brain disorders. It is well known that 5-HT is essential for the development and functioning of the CNS. However, most of the body's 5-HT is produced in the GI tract. A deeper understanding of the specific effects of enteric 5-HT on gut-brain disorders may provide the basis for the development of new therapeutic targets. This review summarizes current data focusing on the important role of 5-HT in ENS development and motility, with particular emphasis on novel aspects of 5-HT signaling in conditions where CNS and ENS comorbidities are common, such as Parkinson's disease and depressive disorders.
Collapse
Affiliation(s)
- María Sancho-Alonso
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; Anatomy and Human Embryology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Unai Sarriés-Serrano
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain
| | - Lluis Miquel-Rio
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Claudia Yanes Castilla
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain
| | - Verónica Paz
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José Javier Meana
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; University of the Basque Country UPV/EHU, E-48940 Leioa, Bizkaia, Spain; Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Analia Bortolozzi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Research Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
13
|
Hirsch F, Bumanglag Â, Zhang Y, Wohlschlaeger A. Diverging functional connectivity timescales: Capturing distinct aspects of cognitive performance in early psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.07.24306932. [PMID: 38766002 PMCID: PMC11100938 DOI: 10.1101/2024.05.07.24306932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Psychosis spectrum disorders (PSDs) are marked by cognitive impairments, the neurobiological correlates of which remain poorly understood. Here, we investigate the entropy of time-varying functional connectivity (TVFC) patterns from resting-state fMRI (rfMRI) as potential biomarker for cognitive performance in PSDs. By combining our results with multimodal reference data, we hope to generate new insights into the mechanisms underlying cognitive dysfunction in PSDs. We hypothesized that low-entropy TVFC patterns (LEN) would be more behaviorally informative than high-entropy TVFC patterns (HEN), especially for tasks that require extensive integration across diverse cognitive subdomains. Methods rfMRI and behavioral data from 97 patients in the early phases of psychosis and 53 controls were analyzed. Positron-Emission Tomography (PET) and magnetoencephalography (MEG) data were taken from a public repository (Hansen et al., 2022). Multivariate analyses were conducted to examine relationships between TVFC patterns at multiple spatial scales and cognitive performance in patients. Results Compared to HEN, LEN explained significantly more cognitive variance on average in PSD patients, driven by superior encoding of information on psychometrically more integrated tasks. HEN better captured information in specific subdomains of executive functioning. Nodal HEN-LEN transitions were spatially aligned with neurobiological gradients reflecting monoaminergic transporter densities and MEG beta power. Exploratory analyses revealed a close statistical relationship between LEN and positive PSD symptoms. Conclusion Our entropy-based analysis of TVFC patterns dissociates distinct aspects of cognition in PSDs. By linking topographies of neurotransmission and oscillatory dynamics with cognitive performance, it enhances our understanding of the mechanisms underlying cognitive deficits in PSDs. CRediT Authorship Contribution Statement Fabian Hirsch: Conceptualization, Methodology, Software, Formal analysis, Writing - Original Draft, Writing - Review & Editing, Visualization; Ângelo Bumanglag: Methodology, Software, Formal analysis, Writing - Review & Editing; Yifei Zhang: Methodology, Software, Formal analysis, Writing - Review & Editing; Afra Wohlschlaeger: Methodology, Writing - Review & Editing, Supervision, Project administration.
Collapse
|
14
|
Chen Y, Feng S, Li Y, Zhang C, Chao G, Zhang S. Gut microbiota and intestinal immunity-A crosstalk in irritable bowel syndrome. Immunology 2024; 172:1-20. [PMID: 38174581 DOI: 10.1111/imm.13749] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Irritable bowel syndrome (IBS), one of the most prevalent functional gastrointestinal disorders, is characterized by recurrent abdominal pain and abnormal defecation habits, resulting in a severe healthcare burden worldwide. The pathophysiological mechanisms of IBS are multi-factorially involved, including food antigens, visceral hypersensitivity reactions, and the brain-gut axis. Numerous studies have found that gut microbiota and intestinal mucosal immunity play an important role in the development of IBS in crosstalk with multiple mechanisms. Therefore, based on existing evidence, this paper elaborates that the damage and activation of intestinal mucosal immunity and the disturbance of gut microbiota are closely related to the progression of IBS. Combined with the application prospect, it also provides references for further in-depth exploration and clinical practice.
