1
|
Sparber P, Zernov N, Markova T, Sharkova I, Nikishina I, Matkava V, Konovalov F, Sviridov P, Zabnenkova V, Ryzhkova O, Shchagina O, Tabakov V, Skoblov M. Clinical features and functional analysis of novel SCN9A variants causing congenital insensitivity to pain. Pain 2025:00006396-990000000-00899. [PMID: 40359358 DOI: 10.1097/j.pain.0000000000003628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/14/2025] [Indexed: 05/15/2025]
Abstract
ABSTRACT Pain perception is a fundamental protective mechanism that enables us to detect noxious stimuli. With a focus on finding treatments for pain, the molecular mechanisms and key players involved in pain perception are currently under intense study. Congenital insensitivity to pain is one of the rarest and most unusual pain disorders. One of the reasons of pure congenital absence of pain are pathogenic variants in the SCN9A gene, which encodes the α-subunit of the Nav1.7 voltage-gated sodium channel. To date, most of the described variants in SCN9A associated with congenital insensitivity to pain are biallelic frameshifting variants, and the extent to which splice-affecting variants contribute to this rare phenotype remains largely unknown. Here, we describe 4 novel variants in previously unreported patients with congenital insensitivity to pain, all carrying noncoding variants in a homozygous or compound-heterozygous state in the SCN9A gene. Functional analyses demonstrated that all variants affect mRNA splicing, leading to both out-of-frame and in-frame isoforms. In 1 case, a deep-intronic variant detected through whole-genome sequencing led to the inclusion of a pseudoexon in intron 9. Genotype-phenotype analysis did not reveal significant differences in phenotype severity among the patients, suggesting that in-frame shortening of the Nav1.7 protein completely disrupts its function. These findings broaden the understanding of SCN9A-related pain insensitivity and uncover the molecular mechanisms of novel noncoding variants in the SCN9A gene, which is crucial for the development of future tailored therapeutic approaches.
Collapse
Affiliation(s)
- Peter Sparber
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - Inna Sharkova
- Research Centre for Medical Genetics, Moscow, Russia
| | - Irina Nikishina
- Federal State Budgetary Scientific Institution, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Valeria Matkava
- Federal State Budgetary Scientific Institution, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Fedor Konovalov
- Independent Clinical Bioinformatics Laboratory, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
2
|
Toklucu I, Sudha Bhagavath Eswaran V, Bott RA, Kesdoğan AB, Gaebler AJ, Stingl J, Hausmann R, Körner J, Lampert A. α-Adrenoreceptor blocker phentolamine inhibits voltage-gated sodium channels via the local anaesthetic binding site. Br J Pharmacol 2025; 182:1879-1896. [PMID: 39888002 DOI: 10.1111/bph.17450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND AND PURPOSE Phentolamine is a non-selective α-adrenoreceptor antagonist used to reverse local anaesthesia, for example, during dental procedures when a vasoconstrictor is co-applied. Phentolamine-mediated vasodilation leads to faster clearance of injected drugs. Previous electrophysiological studies hypothesized that phentolamine acts as a modulator of voltage-gated sodium channels, which could conflict with its indication as local anaesthetic reversal agent. EXPERIMENTAL APPROACH We performed manual and high throughput patch-clamp recordings on HEK and CHO cells expressing NaV1.7 and NaV1.5. We investigated the effects of phentolamine on sodium channel biophysics and the additive impact of phentolamine on cells preconditioned with the local anaesthetic mexiletine. We used site-directed mutagenesis, homology modelling and drug docking to identify phentolamine's binding site. We compared the effect on sodium channels with other clinically established α-adrenoreceptor antagonists. KEY RESULTS Phentolamine inhibits NaV1.7 in HEK and CHO cells with an IC50 value of 72 and 57 μM and NaV1.5 in CHO cells with an IC50 of 27 μM. Phentolamine enhances the tonic block induced by the local anaesthetic mexiletine. Phentolamine binds to sodium channels at the local anaesthetic receptor site. The α-adrenoreceptor antagonists alfuzosin, urapidil and phenoxybenzamine show lower potency on NaV1.5 and NaV1.7 in patch-clamp recordings. CONCLUSIONS AND IMPLICATIONS Phentolamine blocks voltage-gated sodium channels via the local anaesthetic receptor site. This may conflict with its current indication as an antidote for local anaesthetics. We propose alternative α-adrenoreceptor antagonists as possible candidates for local anaesthetic reversal because these are less potent inhibitors of both cardiac and neuronal voltage-gated sodium channels.
