1
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Gabriel F, Spriestersbach L, Fuhrmann A, Jungnickel KEJ, Mostafavi S, Pardon E, Steyaert J, Löw C. Structural basis of thiamine transport and drug recognition by SLC19A3. Nat Commun 2024; 15:8542. [PMID: 39358356 PMCID: PMC11447181 DOI: 10.1038/s41467-024-52872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Thiamine (vitamin B1) functions as an essential coenzyme in cells. Humans and other mammals cannot synthesise this vitamin de novo and thus have to take it up from their diet. Eventually, every cell needs to import thiamine across its plasma membrane, which is mainly mediated by the two specific thiamine transporters SLC19A2 and SLC19A3. Loss of function mutations in either of these transporters lead to detrimental, life-threatening metabolic disorders. SLC19A3 is furthermore a major site of drug interactions. Many medications, including antidepressants, antibiotics and chemotherapeutics are known to inhibit this transporter, with potentially fatal consequences for patients. Despite a thorough functional characterisation over the past two decades, the structural basis of its transport mechanism and drug interactions has remained elusive. Here, we report seven cryo-electron microscopy (cryo-EM) structures of the human thiamine transporter SLC19A3 in complex with various ligands. Conformation-specific nanobodies enable us to capture different states of SLC19A3's transport cycle, revealing the molecular details of thiamine recognition and transport. We identify seven previously unknown drug interactions of SLC19A3 and present structures of the transporter in complex with the inhibitors fedratinib, amprolium and hydroxychloroquine. These data allow us to develop an understanding of the transport mechanism and ligand recognition of SLC19A3.
Collapse
Affiliation(s)
- Florian Gabriel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Lea Spriestersbach
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Antonia Fuhrmann
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Katharina E J Jungnickel
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Siavash Mostafavi
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, 1050, Brussels, Belgium
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestraße 85, 22607, Hamburg, Germany.
- European Molecular Biology Laboratory (EMBL) Hamburg, Notkestraße 85, 22607, Hamburg, Germany.
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| |
Collapse
|
3
|
Wen A, Zhu Y, Yee SW, Park BI, Giacomini KM, Greenberg AS, Newman JW. The Impacts of Slc19a3 Deletion and Intestinal SLC19A3 Insertion on Thiamine Distribution and Brain Metabolism in the Mouse. Metabolites 2023; 13:885. [PMID: 37623829 PMCID: PMC10456376 DOI: 10.3390/metabo13080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 08/26/2023] Open
Abstract
The Thiamine Transporter 2 (THTR2) encoded by SLC19A3 plays an ill-defined role in the maintenance of tissue thiamine, thiamine monophosphate, and thiamine diphosphate (TDP) levels. To evaluate the impact of THTR2 on tissue thiamine status and metabolism, we expressed the human SLC19A3 transgene in the intestine of total body Slc19a3 knockout (KO) mice. Male and female wildtype (WT) and transgenic (TG) mice were fed either 17 mg/kg (1×) or 85 mg/kg (5×) thiamine hydrochloride diet, while KOs were only fed the 5× diet. Thiamine vitamers in plasma, red blood cells, duodenum, brain, liver, kidney, heart, and adipose tissue were measured. Untargeted metabolomics were performed on the brain tissues of groups with equivalent plasma thiamine. KO mice had ~two- and ~three-fold lower plasma and brain thiamine levels than WT on the 5× diet. Circulating vitamers were sensitive to diet and equivalent in TG and WT mice. However, TG had 60% lower thiamine but normal brain TDP levels regardless of diet, with subtle differences in the heart and liver. The loss of THTR2 reduced levels of nucleic acid and amino acid derivatives in the brain. Therefore, mutation or inhibition of THTR2 may alter the brain metabolome and reduce the thiamine reservoir for TDP biosynthesis.
Collapse
Affiliation(s)
- Anita Wen
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
| | - Ying Zhu
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Brian I. Park
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 92521, USA
| | - Andrew S. Greenberg
- Gerald J. and Dorothy R. Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA 02111, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - John W. Newman
- Department of Nutrition, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California, Davis, CA 95616, USA
- USDA Western Human Nutrition Research Center, Davis, CA 95616, USA
| |
Collapse
|
4
|
Bettendorff L. Synthetic Thioesters of Thiamine: Promising Tools for Slowing Progression of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11296. [PMID: 37511056 PMCID: PMC10379298 DOI: 10.3390/ijms241411296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Thiamine (vitamin B1) is essential for the brain. This is attributed to the coenzyme role of thiamine diphosphate (ThDP) in glucose and energy metabolism. The synthetic thiamine prodrug, the thioester benfotiamine (BFT), has been extensively studied and has beneficial effects both in rodent models of neurodegeneration and in human clinical studies. BFT has no known adverse effects and improves cognitive outcomes in patients with mild Alzheimer's disease. In cell culture and animal models, BFT has antioxidant and anti-inflammatory properties that seem to be mediated by a mechanism independent of the coenzyme function of ThDP. Recent in vitro studies show that another thiamine thioester, O,S-dibenzoylthiamine (DBT), is even more efficient than BFT, especially with respect to its anti-inflammatory potency, and is effective at lower concentrations. Thiamine thioesters have pleiotropic properties linked to an increase in circulating thiamine concentrations and possibly in hitherto unidentified open thiazole ring derivatives. The identification of the active neuroprotective metabolites and the clarification of their mechanism of action open extremely promising perspectives in the field of neurodegenerative, neurodevelopmental, and psychiatric conditions. The present review aims to summarize existing data on the neuroprotective effects of thiamine thioesters and give a comprehensive account.