Collapse
Affiliation(s)
- Yuxuan Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuyan Feng
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Li
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chi Zhang
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Lee J, Jung JH, Kang DW, Kim MH, Lim DJ, Kwon HS, Lee JM, Chang SA, Han K, Lee SH. Body Weight Variability and Risk of Suicide Mortality: A Nationwide Population-Based Study. Depress Anxiety 2024; 2024:7670729. [PMID: 40226695 PMCID: PMC11921691 DOI: 10.1155/2024/7670729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 04/15/2025] Open
Abstract
Background Suicide is a pressing global health concern, and identifying its risk factors is crucial for prevention. Body weight variability (BWV) has been increasingly recognized as a potential factor impacting physical and mental health outcomes. We aimed to explore the relationship between BWV and the risk of suicide mortality using a nationally representative database. Methods This population-based cohort study used data from the Korean National Health Insurance Database and included a total of 1,983,701 subjects. BWV was assessed using at least three health examination datasets and validated variability indices (variability independent of the mean (VIM), average successive variability, and coefficient of variation), and patients were divided into BWV quartiles (Q1-Q4). The primary endpoint was suicide-related death. Results During a median of 11.3 years of follow-up, 5,883 suicide deaths occurred. A higher baseline body weight was associated with a lower risk of suicide. However, greater BWV (VIM) was associated with a significantly greater risk of suicide (adjusted hazard ratio [95% confidence interval], 1.35 [1.26-1.45] in the Q4 group), even after adjusting for baseline body mass index (BMI). Similar results were observed regardless of obesity or BMI category. Consistent findings were observed when using different variability indices. Subgroup analyses according to sex, age, diabetes, and depression also supported these findings. Conclusion Our study highlights the importance of considering BWV as a potential risk factor for suicide.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Min Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Ah Chang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
16
|
Nagao R, Mizutani Y, Shima S, Ueda A, Ito M, Yoshimoto J, Watanabe H. Correlations between serotonin impairments and clinical indices in multiple system atrophy. Eur J Neurol 2024; 31:e16158. [PMID: 38085271 PMCID: PMC11235942 DOI: 10.1111/ene.16158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND AND PURPOSE Multiple system atrophy (MSA) is a neurodegenerative disease with characteristic motor and autonomic symptoms. Impaired brain serotonergic innervation can be associated with various clinical indices of MSA; however, the relationship between clinical symptoms and cerebrospinal fluid (CSF) levels of 5-hydroxyindole acetic acid (5-HIAA), a main serotonin metabolite, has not been fully elucidated. METHODS To compare CSF 5-HIAA levels between patients with MSA and healthy controls, we included 33 controls and 69 MSA patients with either predominant parkinsonian or cerebellar ataxia subtypes. CSF 5-HIAA levels were measured using high-performance liquid chromatography. Additionally, we investigated correlations between CSF 5-HIAA and various clinical indices in 34 MSA patients. RESULTS CSF 5-HIAA levels were significantly lower in MSA patients than in controls (p < 0.0001). Probable MSA patients had lower CSF 5-HIAA levels than possible MSA patients (p < 0.001). In MSA patients, CSF 5-HIAA levels were inversely correlated with scores in Parts 1, 2, and 4 of the Unified Multiple System Atrophy Rating Scale, and with systolic and diastolic blood pressure in Part 3. Structural equation modeling revealed significant paths between serotonin and clinical symptoms, and significance was highest for activities of daily living, walking, and body sway. CONCLUSIONS Serotonin dysfunction, as assessed by CSF 5-HIAA levels, may implicate greater MSA severity.