Collapse
Affiliation(s)
- Idil Toklucu
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Neurology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Vishal Sudha Bhagavath Eswaran
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic pain Aachen SCNAACHEN, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Raya Atlanta Bott
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | | | - Arnim Johannes Gaebler
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Julia Stingl
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Ralf Hausmann
- Scientific Center for Neuropathic pain Aachen SCNAACHEN, Uniklinik RWTH Aachen University, Aachen, Germany
- Institute of Clinical Pharmacology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Jannis Körner
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic pain Aachen SCNAACHEN, Uniklinik RWTH Aachen University, Aachen, Germany
- Clinic of Anaesthesiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Department of Intensive and Intermediate Care, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
- Scientific Center for Neuropathic pain Aachen SCNAACHEN, Uniklinik RWTH Aachen University, Aachen, Germany
| |
Collapse
|
3
|
Kringel D, Lötsch J. Knowledge of the genetics of human pain gained over the last decade from next-generation sequencing. Pharmacol Res 2025; 214:107667. [PMID: 39988004 DOI: 10.1016/j.phrs.2025.107667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Next-generation sequencing (NGS) technologies have revolutionized pain research by providing comprehensive insights into genetic variation across the genome. Recent studies have expanded the known spectrum of mutations in genes such as SCN9A and NTRK1, which are commonly mutated in hereditary sensory neuropathies. NGS has uncovered critical alternative splicing events and facilitated single-cell transcriptomics, revealing cellular heterogeneity within tissues. An NGS-based classifier predicted extremely high opioid requirements with 80 % accuracy, highlighting the importance of tailoring opioid therapy based on genetic profiles. Key genes such as GDF5, COL11A1, and TRPV1 have been linked to osteoarthritis risk and pain sensitivity, while HLA-DRB1, TNF, and P2X7 play critical roles in inflammation and pain modulation in rheumatoid arthritis. Innovative tools, such as an atlas of the somatosensory system in neuropathic pain, have been developed based on NGS data, focusing on the dorsal root and trigeminal ganglia. This approach allows the analysis of cellular changes during the development of chronic pain. In the study of rare variants, NGS outperforms single nucleotide variant candidate studies and classical genome-wide association approaches. The complex data generated by NGS enables integrated multi-omics approaches, allowing deeper exploration of the molecular and cellular basis of pain perception. In addition, the characterization of non-coding RNAs has opened new therapeutic avenues. NGS-based pain research faces challenges related to complex data analysis and interpretation of rare genetic variants with unknown biological functions. Nevertheless, NGS offers significant potential for improving personalized pain management and highlights the need for interdisciplinary collaboration to translate findings into clinical practice.
Collapse
Affiliation(s)
- Dario Kringel
- Goethe - University, Institute of Clinical Pharmacology, Theodor Stern Kai 7, Frankfurt am Main 60590, Germany
| | - Jörn Lötsch
- Goethe - University, Institute of Clinical Pharmacology, Theodor Stern Kai 7, Frankfurt am Main 60590, Germany; University of Helsinki, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014, Finland; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
| |
Collapse
|
4
|
Ocay DD, Graziano Maloney M, D'Souza G, Brownstein CA, Clinch J, Davis DM, De Ranieri D, Donado C, Halpin M, Kattail D, Lee BH, Lobo K, Ravetti D, Sandroni P, Stinson JN, Tham SW, Walco GA, Walker SM, Yu TW, Berde CB. Pediatric erythromelalgia from multidisciplinary perspectives: a scoping review. Pediatr Res 2025:10.1038/s41390-025-03817-4. [PMID: 39821136 DOI: 10.1038/s41390-025-03817-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/19/2025]
Abstract
Erythromelalgia is a rare, chronic pain disorder characterized by the triad of intense burning sensation, warmth, and redness, primarily involving the hands and feet, and usually alleviated by cold and worsened by heat. The objective of this scoping review was to: 1) map the existing literature on erythromelalgia in youth, 2) identify knowledge gaps, and 3) inform directions for future research in pediatric erythromelalgia. One hundred and sixty-seven studies reporting 411 cases of childhood-onset erythromelalgia were identified. Variability was found in reporting of clinical symptoms, the clinical presentations and diagnostic criteria used for classification of erythromelagia, the clinical assessments and investigations performed, and the types of interventions and management plans utilised. While factors to aid early recognition and optimize management have been identified, there are also significant gaps for future research to address. Ongoing efforts to develop a multicenter registry of pediatric erythromelalgia cases, with standardized data collection and reporting, will be beneficial to establish consensus recommendations for the diagnosis and management of pediatric erythromelalgia. IMPACT: This scoping review maps the existing literature on pediatric erythromelalgia. Variability was found in reporting of clinical symptoms, the clinical presentations and diagnostic criteria used for classification of erythromelagia, the clinical assessments and investigations performed, and the types of interventions and management plans utilised. The development of an international registry would immensely benefit multidisciplinary experts involved in the care of pediatric erythromelalgia and those with lived experience.
