1
|
Fenton TA, Haouchine OY, Hallam EB, Smith EM, Jackson KC, Rahbarian D, Canales CP, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical mouse model of SYNGAP1-related intellectual disability. Transl Psychiatry 2024; 14:405. [PMID: 39358332 PMCID: PMC11447000 DOI: 10.1038/s41398-024-03077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability (ID), motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicating the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered, identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data that was collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated that primary neurons from Syngap1+/- mice displayed: 1) increased network firing activity, 2) greater bursts, 3) and shorter inter-burst intervals between peaks, by utilizing high density microelectrode arrays (HD-MEA). Our work bridges in vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Olivia Y Haouchine
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Elizabeth B Hallam
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Emily M Smith
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Kiya C Jackson
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Darlene Rahbarian
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Cesar P Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Alex S Nord
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | - Roy Ben-Shalom
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
2
|
Li Y, Uhelski ML, North RY, Mwirigi JM, Tatsui CE, McDonough KE, Cata JP, Corrales G, Dussor G, Price TJ, Dougherty PM. Tomivosertib reduces ectopic activity in dorsal root ganglion neurons from patients with radiculopathy. Brain 2024; 147:2991-2997. [PMID: 39046204 PMCID: PMC11370786 DOI: 10.1093/brain/awae178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 04/15/2024] [Accepted: 05/05/2024] [Indexed: 07/25/2024] Open
Abstract
Spontaneous activity in dorsal root ganglion (DRG) neurons is a key driver of neuropathic pain in patients suffering from this largely untreated disease. While many intracellular signalling mechanisms have been examined in preclinical models that drive spontaneous activity, none have been tested directly on spontaneously active human nociceptors. Using cultured DRG neurons recovered during thoracic vertebrectomy surgeries, we showed that inhibition of mitogen-activated protein kinase interacting kinase (MNK) with tomivosertib (eFT508, 25 nM) reversibly suppresses spontaneous activity in human sensory neurons that are likely nociceptors based on size and action potential characteristics associated with painful dermatomes within minutes of treatment. Tomivosertib treatment also decreased action potential amplitude and produced alterations in the magnitude of after hyperpolarizing currents, suggesting modification of Na+ and K+ channel activity as a consequence of drug treatment. Parallel to the effects on electrophysiology, eFT508 treatment led to a profound loss of eIF4E serine 209 phosphorylation in primary sensory neurons, a specific substrate of MNK, within 2 min of drug treatment. Our results create a compelling case for the future testing of MNK inhibitors in clinical trials for neuropathic pain.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan L Uhelski
- Department of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert Y North
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juliet M Mwirigi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Claudio E Tatsui
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kathleen E McDonough
- Department of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan P Cata
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - German Corrales
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Greg Dussor
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Patrick M Dougherty
- Department of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Fenton TA, Haouchine OY, Hallam EL, Smith EM, Jackson KC, Rahbarian D, Canales C, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical mouse model of SYNGAP1-Related Intellectual Disability. RESEARCH SQUARE 2024:rs.3.rs-4067746. [PMID: 38562838 PMCID: PMC10984035 DOI: 10.21203/rs.3.rs-4067746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability, motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicting the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated primary neurons from Syngap1+/- mice displayed increased network firing activity, greater bursts, and shorter inter-burst intervals between peaks by employing high density microelectrode arrays (HD-MEA). Our work bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.
Collapse
Affiliation(s)
- Timothy A Fenton
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Olivia Y Haouchine
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Elizabeth L Hallam
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Emily M Smith
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Kiya C. Jackson
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Darlene Rahbarian
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Cesar Canales
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Anna Adhikari
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Alexander S. Nord
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
- UC Davis Center for Neuroscience; Department of Psychiatry and Behavioral Sciences & Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Roy Ben-Shalom
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Jill L Silverman
- MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA 95817
| |
Collapse
|
4
|
Pedini G, Chen CL, Achsel T, Bagni C. Cancer drug repurposing in autism spectrum disorder. Trends Pharmacol Sci 2023; 44:963-977. [PMID: 37940430 DOI: 10.1016/j.tips.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with uncertain origins. Understanding of the mechanisms underlying ASD remains limited, and treatments are lacking. Genetic diversity complicates drug development. Given the complexity and severity of ASD symptoms and the rising number of diagnoses, exploring novel therapeutic strategies is essential. Here, we focus on shared molecular pathways between ASD and cancer and highlight recent progress on the repurposing of cancer drugs for ASD treatment, such as mTOR inhibitors, histone deacetylase inhibitors, and anti-inflammatory agents. We discuss how to improve trial design considering drug dose and patient age. Lastly, the discussion explores the critical aspects of side effects, commercial factors, and the efficiency of drug-screening pipelines; all of which are essential considerations in the pursuit of repurposing cancer drugs for addressing core features of ASD.