Collapse
Affiliation(s)
- Ryunosuke Nagao
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Yasuaki Mizutani
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Sayuri Shima
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Akihiro Ueda
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Mizuki Ito
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Junichiro Yoshimoto
- Department of Biomedical Data ScienceFujita Health University School of MedicineToyoakeAichiJapan
- International Center for Brain ScienceFujita Health UniversityToyoakeAichiJapan
| | - Hirohisa Watanabe
- Department of NeurologyFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
17
|
Hashimoto K. Are "mystical experiences" essential for antidepressant actions of ketamine and the classic psychedelics? Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01770-7. [PMID: 38411629 DOI: 10.1007/s00406-024-01770-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
The growing interest in the rapid and sustained antidepressant effects of the dissociative anesthetic ketamine and classic psychedelics, such as psilocybin, is remarkable. However, both ketamine and psychedelics are known to induce acute mystical experiences; ketamine can cause dissociative symptoms such as out-of-body experience, while psychedelics typically bring about hallucinogenic experiences, like a profound sense of unity with the universe or nature. The role of these mystical experiences in enhancing the antidepressant outcomes for patients with depression is currently an area of ongoing investigation and debate. Clinical studies have shown that the dissociative symptoms following the administration of ketamine or (S)-ketamine (esketamine) are not directly linked to their antidepressant properties. In contrast, the antidepressant potential of (R)-ketamine (arketamine), thought to lack dissociative side effects, has yet to be conclusively proven in large-scale clinical trials. Moreover, although the activation of the serotonin 5-HT2A receptor is crucial for the hallucinogenic effects of psychedelics in humans, its precise role in their antidepressant action is still under discussion. This article explores the importance of mystical experiences in enhancing the antidepressant efficacy of both ketamine and classic psychedelics.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
18
|
Tan JB, Müller EJ, Orlando IF, Taylor NL, Margulies DS, Szeto J, Lewis SJG, Shine JM, O'Callaghan C. Abnormal higher-order network interactions in Parkinson's disease visual hallucinations. Brain 2024; 147:458-471. [PMID: 37677056 DOI: 10.1093/brain/awad305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Visual hallucinations in Parkinson's disease can be viewed from a systems-level perspective, whereby dysfunctional communication between brain networks responsible for perception predisposes a person to hallucinate. To this end, abnormal functional interactions between higher-order and primary sensory networks have been implicated in the pathophysiology of visual hallucinations in Parkinson's disease, however the precise signatures remain to be determined. Dimensionality reduction techniques offer a novel means for simplifying the interpretation of multidimensional brain imaging data, identifying hierarchical patterns in the data that are driven by both within- and between-functional network changes. Here, we applied two complementary non-linear dimensionality reduction techniques-diffusion-map embedding and t-distributed stochastic neighbour embedding (t-SNE)-to resting state functional MRI data, in order to characterize the altered functional hierarchy associated with susceptibility to visual hallucinations. Our study involved 77 people with Parkinson's disease (31 with hallucinations; 46 without hallucinations) and 19 age-matched healthy control subjects. In patients with visual hallucinations, we found compression of the unimodal-heteromodal gradient consistent with increased functional integration between sensory and higher order networks. This was mirrored in a traditional functional connectivity analysis, which showed increased connectivity between the visual and default mode networks in the hallucinating group. Together, these results suggest a route by which higher-order regions may have excessive influence over earlier sensory processes, as proposed by theoretical models of hallucinations across disorders. By contrast, the t-SNE analysis identified distinct alterations in prefrontal regions, suggesting an additional layer of complexity in the functional brain network abnormalities implicated in hallucinations, which was not apparent in traditional functional connectivity analyses. Together, the results confirm abnormal brain organization associated with the hallucinating phenotype in Parkinson's disease and highlight the utility of applying convergent dimensionality reduction techniques to investigate complex clinical symptoms. In addition, the patterns we describe in Parkinson's disease converge with those seen in other conditions, suggesting that reduced hierarchical differentiation across sensory-perceptual systems may be a common transdiagnostic vulnerability in neuropsychiatric disorders with perceptual disturbances.
