1
|
Lin G, Chancellor SE, Kwon T, Woodbury ME, Doering A, Abdourahman A, Bennett RE, Liao F, Pastika T, Tamm J, Romanul N, Yanamandra K, Hu M, Zhao K, Frosch MP, Grinberg Y, Li H, Das S, Dellovade T, Karran EH, Talanian RV, Biber K, Serrano-Pozo A, Ried JS, Langlois X, Hyman BT. Cell-death pathways and tau-associated neuronal vulnerability in Alzheimer's disease. Cell Rep 2025; 44:115758. [PMID: 40448997 DOI: 10.1016/j.celrep.2025.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/15/2024] [Accepted: 05/08/2025] [Indexed: 06/02/2025] Open
Abstract
Neuronal loss is the ultimate driver of neural system dysfunction in Alzheimer's disease (AD). We used single-nucleus RNA sequencing and neuropathological phenotyping to elucidate mechanisms of neurodegeneration in AD by identifying vulnerable neuronal populations and probing for their differentially expressed genes. Evidenced by transcriptomic analyses and quantitative tau immunoassays of human AD and non-AD brain tissue, we identified a neuronal population especially vulnerable to tau pathology. Multiplexed immunohistochemistry and in situ hybridization (CBLN2 and LINC00507) validated the presence of the tau-vulnerable neuronal population and revealed a propensity of this population to bear tau pathology. Differentially expressed genes associated with phospho-tau pathology in these neurons revealed genes involved in apoptosis, cell-component dissociation (e.g., autophagosome maturation and actin filament depolymerization), and regulation of vesicle-mediated transport.
Collapse
Affiliation(s)
- Gen Lin
- AbbVie Pte Ltd, North Buona Vista Road #19-01, Singapore 138588, Singapore
| | - Sarah E Chancellor
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA.
| | - Taekyung Kwon
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Maya E Woodbury
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Astrid Doering
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Aicha Abdourahman
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Rachel E Bennett
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Fan Liao
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Timothy Pastika
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Joseph Tamm
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Nandini Romanul
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Kiran Yanamandra
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Miwei Hu
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Karen Zhao
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Matthew P Frosch
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Yelena Grinberg
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Huan Li
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sudeshna Das
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Tammy Dellovade
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Eric H Karran
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Robert V Talanian
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Alberto Serrano-Pozo
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Janina S Ried
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Xavier Langlois
- AbbVie Inc., Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA.
| | - Bradley T Hyman
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
2
|
Shen Y, Liu Y, Guo M, Mao S, Chen R, Wang M, Li Z, Li Y, Chen W, Chen F, Wu B, Wang C, Chen W, Cui H, Yuan K, Huang H. DEK-nucleosome structure shows DEK modulates H3K27me3 and stem cell fate. Nat Struct Mol Biol 2025:10.1038/s41594-025-01559-9. [PMID: 40379883 DOI: 10.1038/s41594-025-01559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/11/2025] [Indexed: 05/19/2025]
Abstract
DEK is a highly conserved chromatin-associated oncoprotein that has important roles in regulating chromatin dynamics and stem cell fate. Dysregulation of DEK is associated with stem cell dysfunction and cancers, including acute myeloid leukemia. Despite its importance in chromatin regulation, the structural mechanisms underlying DEK's interaction with chromatin and its influence on gene regulation remain poorly understood. Here we combined cryogenic electron microscopy (cryo-EM), biochemical and cellular approaches to investigate the molecular mechanisms and functional importance of DEK's interaction with chromatin. Our cryo-EM structures reveal the structural basis of the DEK-nucleosome interaction. Biochemical and cellular results demonstrate that this interaction is crucial for DEK deposition onto chromatin. Furthermore, our results reveal that DEK safeguards mouse embryonic stem cells from acquiring primitive endoderm fates by modulating the repressive histone mark H3K27me3. Together, our study provides crucial molecular insights into the structure and function of DEK, establishing a framework for understanding its roles in chromatin biology and cell fate determination.
Collapse
Affiliation(s)
- Yunfan Shen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanhong Liu
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Maochao Guo
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Song Mao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Mengran Wang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhengbo Li
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yue Li
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wan Chen
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Fang Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Baixing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chongyuan Wang
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Huanhuan Cui
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Kai Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongda Huang
- Institute for Biological Electron Microscopy, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Rodriguez-Rodriguez P, Wang W, Tsagkogianni C, Feng I, Morello-Megias A, Jain K, Alanko V, Kahvecioglu HA, Mohammadi E, Li X, Flajolet M, Sandebring-Matton A, Maioli S, Vidal N, Milosevic A, Roussarie JP. Cell-type specific profiling of human entorhinal cortex at the onset of Alzheimer's disease neuropathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630881. [PMID: 39803521 PMCID: PMC11722323 DOI: 10.1101/2024.12.31.630881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Neurons located in layer II of the entorhinal cortex (ECII) are the primary site of pathological tau accumulation and neurodegeneration at preclinical stages of Alzheimer's disease (AD). Exploring the alterations that underlie the early degeneration of these cells is essential to develop therapies that curb the disease before symptom onset. Here we performed cell-type specific profiling of human EC at the onset of AD neuropathology. We identify an early response to amyloid pathology by microglia and oligodendrocytes. Importantly, we provide the first insight into neuronal alterations that coincide with incipient tau pathology: the signaling pathway for Reelin, recently shown to be a major AD resilience gene is dysregulated in ECII neurons, while the secreted synaptic organizer molecules NPTX2 and CBLN4, emerging AD biomarkers, are downregulated in surrounding neurons. By uncovering the complex multicellular landscape of EC at these early AD stages, this study paves the way for detailed characterization of the mechanisms governing NFT formation and opens long-needed novel therapeutic avenues.