Collapse
Affiliation(s)
- Giorgia Pedini
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy
| | - Chin-Lin Chen
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Tilmann Achsel
- University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Claudia Bagni
- University of Rome Tor Vergata, Department of Biomedicine and Prevention, Via Montpellier 1, 00133, Rome, Italy; University of Lausanne, Department of Fundamental Neurosciences, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
5
|
Silverman JL, Fenton T, Haouchine O, Hallam E, Smith E, Jackson K, Rahbarian D, Canales C, Adhikari A, Nord A, Ben-Shalom R. Hyperexcitability and translational phenotypes in a preclinical model of SYNGAP1 mutations. RESEARCH SQUARE 2023:rs.3.rs-3246655. [PMID: 37790402 PMCID: PMC10543290 DOI: 10.21203/rs.3.rs-3246655/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
SYNGAP1 is a critical gene for neuronal development, synaptic structure, and function. Although rare, the disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1 -related intellectual disability. Without functional SynGAP1 protein, patients present with intellectual disability, motor impairments, and epilepsy. Previous work using mouse models with a variety of germline and conditional mutations has helped delineate SynGAP1's critical roles in neuronal structure and function, as well as key biochemical signaling pathways essential to synapse integrity. Homozygous loss of SYNGAP1 is embryonically lethal. Heterozygous mutations of SynGAP1 result in a broad range of phenotypes including increased locomotor activity, impaired working spatial memory, impaired cued fear memory, and increased stereotypic behavior. Our in vivo functional data, using the original germline mutation mouse line from the Huganir laboratory, corroborated robust hyperactivity and learning and memory deficits. Here, we describe impairments in the translational biomarker domain of sleep, characterized using neurophysiological data collected with wireless telemetric electroencephalography (EEG). We discovered Syngap1+/- mice exhibited elevated spike trains in both number and duration, in addition to elevated power, most notably in the delta power band. Primary neurons from Syngap1+/- mice displayed increased network firing activity, greater spikes per burst, and shorter inter-burst intervals between peaks using high density micro-electrode arrays (HD-MEA). This work is translational, innovative, and highly significant as it outlines functional impairments in Syngap1 mutant mice. Simultaneously, the work utilized untethered, wireless neurophysiology that can discover potential biomarkers of Syngap1 RI-D, for clinical trials, as it has done with other NDDs. Our work is substantial forward progress toward translational work for SynGAP1R-ID as it bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate multiple quantitative, translational biomarkers in vivo and in vitro for the development of treatments for SYNGAP1-related intellectual disability.
Collapse
Affiliation(s)
- Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Fenton TA, Haouchine OY, Hallam EL, Smith EM, Jackson KC, Rahbarian D, Canales C, Adhikari A, Nord AS, Ben-Shalom R, Silverman JL. Hyperexcitability and translational phenotypes in a preclinical model of SYNGAP1 mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550093. [PMID: 37546838 PMCID: PMC10402099 DOI: 10.1101/2023.07.24.550093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
SYNGAP1 is a critical gene for neuronal development, synaptic structure, and function. Although rare, the disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability. Without functional SynGAP1 protein, patients present with intellectual disability, motor impairments, and epilepsy. Previous work using mouse models with a variety of germline and conditional mutations has helped delineate SynGAP1's critical roles in neuronal structure and function, as well as key biochemical signaling pathways essential to synapse integrity. Homozygous loss of SYNGAP1 is embryonically lethal. Heterozygous mutations of SynGAP1 result in a broad range of phenotypes including increased locomotor activity, impaired working spatial memory, impaired cued fear memory, and increased stereotypic behavior. Our in vivo functional data, using the original germline mutation mouse line from the Huganir laboratory, corroborated robust hyperactivity and learning and memory deficits. Here, we describe impairments in the translational biomarker domain of sleep, characterized using neurophysiological data collected with wireless telemetric electroencephalography (EEG). We discovered Syngap1 +/- mice exhibited elevated spike trains in both number and duration, in addition to elevated power, most notably in the delta power band. Primary neurons from Syngap1 +/- mice displayed increased network firing activity, greater spikes per burst, and shorter inter-burst intervals between peaks using high density micro-electrode arrays (HD-MEA). This work is translational, innovative, and highly significant as it outlines functional impairments in Syngap1 mutant mice. Simultaneously, the work utilized untethered, wireless neurophysiology that can discover potential biomarkers of Syngap1R-ID, for clinical trials, as it has done with other NDDs. Our work is substantial forward progress toward translational work for SynGAP1R-ID as it bridges in-vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate multiple quantitative, translational biomarkers in vivo and in vitro for the development of treatments for SYNGAP1-related intellectual disability.