Collapse
Affiliation(s)
- Joshua B Tan
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Eli J Müller
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Centre for Complex Systems, School of Physics, University of Sydney, Sydney 2050, Australia
| | - Isabella F Orlando
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Natasha L Taylor
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Center National de la Recherche Scientifique (CNRS) and Université de Paris, 75006 Paris, France
| | - Jennifer Szeto
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Simon J G Lewis
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Centre for Complex Systems, School of Physics, University of Sydney, Sydney 2050, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
19
|
Bahavarnia F, Kohansal F, Hasanzadeh M. One-drop chemosensing of dapoxetine hydrochloride using opto-analysis by multi-channel μPAD decorated silver nanoparticles: introducing a paper-based microfluidic portable device/sensor toward naked-eye pharmaceutical analysis by lab-on-paper technology. RSC Adv 2024; 14:2610-2620. [PMID: 38226144 PMCID: PMC10788682 DOI: 10.1039/d3ra06752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
Dapoxetine (DPX) belongs to the selective serotonin reuptake inhibitor (SSRI) class and functions by blocking the serotonin transporter and increasing serotonin activity, thereby delaying ejaculation. Therefore, monitoring of the concentration of DPX in human biofluids is important for clinicians. In this study, application of silver nanoparticles with the morphology of prisms (AgNPrs) for the sensitive measurement of DPX using colorimetric chemosensing and the spectrophotometric method was investigated. Also, DPX was determined in real samples using the spectrophotometry method. Based on the obtained results, all of the detection process in colorimetric assay is related to morphological reform of AgNPrs after it's specific electrostatic and covalent interaction with DPX as analyte. The UV-vis results indicate that the proposed AgNPrs-based chemosensing system has a wide range of linearity (0.01 μM to 1 mM) with a low limit of quantification of 0.01 μM in human urine samples, which is suitable for clinical analysis of this drug in human urine samples. It is important to point out that, this chemosensing strategy showed inappropriate analytical results for the detection of DPX in human urine samples which is a novelty of this platform. Finally, the optimized microfluidic paper-based analytical device (μPAD) was integrated with the colorimetric analysis of DPX to provide a time/color system for estimating analyte concentration by a portable substrate toward in situ and on-site biomedical analysis. Interestingly, the analytical validation tests showed appropriate results with great stability, which may facilitate commercialization of the engineered substrate. For the first time, in order to provide a simple and portable colorimetric/spectrophotometric recognition system to sensitive determination of DPX, an optimized pump-less microfluidic paper-based colorimetric device (μPCD) was introduced and validated for the real-time biomedical analysis of this analyte. According to the obtained results, this alternative approach is suitable for therapeutic drug monitoring (TDM) and biomedical analysis by miniaturized and cost-beneficial devices.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Fereshteh Kohansal
- Drug Applied Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
20
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
21
|
Qu Y, Eguchi A, Ma L, Wan X, Mori C, Hashimoto K. Role of the gut-brain axis via the subdiaphragmatic vagus nerve in stress resilience of 3,4-methylenedioxymethamphetamine in mice exposed to chronic restrain stress. Neurobiol Dis 2023; 189:106348. [PMID: 37956855 DOI: 10.1016/j.nbd.2023.106348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is the most widely used illicit substance worldwide. Nevertheless, recent observational studies demonstrated that lifetime MDMA use among U.S. adults was associated with a lower risk of depression and suicide thoughts. We recently reported that the gut-brain axis may contribute to MDMA-induced stress resilience in mice. To further explore this, we investigated the effects of subdiaphragmatic vagotomy (SDV) in modulating the stress resilience effects of MDMA in mice subjected to chronic restrain stress (CRS). Pretreatment with MDMA (10 mg/kg/day for 14 days) blocked anhedonia-like behavior and reduced expression of synaptic proteins and brain-derived neurotrophic factor in the prefrontal cortex (PFC) of CRS-exposed mice. Interestingly, SDV blocked the beneficial effects of MDMA on these alterations in CRS-exposed mice. Analysis of gut microbiome revealed alterations in four measures of α-diversity between the sham + MDMA + CRS group and the SDV + MDMA + CRS group. Moreover, specific microbes differed between the vehicle + CRS group and the MDMA + CRS group, and further differences in microbial composition were observed among all four groups. Untargeted metabolomics analysis showed that SDV prevented the increase in plasma levels of three compounds [lactic acid, 1-(2-hydroxyethyl)-2,2,6-tetramethyl-4-piperidinol, 8-acetyl-7-hydroxyvumaline] observed in the sham + MDMA + CRS group. Interestingly, positive correlations were found between the plasma levels of two of these compounds and the abundance of several microbes across all groups. In conclusion, our data suggest that the gut-brain axis via the subdiaphragmatic vagus nerve might contribute to the stress resilience of MDMA.