Collapse
Affiliation(s)
- Don Daniel Ocay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| | - Maria Graziano Maloney
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Genevieve D'Souza
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Catherine A Brownstein
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jacqui Clinch
- Department of Pediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Dawn Marie Davis
- Department of Dermatology, Mayo Clinic Rochester, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic Rochester, Rochester, MN, USA
| | - Deirdre De Ranieri
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carolina Donado
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Meghan Halpin
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Deepa Kattail
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children (Sickkids), Toronto, ON, Canada
| | - Benjamin Howard Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly Lobo
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Danielle Ravetti
- Patient Partner, Lodi, CA, USA
- The Erythromelalgia Association, Lodi, CA, USA
| | - Paola Sandroni
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Jennifer N Stinson
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children (Sickkids), Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - See Wan Tham
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Gary A Walco
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | - Suellen M Walker
- Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Paediatric Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Timothy W Yu
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Charles B Berde
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Zebochin I, Denk F, Nochi Z. Modeling neuropathic pain in a dish. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:233-278. [PMID: 39580214 DOI: 10.1016/bs.irn.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The study of pain mechanisms has advanced significantly with the development of innovative in vitro models. This chapter explores those already used in or potentially useful for neuropathic pain research, emphasizing the complementary roles of animal and human cellular models to enhance translational success. Traditional animal models have provided foundational insights into the neurobiology of pain and remain invaluable for understanding complex pain pathways. However, integrating human cellular models addresses the need for better replication of human nociceptors. The chapter details methodologies for culturing rodent and human primary sensory neurons, including isolation and culture techniques, advantages, and limitations. It highlights the application of these models in neuropathic pain research, such as identifying pain-associated receptors and ion channels. Recent advancements in using induced pluripotent stem cell (iPSC)-derived sensory neurons are also discussed. Finally, the chapter explores advanced in vitro models, including 2D co-cultures and 3D organoids, and their implications for studying neuropathic pain. These models offer significant advantages for drug screening and ethical research practices, providing a more accurate representation of human pain pathways and paving the way for innovative therapeutic strategies. Despite challenges such as limited access to viable human tissue and variability between samples, these in vitro models, alongside traditional animal models, are indispensable for advancing our understanding of neuropathic pain and developing effective treatments.
