1
|
Garcia TFM, Desio JAF, de Souza EF, Henkes SFC, Santos LS, de Carvalho Muenho J, Gonçlaves CL, Dos Santos JCC. The silent saboteur: oxidative stress and the path to cognitive dysfunction. Neurodegener Dis Manag 2025:1-28. [PMID: 40424201 DOI: 10.1080/17582024.2025.2510175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Oxidative stress (OS) plays a central role in age-related cognitive decline and neurodegeneration and is increasingly recognized as a key factor in the pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD). Elevated OS biomarkers are detectable from the earliest stages of these disorders. In this critical narrative review, we explore the bioenergetic cascade underlying neurodegeneration, emphasizing pathophysiological alterations, mechanisms, and therapeutic targets. Recent evidence suggests that OS and impaired cellular energy dynamics are both early markers and downstream effects of neuroinflammation, contributing to symptom severity and reduced treatment efficacy. A deeper understanding of these interrelated processes is essential for the development of more effective interventions. Monitoring OS-related metabolites may offer a promising strategy for identifying therapeutic targets and enabling early clinical intervention, ultimately aiming to reduce neuroinflammation and improve patient outcomes in AD and PD.
Collapse
Affiliation(s)
- Tulia Fernanda Meira Garcia
- Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte, Caicó, Rio Grande do Norte, Brazil
| | | | | | | | - Luana Stangherlin Santos
- Department of Cardiology, Complexo Hospitalar de Doenças Cardiopulmonares (CDAN), Luanda, Angola
| | - Julcileia de Carvalho Muenho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Angola
| | - Cinara Ludvig Gonçlaves
- Department of Cardiology, Complexo Hospitalar de Doenças Cardiopulmonares (CDAN), Luanda, Angola
| | | |
Collapse
|
2
|
Afaar F, Youssef P, Galper J, Chua M, Halliday GM, Lewis SJG, Dzamko N. Peripheral Mononuclear Cell Mitochondrial Function Associates with T-Cell Cytokines in Parkinson's Disease. Mov Disord 2025. [PMID: 40377205 DOI: 10.1002/mds.30233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the most common neurodegenerative movement disorder and one of the world's fastest-growing neurological diseases. Although the exact causes of PD are unknown, mitochondrial dysfunction and inflammation may have significant roles in disease progression. As well as being prevalent in the brain, there is also evidence that peripheral mitochondrial dysfunction and inflammation occur in PD. However, if/how peripheral mitochondrial dysfunction and inflammation are linked is still unclear. OBJECTIVES This study aimed to determine the extent that mitochondrial dysfunction in peripheral immune cells is associated with inflammation in PD. METHODS The study comprised of 35 controls and 35 PD patients that were age and sex matched. Flow cytometry was used to assess mitochondrial content and superoxide production in mononuclear cells, in the presence and absence of the mitochondrial stressor antimycin A. Serum inflammatory cytokines were measured by ELISA. RESULTS Superoxide levels were significantly increased in PD patient mononuclear cells at baseline, and PD mononuclear cells had an impaired response to antimycin A. Immune cell superoxide levels correlated with serum cytokines associated with T-cell responses, namely interleukin (IL) IL-12, interferon-γ, and IL-17A. CONCLUSIONS Results show that mitochondrial dysfunction is prevalent in PD immune cells and may contribute to an inflammatory phenotype. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fatima Afaar
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Priscilla Youssef
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Jasmin Galper
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Michelle Chua
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Glenda M Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, Australia
| |
Collapse
|
3
|
Aqeel A, Akram A, Ali M, Iqbal M, Aslam M, Rukhma, Shah FI. Mechanistic insights into impaired β-oxidation and its role in mitochondrial dysfunction: A comprehensive review. Diabetes Res Clin Pract 2025; 223:112129. [PMID: 40132731 DOI: 10.1016/j.diabres.2025.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Mitochondria, also known as the powerhouse of cells, have an important role in cellular metabolism and energy production. However, during Mitochondrial Dysfunction (MD), it is known to generate reactive oxidative species and induce cellular apoptosis. A number of research findings have linked MD to various diseases, highlighting its critical role in maintaining health and contributing to disease development. In this regard, recent research has revealed that disruptions in lipid metabolism, especially in fatty acid oxidation, are significant contributors to MD. However, the precise mechanisms by which these defects lead to disease remain poorly understood. This review explores how disruptions in lipid metabolism are responsible for triggering oxidative stress, inflammation, and cellular damage, leading to impaired mitochondrial function. By examining specific fatty acid oxidation disorders, such as carnitine palmitoyltransferase deficiency, medium-chain acyl-CoA dehydrogenase deficiency, and very long-chain acyl-CoA dehydrogenase deficiency, this review aims to uncover the underlying molecular pathways connecting lipid metabolism to mitochondrial dysfunction. Furthermore, MD is a common underlying mechanism in a wide array of diseases, including neurodegenerative disorders and metabolic syndromes. Understanding the mechanisms behind mitochondrial malfunction may aid in the development of tailored therapies to restore mitochondrial health and treat intricate health conditions.