Collapse
Affiliation(s)
| | - Wei Wang
- Bioinformatics Resource Center, The Rockefeller University. New York, NY, USA
| | - Christina Tsagkogianni
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Irena Feng
- Boston University Chobanian & Avedisian School of Medicine. Boston, MA, USA
| | - Ana Morello-Megias
- Boston University Chobanian & Avedisian School of Medicine. Boston, MA, USA
| | - Kaahini Jain
- Boston University Chobanian & Avedisian School of Medicine. Boston, MA, USA
| | - Vilma Alanko
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | | | - Elyas Mohammadi
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | | | - Anna Sandebring-Matton
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Silvia Maioli
- Department of Neurobiology Care Sciences and Society, Karolinska Institute. Stockholm, Sweden
| | - Noemi Vidal
- Pathology department. Biobank HUB-ICO-IDIBELL, University Hospital of Bellvitge. Barcelona, Spain
| | - Ana Milosevic
- Laboratory of Developmental Genetics, The Rockefeller University. New York, NY, USA
| | | |
Collapse
|
4
|
Johnstone M, Leck A, Lange T, Wilcher K, Shephard MS, Paranjpe A, Schutte S, Wells S, Kappes F, Salomonis N, Privette Vinnedge LM. The chromatin remodeler DEK promotes proliferation of mammary epithelium and is associated with H3K27me3 epigenetic modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612116. [PMID: 39314335 PMCID: PMC11419013 DOI: 10.1101/2024.09.09.612116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The DEK chromatin remodeling protein was previously shown to confer oncogenic phenotypes to human and mouse mammary epithelial cells using in vitro and knockout mouse models. However, its functional role in normal mammary gland epithelium remained unexplored. We developed two novel mouse models to study the role of Dek in normal mammary gland biology in vivo . Mammary gland-specific Dek over-expression in mice resulted in hyperproliferation of cells that visually resembled alveolar cells, and a transcriptional profile that indicated increased expression of cell cycle, mammary stem/progenitor, and lactation-associated genes. Conversely, Dek knockout mice exhibited an alveologenesis or lactation defect, resulting in dramatically reduced pup survival. Analysis of previously published single-cell RNA-sequencing of mouse mammary glands revealed that Dek is most highly expressed in mammary stem cells and alveolar progenitor cells, and to a lesser extent in basal epithelial cells, supporting the observed phenotypes. Mechanistically, we discovered that Dek is a modifier of Ezh2 methyltransferase activity, upregulating the levels of histone H3 trimethylation on lysine 27 (H3K27me3) to control gene transcription. Combined, this work indicates that Dek promotes proliferation of mammary epithelial cells via cell cycle deregulation. Furthermore, we report a novel function for Dek in alveologenesis and histone H3 K27 trimethylation.
Collapse
|
5
|
Plascencia-Villa G, Castellani RJ, Perry G. Central role of brain regulatory T cells in the inflammatory cascade in Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2412255121. [PMID: 39074294 PMCID: PMC11317600 DOI: 10.1073/pnas.2412255121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Affiliation(s)
- Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX78249
| | - Rudolph J. Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, ChicagoIL60611
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX78249
| |
Collapse
|
6
|
Lai Q, Dannenfelser R, Roussarie JP, Yao V. Disentangling associations between complex traits and cell types with seismic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592534. [PMID: 38765980 PMCID: PMC11100625 DOI: 10.1101/2024.05.04.592534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Integrating single-cell RNA sequencing (scRNA-seq) with Genome-Wide Association Studies (GWAS) can help reveal GWAS-associated cell types, furthering our understanding of the cell-type-specific biological processes underlying complex traits and disease. However, current methods have technical limitations that hinder them from making systematic, scalable, interpretable disease-cell-type associations. In order to rapidly and accurately pinpoint associations, we develop a novel framework, seismic, which characterizes cell types using a new specificity score. We compare seismic with alternative methods across over 1,000 cell type characterizations at different granularities and 28 traits, demonstrating that seismic both corroborates findings and identifies trait-relevant cell groups which are not apparent through other methodologies. Furthermore, as part of the seismic framework, the specific genes driving cell type-trait associations can easily be accessed and analyzed, enabling further biological insights. The advantages of seismic are particularly salient in neurodegenerative diseases such as Parkinson's and Alzheimer's, where disease pathology has not only cell-specific manifestations, but also brain region-specific differences. Interestingly, a case study of Alzheimer's disease reveals the importance of considering GWAS endpoints, as studies relying on clinical diagnoses consistently identify microglial associations, while GWAS with a tau biomarker endpoint reveals neuronal associations. In general, seismic is a computationally efficient, powerful, and interpretable approach for identifying associations between complex traits and cell type-specific expression.
Collapse
Affiliation(s)
- Qiliang Lai
- Department of Computer Science, Rice University
| | | | | | - Vicky Yao
- Department of Computer Science, Rice University
| |
Collapse
|