Collapse
Affiliation(s)
- Irene Zebochin
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Zahra Nochi
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Hogans BB. Principles of Pain Management. Continuum (Minneap Minn) 2024; 30:1318-1343. [PMID: 39445923 DOI: 10.1212/con.0000000000001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This article introduces the general principles of assessing, diagnosing, and managing pain relevant to neurologic practice. LATEST DEVELOPMENTS Scientific understanding of and clinical practices related to pain and pain management are advancing. The field is remarkable for the diversity of health professions engaged in this effort, including physicians, scientists, psychologists, pharmacists, and many others. Pain classification is transforming with pending changes to the International Classification of Diseases diagnostic coding system, and pain assessment has moved toward consistent application of the biopsychosocial model. The diagnosis of pain has continued to become more sophisticated with the development of additional testing modalities, clearer classification systems, and diagnostic criteria. Pain management requires both pharmacologic and nonpharmacologic elements; systematic review evidence for both of these and interventional and surgical management are increasingly available. The context of treatment remains important given the impact of social determinants of health and limitations of access to diagnostic and treatment resources. Due to global and interprofessional collaborations as well as new research funding, the outlook is positive. ESSENTIAL POINTS Pain is a protean experience for humans; functional MRI (fMRI) and other research modalities show that pain perception is highly multifocal, and modulation occurs at many nervous system levels. Neurologists bring special skills to pain evaluation and management, are well equipped to appreciate both the focal and diffuse nature of pain, and can envision how pain attenuates sleep, cognitive function, mobility, motivation, and social connection. By operationalizing expert knowledge of the nervous system, implementing relevant therapies, and collaborating with diverse health professions to manage pain, neurologists can succeed at and find meaning in optimizing patient outcomes.
Collapse
|
7
|
Boughalem A, Ciorna-Monferrato V, Sloboda N, Guegan A, Page F, Zimmer S, Benazra M, Kleinfinger P, Lohmann L, Valduga M, Receveur A, Martin F, Trost D. Optical genome mapping identifies a homozygous deletion in the non-coding region of the SCN9A gene in individuals from the same family with congenital insensitivity to pain. Front Genet 2024; 15:1375770. [PMID: 39156962 PMCID: PMC11327051 DOI: 10.3389/fgene.2024.1375770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
We report an index patient with complete insensitivity to pain and a history of painless fractures, joint hypermobility, and behavioral problems. The index patient descends from a family with notable cases among his maternal relatives, including his aunt and his mother's first cousin, both of whom suffer from congenital insensitivity to pain. The patient had normal results for prior genetic testing: fragile-X syndrome testing, chromosomal microarray analysis, and exome sequencing. Optical genome mapping detected a homozygous deletion affecting the noncoding 5' untranslated region (UTR) and the first non-coding exon of the SCN9A gene in all affected family members, compatible with recessive disease transmission. Pathogenic homozygous loss-of-function variants in the SCN9A gene are associated with impaired pain sensation in humans. Optical genome mapping can thus detect pathogenic structural variants in patients without molecular etiology by standard diagnostic procedures and is a more accessible diagnostic tool than short-read or long-read whole-genome sequencing.
Collapse
Affiliation(s)
- Aïcha Boughalem
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Viorica Ciorna-Monferrato
- Génétique Médicale et Oncogénétique, Hôpital Femme Mère Enfant, CHR Metz-Thionville, site de Mercy, 1, Allée du Château, Metz Cedex, France
| | - Natacha Sloboda
- Génétique Médicale et Oncogénétique, Hôpital Femme Mère Enfant, CHR Metz-Thionville, site de Mercy, 1, Allée du Château, Metz Cedex, France
| | - Amélie Guegan
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - François Page
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Sophie Zimmer
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Marion Benazra
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Pascale Kleinfinger
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Laurence Lohmann
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Mylène Valduga
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Aline Receveur
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Fernando Martin
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| | - Detlef Trost
- Department of Human Genetics, Laboratoire CERBA SA, Saint Ouen L’aumône, France
| |
Collapse
|
8
|
Bertino F, Mukherjee D, Bonora M, Bagowski C, Nardelli J, Metani L, Zanin Venturini DI, Chianese D, Santander N, Salaroglio IC, Hentschel A, Quarta E, Genova T, McKinney AA, Allocco AL, Fiorito V, Petrillo S, Ammirata G, De Giorgio F, Dennis E, Allington G, Maier F, Shoukier M, Gloning KP, Munaron L, Mussano F, Salsano E, Pareyson D, di Rocco M, Altruda F, Panagiotakos G, Kahle KT, Gressens P, Riganti C, Pinton PP, Roos A, Arnold T, Tolosano E, Chiabrando D. Dysregulation of FLVCR1a-dependent mitochondrial calcium handling in neural progenitors causes congenital hydrocephalus. Cell Rep Med 2024; 5:101647. [PMID: 39019006 PMCID: PMC11293339 DOI: 10.1016/j.xcrm.2024.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/20/2024] [Accepted: 06/16/2024] [Indexed: 07/19/2024]
Abstract
Congenital hydrocephalus (CH), occurring in approximately 1/1,000 live births, represents an important clinical challenge due to the limited knowledge of underlying molecular mechanisms. The discovery of novel CH genes is thus essential to shed light on the intricate processes responsible for ventricular dilatation in CH. Here, we identify FLVCR1 (feline leukemia virus subgroup C receptor 1) as a gene responsible for a severe form of CH in humans and mice. Mechanistically, our data reveal that the full-length isoform encoded by the FLVCR1 gene, FLVCR1a, interacts with the IP3R3-VDAC complex located on mitochondria-associated membranes (MAMs) that controls mitochondrial calcium handling. Loss of Flvcr1a in mouse neural progenitor cells (NPCs) affects mitochondrial calcium levels and energy metabolism, leading to defective cortical neurogenesis and brain ventricle enlargement. These data point to defective NPCs calcium handling and metabolic activity as one of the pathogenetic mechanisms driving CH.