Collapse
Affiliation(s)
- Amna Aqeel
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan; University Institute of Medical Lab Technology, the University of Lahore, Pakistan.
| | - Areeba Akram
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Minahil Ali
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Maryam Iqbal
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Mehral Aslam
- Department of Nutrition and Health Promotion, University of Home Economics Lahore, Pakistan
| | - Rukhma
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Fatima Iftikhar Shah
- University Institute of Medical Lab Technology, the University of Lahore, Pakistan
| |
Collapse
|
4
|
Hu S, Yan S, Xie Y, Zhu H, Ding Y, Li Y, Zhang X, Zhu W. Test-retest precision of brain metabolites in healthy participants using 31P-MRS and 1H MEGA-PRESS on a 3T multi-nuclear MRI system. Quant Imaging Med Surg 2025; 15:2852-2864. [PMID: 40235756 PMCID: PMC11994524 DOI: 10.21037/qims-24-1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/03/2025] [Indexed: 04/17/2025]
Abstract
Background Magnetic resonance spectroscopy (MRS) enables the non-invasive quantification of brain metabolites, and its reliability is crucial for accurate interpretation of disease state. This study assessed the test-retest precision of phosphorus-31 (31P)-MRS and hydrogen (1H)-MEscher-GArwood Point RESolved Spectroscopy (MEGA-PRESS) in measuring 31P metabolites, γ-aminobutyric acid (GABA), and glutathione (GSH) using a 3T multi-nucleus magnetic resonance imaging (MRI) system. Methods In total, 32 participants, who underwent two scanning sessions within three days, using two dimensional (2D)-chemical shift imaging (CSI)-31P-MRS and 1H-MEGA-PRESS sequences, were enrolled in the study. γ-aminobutyric acid and macromolecules (GABA+), glutamate and glutamine (Glx), GSH, and 12 31P metabolites were analyzed using the MATLAB-based tool Gannet and jMRUI software. Precision was assessed based on the coefficients of variation (CVs) and Bland-Altman plots. Results The results revealed that potential of hydrogen (pH) and phosphocreatine (PCr) showed the greatest stability as evidenced by low CVs, suggesting reliable measurements across sessions. The adenosine triphosphates (ATPs) showed considerable stability. Conversely, metabolites, such as phosphomonoesters (PMEs) and phosphodiesters (PDEs), located to the left of PCr, showed reduced stability, while glycerophosphatidylcholine (GPTC) had the highest CV, indicating significant variability in clinical practice. Among the various brain regions, intermediate areas such as the temporal lobe and thalamus exhibited greater stability than peripheral regions such as the frontal and occipital lobes. Single-voxel MEGA-PRESS measurements showed that Glx and GABA+ had higher precision than GSH. Conclusions Both the 31P-MRS and 1H-MEGA-PRESS sequences showed high precision in measuring brain metabolites, but some metabolites showed higher stability than others. These results are crucial for exploring the clinical and research applications of these methods, and provide a solid foundation for subsequent investigations.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujie Ding
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Zhang
- Clinical Technical Solutions, Philips Healthcare, Beijing, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Li S, Liu Y, Lu S, Xu J, Liu X, Yang D, Yang Y, Hou L, Li N. A crazy trio in Parkinson's disease: metabolism alteration, α-synuclein aggregation, and oxidative stress. Mol Cell Biochem 2025; 480:139-157. [PMID: 38625515 DOI: 10.1007/s11010-024-04985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein within these neurons. Oligomeric α-synuclein exerts neurotoxic effects through mitochondrial dysfunction, glial cell inflammatory response, lysosomal dysfunction and so on. α-synuclein aggregation, often accompanied by oxidative stress, is generally considered to be a key factor in PD pathology. At present, emerging evidences suggest that metabolism alteration is closely associated with α-synuclein aggregation and PD progression, and improvement of key molecules in metabolism might be potentially beneficial in PD treatment. In this review, we highlight the tripartite relationship among metabolic changes, α-synuclein aggregation, and oxidative stress in PD, and offer updated insights into the treatments of PD, aiming to deepen our understanding of PD pathogenesis and explore new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanbing Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiayi Xu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