Collapse
Affiliation(s)
- Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
22
|
Zhu Z, Chen X, Chen S, Hu C, Guo R, Wu Y, Liu Z, Shu X, Jiang M. Examination of the mechanism of Piezo ion channel in 5-HT synthesis in the enterochromaffin cell and its association with gut motility. Front Endocrinol (Lausanne) 2023; 14:1193556. [PMID: 38027192 PMCID: PMC10652390 DOI: 10.3389/fendo.2023.1193556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
In the gastrointestinal tract, serotonin (5-hydroxytryptamine, 5-HT) is an important monoamine that regulates intestinal dynamics. QGP-1 cells are human-derived enterochromaffin cells that secrete 5-HT and functionally express Piezo ion channels associated with cellular mechanosensation. Piezo ion channels can be blocked by Grammostola spatulata mechanotoxin 4 (GsMTx4), a spider venom peptide that inhibits cationic mechanosensitive channels. The primary aim of this study was to explore the effects of GsMTx4 on 5-HT secretion in QGP-1 cells in vitro. We investigated the transcript and protein levels of the Piezo1/2 ion channel, tryptophan hydroxylase 1 (TPH1), and mitogen-activated protein kinase signaling pathways. In addition, we observed that GsMTx4 affected mouse intestinal motility in vivo. Furthermore, GsMTx4 blocked the response of QGP-1 cells to ultrasound, a mechanical stimulus.The prolonged presence of GsMTx4 increased the 5-HT levels in the QGP-1 cell culture system, whereas Piezo1/2 expression decreased, and TPH1 expression increased. This effect was accompanied by the increased phosphorylation of the p38 protein. GsMTx4 increased the entire intestinal passage time of carmine without altering intestinal inflammation. Taken together, inhibition of Piezo1/2 can mediate an increase in 5-HT, which is associated with TPH1, a key enzyme for 5-HT synthesis. It is also accompanied by the activation of the p38 signaling pathway. Inhibitors of Piezo1/2 can modulate 5-HT secretion and influence intestinal motility.
Collapse
Affiliation(s)
- Zhenya Zhu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xiaolong Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Shuang Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Yuhao Wu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Ziyu Liu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| |
Collapse
|
23
|
Yang L, Cheng Y, Zhu Y, Cui L, Li X. The Serotonergic System and Amyotrophic Lateral Sclerosis: A Review of Current Evidence. Cell Mol Neurobiol 2023; 43:2387-2414. [PMID: 36729314 PMCID: PMC11410157 DOI: 10.1007/s10571-023-01320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the premature death of motor neurons. Serotonin (5-HT) is a crucial neurotransmitter, and its dysfunction, whether as a contributor or by-product, has been implicated in ALS pathogenesis. Here, we summarize current evidence linking serotonergic alterations to ALS, including results from post-mortem and neuroimaging studies, biofluid testing, and studies of ALS animal models. We also discuss the possible role of 5-HT in modulating some important mechanisms of ALS (i.e. glutamate excitotoxity and neuroinflammation) and in regulating ALS phenotypes (i.e. breathing dysfunction and metabolic defects). Finally, we discuss the promise and limitations of the serotonergic system as a target for the development of ALS biomarkers and therapeutic approaches. However, due to a relative paucity of data and standardized methodologies in previous studies, proper interpretation of existing results remains a challenge. Future research is needed to unravel the mechanisms linking serotonergic pathways and ALS and to provide valid, reproducible, and translatable findings.
Collapse
Affiliation(s)
- Lu Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yanfei Cheng
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaoguang Li
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), The Transformation Medical Center of PUMC, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, 100005, China.
- Neuroscience Center, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
24
|
Mitsikostas DD, Waeber C, Sanchez-Del-Rio M, Raffaelli B, Ashina H, Maassen van den Brink A, Andreou A, Pozo-Rosich P, Rapoport A, Ashina M, Moskowitz MA. The 5-HT 1F receptor as the target of ditans in migraine - from bench to bedside. Nat Rev Neurol 2023:10.1038/s41582-023-00842-x. [PMID: 37438431 DOI: 10.1038/s41582-023-00842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Migraine is a leading cause of disability in more than one billion people worldwide, yet it remains universally underappreciated, even by individuals with the condition. Among other shortcomings, current treatments (often repurposed agents) have limited efficacy and potential adverse effects, leading to low treatment adherence. After the introduction of agents that target the calcitonin gene-related peptide pathway, another new drug class, the ditans - a group of selective serotonin 5-HT1F receptor agonists - has just reached the international market. Here, we review preclinical studies from the late 1990s and more recent clinical research that contributed to the development of the ditans and led to their approval for acute migraine treatment by the US Food and Drug Administration and the European Medicines Agency.