Collapse
Affiliation(s)
- Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Dibyanti Mukherjee
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Christoph Bagowski
- Prenatal Medicine Munich, Department of Molecular Genetics, Munich, Germany
| | | | - Livia Metani
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Diletta Isabella Zanin Venturini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Nicolas Santander
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Iris Chiara Salaroglio
- Department of Oncology, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Elisa Quarta
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Arpana Arjun McKinney
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Departments of Psychiatry and Neuroscience, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Seaver Center for Autism Research and Treatment, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Lucia Allocco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Giorgia Ammirata
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Francesco De Giorgio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felicitas Maier
- Prenatal Medicine Munich, Department of Molecular Genetics, Munich, Germany
| | - Moneef Shoukier
- Prenatal Medicine Munich, Department of Molecular Genetics, Munich, Germany
| | | | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR Dental School, Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Ettore Salsano
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maja di Rocco
- Department of Pediatrics, Unit of Rare Diseases, Giannina Gaslini Institute, Genoa, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Georgia Panagiotakos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Departments of Psychiatry and Neuroscience, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Seaver Center for Autism Research and Treatment, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristopher T Kahle
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Chiara Riganti
- Department of Oncology, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Paolo P Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany; Brain and Mind Research Institute, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Thomas Arnold
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy.
| |
Collapse
|
9
|
Kantaputra P, Daroontum T, Kitiyamas K, Piyakhunakorn P, Kawasaki K, Sathienkijkanchai A, Wasant P, Vatanavicharn N, Yasanga T, Kaewgahya M, Tongsima S, Cox TC, Arold ST, Ohazama A, Ngamphiw C. Homozygosity for a Rare Plec Variant Suggests a Contributory Role in Congenital Insensitivity to Pain. Int J Mol Sci 2024; 25:6358. [PMID: 38928066 PMCID: PMC11203604 DOI: 10.3390/ijms25126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Congenital insensitivity to pain is a rare human condition in which affected individuals do not experience pain throughout their lives. This study aimed to identify the molecular etiology of congenital insensitivity to pain in two Thai patients. Clinical, radiographic, histopathologic, immunohistochemical, and molecular studies were performed. Patients were found to have congenital insensitivity to pain, self-mutilation, acro-osteolysis, cornea scars, reduced temperature sensation, tooth agenesis, root maldevelopment, and underdeveloped maxilla and mandible. The skin biopsies revealed fewer axons, decreased vimentin expression, and absent neurofilament expression, indicating lack of dermal nerves. Whole exome and Sanger sequencing identified a rare homozygous variant c.4039C>T; p.Arg1347Cys in the plakin domain of Plec, a cytolinker protein. This p.Arg1347Cys variant is in the spectrin repeat 9 region of the plakin domain, a region not previously found to harbor pathogenic missense variants in other plectinopathies. The substitution with a cysteine is expected to decrease the stability of the spectrin repeat 9 unit of the plakin domain. Whole mount in situ hybridization and an immunohistochemical study suggested that Plec is important for the development of maxilla and mandible, cornea, and distal phalanges. Additionally, the presence of dental anomalies in these patients further supports the potential involvement of Plec in tooth development. This is the first report showing the association between the Plec variant and congenital insensitivity to pain in humans.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Teerada Daroontum
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kantapong Kitiyamas
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (M.K.)