Adelizzi A, Giri A, Di Donfrancesco A, Boito S, Prigione A, Bottani E, Bollati V, Tiranti V, Persico N, Brunetti D. Fetal and obstetrics manifestations of mitochondrial diseases. J Transl Med 2024; 22:853. [PMID: 39313811 PMCID: PMC11421203 DOI: 10.1186/s12967-024-05633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
During embryonic and neonatal development, mitochondria have essential effects on metabolic and energetic regulation, shaping cell fate decisions and leading to significant short- and long-term effects on embryonic and offspring health. Therefore, perturbation on mitochondrial function can have a pathological effect on pregnancy. Several shreds of evidence collected in preclinical models revealed that severe mitochondrial dysfunction is incompatible with life or leads to critical developmental defects, highlighting the importance of correct mitochondrial function during embryo-fetal development. The mechanism impairing the correct development is unknown and may include a dysfunctional metabolic switch in differentiating cells due to decreased ATP production or altered apoptotic signalling. Given the central role of mitochondria in embryonic and fetal development, the mitochondrial dysfunction typical of Mitochondrial Diseases (MDs) should, in principle, be detectable during pregnancy. However, little is known about the clinical manifestations of MDs in embryonic and fetal development. In this manuscript, we review preclinical and clinical evidence suggesting that MDs may affect fetal development and highlight the fetal and maternal outcomes that may provide a wake-up call for targeted genetic diagnosis.
Collapse
Affiliation(s)
- Alessia Adelizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Anastasia Giri
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessia Di Donfrancesco
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, 37124, Italy
| | - Valentina Bollati
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| |
Collapse
|
7
|
Oertel WH, Janzen A, Henrich MT, Geibl FF, Sittig E, Meles SK, Carli G, Leenders K, Booij J, Surmeier DJ, Timmermann L, Strupp M. Acetyl-DL-leucine in two individuals with REM sleep behavior disorder improves symptoms, reverses loss of striatal dopamine-transporter binding and stabilizes pathological metabolic brain pattern-case reports. Nat Commun 2024; 15:7619. [PMID: 39223119 PMCID: PMC11369233 DOI: 10.1038/s41467-024-51502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Isolated REM Sleep Behavior Disorder (iRBD) is considered a prodrome of Parkinson's disease (PD). We investigate whether the potentially disease-modifying compound acetyl-DL-leucine (ADLL; 5 g/d) has an effect on prodromal PD progression in 2 iRBD-patients. Outcome parameters are RBD-severity sum-score (RBD-SS-3), dopamine-transporter single-photon emission computerized tomography (DAT-SPECT) and metabolic "Parkinson-Disease-related-Pattern (PDRP)"-z-score in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). After 3 weeks ADLL-treatment, the RBD-SS-3 drops markedly in both patients and remains reduced for >18 months of ADLL-treatment. In patient 1 (female), the DAT-SPECT putaminal binding ratio (PBR) decreases in the 5 years pretreatment from normal (1.88) to pathological (1.22) and the patient's FDG-PET-PDRP-z-score rises from 1.72 to 3.28 (pathological). After 22 months of ADLL-treatment, the DAT-SPECT-PBR increases to 1.67 and the FDG-PET-PDRP-z-score stabilizes at 3.18. Similar results are seen in patient 2 (male): his DAT-SPECT-PBR rises from a pretreatment value of 1.42 to 1.72 (close to normal) and the FDG-PET-PDRP-z-score decreases from 1.02 to 0.30 after 18 months of ADLL-treatment. These results support exploration of whether ADLL may have disease-modifying properties in prodromal PD.