Collapse
Affiliation(s)
- Dimos D Mitsikostas
- 1st Neurology Department, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christian Waeber
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | | | - Bianca Raffaelli
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Anaesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Antoinette Maassen van den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Anna Andreou
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Patricia Pozo-Rosich
- Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alan Rapoport
- Department of Neurology, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael A Moskowitz
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
25
|
Shine JM. Neuromodulatory control of complex adaptive dynamics in the brain. Interface Focus 2023; 13:20220079. [PMID: 37065268 PMCID: PMC10102735 DOI: 10.1098/rsfs.2022.0079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 04/18/2023] Open
Abstract
How is the massive dimensionality and complexity of the microscopic constituents of the nervous system brought under sufficiently tight control so as to coordinate adaptive behaviour? A powerful means for striking this balance is to poise neurons close to the critical point of a phase transition, at which a small change in neuronal excitability can manifest a nonlinear augmentation in neuronal activity. How the brain could mediate this critical transition is a key open question in neuroscience. Here, I propose that the different arms of the ascending arousal system provide the brain with a diverse set of heterogeneous control parameters that can be used to modulate the excitability and receptivity of target neurons-in other words, to act as control parameters for mediating critical neuronal order. Through a series of worked examples, I demonstrate how the neuromodulatory arousal system can interact with the inherent topological complexity of neuronal subsystems in the brain to mediate complex adaptive behaviour.
Collapse
Affiliation(s)
- James M. Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Tosserams A, Bloem BR, Ehgoetz Martens KA, Helmich RC, Kessels RPC, Shine JM, Taylor NL, Wainstein G, Lewis SJG, Nonnekes J. Modulating arousal to overcome gait impairments in Parkinson's disease: how the noradrenergic system may act as a double-edged sword. Transl Neurodegener 2023; 12:15. [PMID: 36967402 PMCID: PMC10040128 DOI: 10.1186/s40035-023-00347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
In stressful or anxiety-provoking situations, most people with Parkinson's disease (PD) experience a general worsening of motor symptoms, including their gait impairments. However, a proportion of patients actually report benefits from experiencing-or even purposely inducing-stressful or high-arousal situations. Using data from a large-scale international survey study among 4324 people with PD and gait impairments within the online Fox Insight (USA) and ParkinsonNEXT (NL) cohorts, we demonstrate that individuals with PD deploy an array of mental state alteration strategies to cope with their gait impairment. Crucially, these strategies differ along an axis of arousal-some act to heighten, whereas others diminish, overall sympathetic tone. Together, our observations suggest that arousal may act as a double-edged sword for gait control in PD. We propose a theoretical, neurobiological framework to explain why heightened arousal can have detrimental effects on the occurrence and severity of gait impairments in some individuals, while alleviating them in others. Specifically, we postulate that this seemingly contradictory phenomenon is explained by the inherent features of the ascending arousal system: namely, that arousal is related to task performance by an inverted u-shaped curve (the so-called Yerkes and Dodson relationship). We propose that the noradrenergic locus coeruleus plays an important role in modulating PD symptom severity and expression, by regulating arousal and by mediating network-level functional integration across the brain. The ability of the locus coeruleus to facilitate dynamic 'cross-talk' between distinct, otherwise largely segregated brain regions may facilitate the necessary cerebral compensation for gait impairments in PD. In the presence of suboptimal arousal, compensatory networks may be too segregated to allow for adequate compensation. Conversely, with supraoptimal arousal, increased cross-talk between competing inputs of these complementary networks may emerge and become dysfunctional. Because the locus coeruleus degenerates with disease progression, finetuning of this delicate balance becomes increasingly difficult, heightening the need for mental strategies to self-modulate arousal and facilitate shifting from a sub- or supraoptimal state of arousal to improve gait performance. Recognition of this underlying mechanism emphasises the importance of PD-specific rehabilitation strategies to alleviate gait disability.