Collapse
|
7
|
Li Y, Uhelski ML, North RY, Mwirigi JM, Tatsui CE, Cata JP, Corrales G, Price TJ, Dougherty PM. MNK inhibitor eFT508 (Tomivosertib) suppresses ectopic activity in human dorsal root ganglion neurons from dermatomes with radicular neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544811. [PMID: 37398249 PMCID: PMC10312735 DOI: 10.1101/2023.06.13.544811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Spontaneous activity in dorsal root ganglion (DRG) neurons is a key driver of neuropathic pain in preclinical models and in patients suffering from this largely untreated disease. While many intracellular signaling mechanisms have been examined in preclinical models that drive this spontaneous activity (SA), none of these have been tested directly on spontaneously active human nociceptors. Using cultured DRG neurons recovered during thoracic vertebrectomy surgeries, we show that inhibition of mitogen activated protein kinase interacting kinase (MNK) with eFT508 (25 nM) reverses SA in human sensory neurons associated with painful dermatomes. MNK inhibition in spontaneously active nociceptors decreased action potential amplitude and produced alterations in the magnitude of afterhyperpolarizing currents suggesting modification of Na+ and K+ channel activity downstream of MNK inhibition. The effects of MNK inhibition on SA took minutes to emerge and were reversible over time with eFT508 washout. MNK inhibition with eFT508 led to a profound loss of eIF4E Serine 209 phosphorylation, a specific target of the kinase, within 2 min of drug treatment, consistent with the rapid action of the drug on SA in electrophysiology experiments. Our results create a compelling case for the future testing of MNK inhibitors in clinical trials for neuropathic pain.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, 77030
| | - Megan L. Uhelski
- Department of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, 77030
| | - Robert Y. North
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, 77030
| | - Juliet M. Mwirigi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
- Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Claudio E. Tatsui
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, 77030
| | - Juan P. Cata
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, 77030
| | - German Corrales
- Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, 77030
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
- Center for Advanced Pain Studies, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, Texas, 75080
| | - Patrick M. Dougherty
- Department of Anesthesia and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, 77030
| |
Collapse
|
8
|
Shiers S, Sahn JJ, Price TJ. MNK1 and MNK2 Expression in the Human Dorsal Root and Trigeminal Ganglion. Neuroscience 2023; 515:96-107. [PMID: 36764601 DOI: 10.1016/j.neuroscience.2023.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Mitogen activated protein kinase interacting kinases (MNK) 1 and 2 are serine/threonine protein kinases that play an important role in translation of mRNAs through their phosphorylation of the RNA 5'-cap binding protein, eukaryotic translation initiation factor (eIF) 4E. These kinases are downstream targets for mitogen activated protein kinases (MAPKs), extracellular activity regulated protein kinase (ERK) and p38. MNKs have been implicated in the sensitization of peripheral nociceptors of the dorsal root and trigeminal ganglion (DRG and TG) using transgenic mouse lines and through the use of specific inhibitors of MNK1 and MNK2. While specific knockout of the Mknk1 gene suggests that it is the key isoform for regulation of nociceptor excitability and nociceptive behaviors in mice, both MKNK1 and MKNK2 genes are expressed in the DRG and TG of mice and humans based on RNA sequencing experiments. Single cell sequencing in mice suggests that Mknk1 and Mknk2 may be expressed in different populations of nociceptors. We sought to characterize mRNA expression in human DRG and TG (N = 3 ganglia for both DRG and TG) for both MNK1 and MNK2. Our results show that both genes are expressed by nearly all neurons in both human ganglia with expression in other cell types as well. Our findings provide evidence that MNK1 and MNK2 are expressed by human nociceptors of males and females and suggest that efforts to pharmacologically target MNKs for pain would likely be translatable due its conserved expression in both species.
Collapse
Affiliation(s)
- Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | | | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
9
|
Shiers S, Sahn JJ, Price TJ. MNK1 and MNK2 expression in the human dorsal root and trigeminal ganglion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522773. [PMID: 36711529 PMCID: PMC9881964 DOI: 10.1101/2023.01.04.522773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitogen activated protein kinase interacting kinases (MNK) 1 and 2 are serine/threonine protein kinases that play an important role in translation of mRNAs through their phosphorylation of the RNA 5’-cap binding protein, eukaryotic translation initiation factor (eIF) 4E. These kinases are downstream targets for mitogen activated protein kinases (MAPKs), extracellular activity regulated protein kinase (ERK) and p38. MNKs have been implicated in the sensitization of peripheral nociceptors of the dorsal root and trigeminal ganglion (DRG and TG) using transgenic mouse lines and through the use of specific inhibitors of MNK1 and MNK2. While specific knockout of the Mknk1 gene suggests that it is the key isoform for regulation of nociceptor excitability and nociceptive behaviors in mice, both MKNK1 and MKNK2 genes are expressed in the DRG and TG of mice and humans based on RNA sequencing experiments. Single cell sequencing in mice suggests that Mknk1 and Mknk2 may be expressed in different populations of nociceptors. We sought to characterize mRNA expression in human DRG and TG for both MNK1 and MNK2. Our results show that both genes are expressed by nearly all neurons in both human ganglia with expression in other cell types as well. Our findings provide evidence that MNK1 and MNK2 are expressed by human nociceptors and suggest that efforts to pharmacologically target MNKs for pain would likely be translatable due its conserved expression in both species.
Collapse
Affiliation(s)
- Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | | | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|