Collapse
Affiliation(s)
- Wolfgang H Oertel
- Department of Neurology, Philipps University of Marburg, Marburg, Germany.
- Institute of Neurogenomics, Helmholtz Center for Medicine and Environment, Munich, Germany.
| | - Annette Janzen
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Martin T Henrich
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fanni F Geibl
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elisabeth Sittig
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Sanne K Meles
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| | - Giulia Carli
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaus Leenders
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lars Timmermann
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Michael Strupp
- Department of Neurology, LMU University Hospital, LMU, Munich, Germany.
| |
Collapse
|
8
|
Arena G, Landoulsi Z, Grossmann D, Payne T, Vitali A, Delcambre S, Baron A, Antony P, Boussaad I, Bobbili DR, Sreelatha AAK, Pavelka L, J Diederich N, Klein C, Seibler P, Glaab E, Foltynie T, Bandmann O, Sharma M, Krüger R, May P, Grünewald A. Polygenic Risk Scores Validated in Patient-Derived Cells Stratify for Mitochondrial Subtypes of Parkinson's Disease. Ann Neurol 2024; 96:133-149. [PMID: 38767023 DOI: 10.1002/ana.26949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE The aim of our study is to better understand the genetic architecture and pathological mechanisms underlying neurodegeneration in idiopathic Parkinson's disease (iPD). We hypothesized that a fraction of iPD patients may harbor a combination of common variants in nuclear-encoded mitochondrial genes ultimately resulting in neurodegeneration. METHODS We used mitochondria-specific polygenic risk scores (mitoPRSs) and created pathway-specific mitoPRSs using genotype data from different iPD case-control datasets worldwide, including the Luxembourg Parkinson's Study (412 iPD patients and 576 healthy controls) and COURAGE-PD cohorts (7,270 iPD cases and 6,819 healthy controls). Cellular models from individuals stratified according to the most significant mitoPRS were subsequently used to characterize different aspects of mitochondrial function. RESULTS Common variants in genes regulating Oxidative Phosphorylation (OXPHOS-PRS) were significantly associated with a higher PD risk in independent cohorts (Luxembourg Parkinson's Study odds ratio, OR = 1.31[1.14-1.50], p-value = 5.4e-04; COURAGE-PD OR = 1.23[1.18-1.27], p-value = 1.5e-29). Functional analyses in fibroblasts and induced pluripotent stem cells-derived neuronal progenitors revealed significant differences in mitochondrial respiration between iPD patients with high or low OXPHOS-PRS (p-values < 0.05). Clinically, iPD patients with high OXPHOS-PRS have a significantly earlier age at disease onset compared to low-risk patients (false discovery rate [FDR]-adj p-value = 0.015), similar to prototypic monogenic forms of PD. Finally, iPD patients with high OXPHOS-PRS responded more effectively to treatment with mitochondrially active ursodeoxycholic acid. INTERPRETATION OXPHOS-PRS may provide a precision medicine tool to stratify iPD patients into a pathogenic subgroup genetically defined by specific mitochondrial impairment, making these individuals eligible for future intelligent clinical trial designs. ANN NEUROL 2024;96:133-149.