Collapse
Affiliation(s)
- Anouk Tosserams
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Rick C Helmich
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Neuropsychology and Rehabilitation Psychology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Vincent Van Gogh Institute for Psychiatry, Venray, The Netherlands
- Klimmendaal Rehabilitation Center, Arnhem, The Netherlands
| | - James M Shine
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- Centre for Complex Systems, The University of Sydney, Camperdown, NSW, Australia
| | - Natasha L Taylor
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Gabriel Wainstein
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Simon J G Lewis
- Brain and Mind Centre, Parkinson's Disease Research Clinic, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Jorik Nonnekes
- Department of Rehabilitation, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Repeated use of 3,4-methylenedioxymethamphetamine is associated with the resilience in mice after chronic social defeat stress: A role of gut-microbiota-brain axis. Psychiatry Res 2023; 320:115020. [PMID: 36571897 DOI: 10.1016/j.psychres.2022.115020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA), the most widely used illicit compound worldwide, is the most attractive therapeutic drug for post-traumatic stress disorder (PTSD). Recent observational studies of US adults demonstrated that lifetime MDMA use was associated with lower risk of depression. Here, we examined whether repeated administration of MDMA can affect resilience versus susceptibility in mice exposed to chronic social defeat stress (CSDS). CSDS produced splenomegaly, anhedonia-like phenotype, and higher plasma levels of interleukin-6 (IL-6) in the saline-treated mice. In contrast, CSDS did not cause these changes in the MDMA-treated mice. Analysis of gut microbiome found several microbes altered between saline + CSDS group and MDMA + CSDS group. Untargeted metabolomics analysis showed that plasma levels of N-epsilon-methyl-L-lysine in the saline + CSDS group were significantly higher than those in the control and MDMA + CSDS groups. Interestingly, there were positive correlations between plasma IL-6 levels and the abundance of several microbes (or plasma N-epsilon-methyl-L-lysine) in the three groups. Furthermore, there were also positive correlations between the abundance of several microbes and N-epsilon-methyl-L-lysine in the three groups. In conclusion, these data suggest that repeated administration of MDMA might contribute to stress resilience in mice subjected to CSDS through gut-microbiota-brain axis.
Collapse
|
28
|
Hashimoto K. Neuroinflammation through the vagus nerve-dependent gut–microbiota–brain axis in treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
29
|
Liu Y, Li Z, Sun T, He Z, Xiang H, Xiong J. Gut microbiota-generated short-chain fatty acids are involved in para-chlorophenylalanine-induced cognitive disorders. Front Microbiol 2022; 13:1028913. [PMID: 36419424 PMCID: PMC9676499 DOI: 10.3389/fmicb.2022.1028913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/12/2022] [Indexed: 08/30/2023] Open
Abstract
Neurocognitive disorders (NCDs) include complex and multifactorial diseases that affect many patients. The 5-hydroxytryptamine (5-HT) neuron system plays an important role in NCDs. Existing studies have reported that para-chlorophenylalanine (PCPA), a 5-HT scavenger, has a negative effect on cognitive function. However, we believe that PCPA may result in NCDs through other pathways. To explore this possibility, behavioral tests were performed to evaluate the cognitive function of PCPA-treated mice, suggesting the appearance of cognitive dysfunction and depression-like behavior. Furthermore, 16S rRNA and metabolomic analyses revealed that dysbiosis and acetate alternation could be related to PCPA-induced NCDs. Our results suggest that not only 5-HT depletion but also dysbiosis and acetate alternation contributed to PCPA-related NCDs. Specifically, the latter promotes NCDs by reducing short-chain fatty acid levels. Together, these findings provide an alternative perspective on PCPA-induced NCDs.
Collapse
Affiliation(s)
- Yanbo Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhigang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Signorelli CM, Boils JD, Tagliazucchi E, Jarraya B, Deco G. From Brain-Body Function to Conscious Interactions. Neurosci Biobehav Rev 2022; 141:104833. [PMID: 36037978 DOI: 10.1016/j.neubiorev.2022.104833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022]
Abstract
In this review, we discuss empirical results inspiring the introduction of a formal mathematical multilayer model for the biological neuroscience of conscious experience. First, we motivate the discussion through evidence regarding the dynamic brain. Second, we review different brain-body couplings associated with conscious experience and its potential role in driving brain dynamics. Third, we introduce the machinery of multilayer networks to account for several types of interactions in brain-body systems. Then, a multilayer structure consists of two main generalizations: a formal semantic to study biological systems, and an integrative account for several signatures and models of consciousness. Finally, under this framework, we define composition of layers to account for entangled features of brain-body systems related to conscious experience. As such, a multilayer mathematical framework is highly integrative and thus may be more complete than other models. In this short review, we discuss a variety of empirical results inspiring the introduction of a formal mathematical multilayer model for the biological neuroscience of conscious experience.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, OxfordOX1 3QG, United Kingdom; Physiology of Cognition, GIGA-CRC In Vivo Imaging, Allée du 6 Août, 8 (B30), 4000 Sart Tilman, University of Liège, Belgium; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France; Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Joaquín Díaz Boils
- Universidad Internacional de La Rioja, Avda La Paz, 137, Logroño, La Rioja, Spain
| | - Enzo Tagliazucchi
- Physics Department, University of Buenos Aires, Buenos Aires, Argentina
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|