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panat Piyakhunakorn
- Panare Hospital, Dental Public Health Division, Panare District, Surat Thani 94130, Thailand;
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2181, Japan; (K.K.); (A.O.)
| | - Achara Sathienkijkanchai
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand; (A.S.); (P.W.); (N.V.)
| | - Pornswan Wasant
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand; (A.S.); (P.W.); (N.V.)
| | - Nithiwat Vatanavicharn
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand; (A.S.); (P.W.); (N.V.)
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Massupa Kaewgahya
- Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (M.K.)
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (S.T.); (C.N.)
| | - Timothy C. Cox
- Departments of Oral & Craniofacial Sciences, School of Dentistry, and Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-2181, Japan; (K.K.); (A.O.)
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani 12120, Thailand; (S.T.); (C.N.)
| |
Collapse
|
10
|
Ri K, Weng TH, Claveras Cabezudo A, Jösting W, Zhang Y, Bazzone A, Leong NCP, Welsch S, Doty RT, Gursu G, Lim TJY, Schmidt SL, Abkowitz JL, Hummer G, Wu D, Nguyen LN, Safarian S. Molecular mechanism of choline and ethanolamine transport in humans. Nature 2024; 630:501-508. [PMID: 38778100 PMCID: PMC11168923 DOI: 10.1038/s41586-024-07444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Human feline leukaemia virus subgroup C receptor-related proteins 1 and 2 (FLVCR1 and FLVCR2) are members of the major facilitator superfamily1. Their dysfunction is linked to several clinical disorders, including PCARP, HSAN and Fowler syndrome2-7. Earlier studies concluded that FLVCR1 may function as a haem exporter8-12, whereas FLVCR2 was suggested to act as a haem importer13, yet conclusive biochemical and detailed molecular evidence remained elusive for the function of both transporters14-16. Here, we show that FLVCR1 and FLVCR2 facilitate the transport of choline and ethanolamine across the plasma membrane, using a concentration-driven substrate translocation process. Through structural and computational analyses, we have identified distinct conformational states of FLVCRs and unravelled the coordination chemistry underlying their substrate interactions. Fully conserved tryptophan and tyrosine residues form the binding pocket of both transporters and confer selectivity for choline and ethanolamine through cation-π interactions. Our findings clarify the mechanisms of choline and ethanolamine transport by FLVCR1 and FLVCR2, enhance our comprehension of disease-associated mutations that interfere with these vital processes and shed light on the conformational dynamics of these major facilitator superfamily proteins during the transport cycle.
Collapse
Affiliation(s)
- Keiken Ri
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tsai-Hsuan Weng
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Ainara Claveras Cabezudo
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Wiebke Jösting
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Yu Zhang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Nancy C P Leong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Raymond T Doty
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gonca Gursu
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Tiffany Jia Ying Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarah Luise Schmidt
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Janis L Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany.
| | - Di Wu
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.
| | - Long N Nguyen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- Cardiovascular Disease Research (CVD) Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Schara Safarian
- Department and Emeritus Group of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany.
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt, Germany.
| |
Collapse
|
11
|
Fiorito V, Tolosano E. Unearthing FLVCR1a: tracing the path to a vital cellular transporter. Cell Mol Life Sci 2024; 81:166. [PMID: 38581583 PMCID: PMC10998817 DOI: 10.1007/s00018-024-05205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a member of the SLC49 Major Facilitator Superfamily of transporters. Initially recognized as the receptor for the retrovirus responsible of pure red cell aplasia in cats, nearly two decades since its discovery, FLVCR1a remains a puzzling transporter, with ongoing discussions regarding what it transports and how its expression is regulated. Nonetheless, despite this, the substantial body of evidence accumulated over the years has provided insights into several critical processes in which this transporter plays a complex role, and the health implications stemming from its malfunction. The present review intends to offer a comprehensive overview and a critical analysis of the existing literature on FLVCR1a, with the goal of emphasising the vital importance of this transporter for the organism and elucidating the interconnections among the various functions attributed to this transporter.
Collapse
Affiliation(s)
- Veronica Fiorito
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|