Collapse
Affiliation(s)
- Giuseppe Arena
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Zied Landoulsi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dajana Grossmann
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Thomas Payne
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Armelle Vitali
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ibrahim Boussaad
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dheeraj Reddy Bobbili
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Lukas Pavelka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | - Nico J Diederich
- Department of Neurosciences, Centre Hospitalier de Luxembourg, Strassen, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health, Strassen, Luxembourg
- Parkinson Research Clinic, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Meca AD, Boboc IKS, Mititelu-Tartau L, Bogdan M. Unlocking the Potential: Semaglutide's Impact on Alzheimer's and Parkinson's Disease in Animal Models. Curr Issues Mol Biol 2024; 46:5929-5949. [PMID: 38921025 PMCID: PMC11202139 DOI: 10.3390/cimb46060354] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Semaglutide (SEM), a glucagon-like peptide-1 receptor agonist, has garnered increasing interest for its potential therapeutic effects in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). This review provides a comprehensive description of SEM's mechanism of action and its effects in preclinical studies of these debilitating conditions. In animal models of AD, SEM has proved beneficial effects on multiple pathological hallmarks of the disease. SEM administration has been associated with reductions in amyloid-beta plaque deposition and mitigation of neuroinflammation. Moreover, SEM treatment has been shown to ameliorate behavioral deficits related to anxiety and social interaction. SEM-treated animals exhibit improvements in spatial learning and memory retention tasks, as evidenced by enhanced performance in maze navigation tests and novel object recognition assays. Similarly, in animal models of PD, SEM has demonstrated promising neuroprotective effects through various mechanisms. These include modulation of neuroinflammation, enhancement of mitochondrial function, and promotion of neurogenesis. Additionally, SEM has been shown to improve motor function and ameliorate dopaminergic neuronal loss, offering the potential for disease-modifying treatment strategies. Overall, the accumulating evidence from preclinical studies suggests that SEM holds promise as a novel therapeutic approach for AD and PD. Further research is warranted to elucidate the underlying mechanisms of SEM's neuroprotective effects and to translate these findings into clinical applications for the treatment of these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Andreea Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| | - Ianis Kevyn Stefan Boboc
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| |
Collapse
|
10
|
Schultz JL, Gander PE, Workman CD, Ponto LL, Cross S, Nance CS, Groth CL, Taylor EB, Ernst SE, Xu J, Uc EY, Magnotta VA, Welsh MJ, Narayanan NS. A pilot dose-finding study of Terazosin in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.22.24307622. [PMID: 38826433 PMCID: PMC11142298 DOI: 10.1101/2024.05.22.24307622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Parkinson's disease (PD) is a prevalent neurodegenerative disorder where progressive neuron loss is driven by impaired brain bioenergetics, particularly mitochondrial dysfunction and disrupted cellular respiration. Terazosin (TZ), an α-1 adrenergic receptor antagonist with a known efficacy in treating benign prostatic hypertrophy and hypertension, has shown potential in addressing energy metabolism deficits associated with PD due to its action on phosphoglycerate kinase 1 (PGK1). This study aimed to investigate the safety, tolerability, bioenergetic target engagement, and optimal dose of TZ in neurologically healthy subjects. Methods Eighteen healthy men and women (60 - 85 years old) were stratified into two cohorts based on maximum TZ dosages (5 mg and 10 mg daily). Methods included plasma and cerebrospinal fluid TZ concentration measurements, whole blood ATP levels, 31 Phosphorous magnetic resonance spectroscopy for brain ATP levels, 18 F-FDG PET imaging for cerebral metabolic activity, and plasma metabolomics. Results Our results indicated that a 5 mg/day dose of TZ significantly increased whole blood ATP levels and reduced global cerebral 18 F-FDG PET uptake without significant side effects or orthostatic hypotension. These effects were consistent across sexes. Higher doses did not result in additional benefits and showed a potential biphasic dose-response. Conclusions TZ at a dosage of 5 mg/day engages its metabolic targets effectively in both sexes without inducing significant adverse effects and provides a promising therapeutic avenue for mitigating energetic deficiencies. Further investigation via clinical trials to validate TZ's efficacy and safety in neurodegenerative (i.e., PD) contexts is warranted.
Collapse
|
11
|
Barnhoorn S, Milanese C, Li T, Dons L, Ghazvini M, Sette M, Farina S, Sproviero D, Payan-Gomez C, Mastroberardino PG. Orthogonal analysis of mitochondrial function in Parkinson's disease patients. Cell Death Dis 2024; 15:243. [PMID: 38570521 PMCID: PMC10991487 DOI: 10.1038/s41419-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
The etiopathology of Parkinson's disease has been associated with mitochondrial defects at genetic, laboratory, epidemiological, and clinical levels. These converging lines of evidence suggest that mitochondrial defects are systemic and causative factors in the pathophysiology of PD, rather than being mere correlates. Understanding mitochondrial biology in PD at a granular level is therefore crucial from both basic science and translational perspectives. In a recent study, we investigated mitochondrial alterations in fibroblasts obtained from PD patients assessing mitochondrial function in relation to clinical measures. Our findings demonstrated that the magnitude of mitochondrial alterations parallels disease severity. In this study, we extend these investigations to blood cells and dopamine neurons derived from induced pluripotent stem cells reprogrammed from PD patients. To overcome the inherent metabolic heterogeneity of blood cells, we focused our analyses on metabolically homogeneous, accessible, and expandable erythroblasts. Our results confirm the presence of mitochondrial anomalies in erythroblasts and induced dopamine neurons. Consistent with our previous findings in fibroblasts, we observed that mitochondrial alterations are reversible, as evidenced by enhanced mitochondrial respiration when PD erythroblasts were cultured in a galactose medium that restricts glycolysis. This observation indicates that suppression of mitochondrial respiration may constitute a protective, adaptive response in PD pathogenesis. Notably, this effect was not observed in induced dopamine neurons, suggesting their distinct bioenergetic behavior. In summary, we provide additional evidence for the involvement of mitochondria in the disease process by demonstrating mitochondrial abnormalities in additional cell types relevant to PD. These findings contribute to our understanding of PD pathophysiology and may have implications for the development of novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Sander Barnhoorn
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Chiara Milanese
- IFOM-ETS, the AIRC Institute for molecular Oncology, Milan, Italy
| | - Tracy Li
- Erasmus MC iPS Facility, Erasmus MC, Rotterdam, Netherlands
| | - Lieke Dons
- Erasmus MC iPS Facility, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Stefania Farina
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Daisy Sproviero
- IFOM-ETS, the AIRC Institute for molecular Oncology, Milan, Italy
| | | | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands.
- IFOM-ETS, the AIRC Institute for molecular Oncology, Milan, Italy.
- Università degli Studi dell'Aquila, L'Aquila, Italy.
| |
Collapse
|
12
|
Janssen Daalen JM, Gerritsen A, Gerritse G, Gouman J, Meijerink H, Rietdijk LE, Darweesh SKL. How Lifetime Evolution of Parkinson's Disease Could Shape Clinical Trial Design: A Shared Patient-Clinician Viewpoint. Brain Sci 2024; 14:358. [PMID: 38672010 PMCID: PMC11048137 DOI: 10.3390/brainsci14040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Parkinson's disease (PD) has a long, heterogeneous, pre-diagnostic phase, during which pathology insidiously accumulates. Increasing evidence suggests that environmental and lifestyle factors in early life contribute to disease risk and progression. Thanks to the extensive study of this pre-diagnostic phase, the first prevention trials of PD are being designed. However, the highly heterogenous evolution of the disease across the life course is not yet sufficiently taken into account. This could hamper clinical trial success in the advent of biological disease definitions. In an interdisciplinary patient-clinician study group, we discussed how an approach that incorporates the lifetime evolution of PD may benefit the design of disease-modifying trials by impacting population, target and outcome selection. We argue that the timepoint of exposure to risk and protective factors plays a critical role in PD subtypes, influencing population selection. In addition, recent developments in differential disease mechanisms, aided by biological disease definitions, could impact optimal treatment targets. Finally, multimodal biomarker panels using this lifetime approach will likely be most sensitive as progression markers for more personalized trials. We believe that the lifetime evolution of PD should be considered in the design of clinical trials, and that such initiatives could benefit from more patient-clinician partnerships.
Collapse
Affiliation(s)
- Jules M. Janssen Daalen
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| | - Aranka Gerritsen
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| | - Gijs Gerritse
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Jan Gouman
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Hannie Meijerink
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Leny E. Rietdijk
- Dutch Parkinson’s Patient Association, P.O. Box 46, 3980 CA Bunnik, The Netherlands; (G.G.); (J.G.); (H.M.); (L.E.R.)
| | - Sirwan K. L. Darweesh
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, 6525 GA Nijmegen, The Netherlands; (J.M.J.D.); (A.G.)
| |
Collapse
|