Collapse
Affiliation(s)
- Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
5
|
Bugiani M, Abbink TEM, Edridge AWD, van der Hoek L, Hillen AEJ, van Til NP, Hu‐A‐Ng GV, Breur M, Aiach K, Drevot P, Hocquemiller M, Laufer R, Wijburg FA, van der Knaap MS. Focal lesions following intracerebral gene therapy for mucopolysaccharidosis IIIA. Ann Clin Transl Neurol 2023; 10:904-917. [PMID: 37165777 PMCID: PMC10270249 DOI: 10.1002/acn3.51772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVE Mucopolysaccharidosis type IIIA (MPSIIIA) caused by recessive SGSH variants results in sulfamidase deficiency, leading to neurocognitive decline and death. No disease-modifying therapy is available. The AAVance gene therapy trial investigates AAVrh.10 overexpressing human sulfamidase (LYS-SAF302) delivered by intracerebral injection in children with MPSIIIA. Post-treatment MRI monitoring revealed lesions around injection sites. Investigations were initiated in one patient to determine the cause. METHODS Clinical and MRI details were reviewed. Stereotactic needle biopsies of a lesion were performed; blood and CSF were sampled. All samples were used for viral studies. Immunohistochemistry, electron microscopy, and transcriptome analysis were performed on brain tissue of the patient and various controls. RESULTS MRI revealed focal lesions around injection sites with onset from 3 months after therapy, progression until 7 months post therapy with subsequent stabilization and some regression. The patient had transient slight neurological signs and is following near-normal development. No evidence of viral or immunological/inflammatory cause was found. Immunohistochemistry showed immature oligodendrocytes and astrocytes, oligodendrocyte apoptosis, strong intracellular and extracellular sulfamidase expression and hardly detectable intracellular or extracellular heparan sulfate. No activation of the unfolded protein response was found. INTERPRETATION Results suggest that intracerebral gene therapy with local sulfamidase overexpression leads to dysfunction of transduced cells close to injection sites, with extracellular spilling of lysosomal enzymes. This alters extracellular matrix composition, depletes heparan sulfate, impairs astrocyte and oligodendrocyte function, and causes cystic white matter degeneration at the site of highest gene expression. The AAVance trial results will reveal the potential benefit-risk ratio of this therapy.
Collapse
Affiliation(s)
- Marianna Bugiani
- Department of PathologyAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Truus E. M. Abbink
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Arthur W. D. Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Centre for Global Child HealthAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection PreventionAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Anne E. J. Hillen
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Niek P. van Til
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Gino V. Hu‐A‐Ng
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marjolein Breur
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | | | | | | | | | - Frits A. Wijburg
- Department of Pediatric Metabolic Diseases, Emma Children's Hospital and Amsterdam Lysosome Center “Sphinx”Amsterdam University Medical Centers, Academic Medical CenterAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Amsterdam Leukodystrophy CenterAmsterdam University Medical CentersAmsterdamThe Netherlands
- Department of Child NeurologyEmma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdam1081 HVThe Netherlands
| |
Collapse
|
6
|
Maney K, Pizoli C, Russ JB. Child Neurology: Infantile Biotin Thiamine Responsive Basal Ganglia Disease: Case Report and Brief Review. Neurology 2023; 100:836-839. [PMID: 36657988 PMCID: PMC10136005 DOI: 10.1212/wnl.0000000000206832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Biotin thiamine responsive basal ganglia disease (BTRBGD) is an inherited autosomal recessive disorder that results from the inability of thiamine to cross the blood-brain barrier. It is considered a treatable condition if vitamin supplementation, most commonly with thiamine and biotin, is initiated early. BTRBGD can present as an infantile form, classical childhood form, or adult Wernicke-like encephalopathy. The infantile form is often the most severe and portends a worse prognosis with high mortality despite vitamin supplementation. We present a two-month-old who presented with irritability, opisthotonos, and abnormal eye movements who was found to have compound heterozygous variants in the SLC19A3 gene inherited in trans, including one known pathogenic intronic variant and a novel variant presumed to be pathogenic. She was therefore diagnosed with infantile BTRBGD. In this report, we discuss the differential for infantile BTRBGD, the clinical and radiologic features of BTRBGD, and describe a rapid, positive response to early vitamin supplementation in an infant with a likely pathogenic novel variant in SLC19A3.
Collapse
Affiliation(s)
- Kayli Maney
- From the Child Neurology Residency Program (K.M.), Department of Pediatrics, Duke University Medical Center, Durham, NC; and Department of Pediatrics (C.P., J.B.R.), Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC
| | - Carolyn Pizoli
- From the Child Neurology Residency Program (K.M.), Department of Pediatrics, Duke University Medical Center, Durham, NC; and Department of Pediatrics (C.P., J.B.R.), Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC
| | - Jeffrey B Russ
- From the Child Neurology Residency Program (K.M.), Department of Pediatrics, Duke University Medical Center, Durham, NC; and Department of Pediatrics (C.P., J.B.R.), Division of Pediatric Neurology, Duke University School of Medicine, Durham, NC.
| |
Collapse
|
7
|
Abstract
Leigh syndrome, or subacute necrotizing encephalomyelopathy, was initially recognized as a neuropathological entity in 1951. Bilateral symmetrical lesions, typically extending from the basal ganglia and thalamus through brainstem structures to the posterior columns of the spinal cord, are characterized microscopically by capillary proliferation, gliosis, severe neuronal loss, and relative preservation of astrocytes. Leigh syndrome is a pan-ethnic disorder usually with onset in infancy or early childhood, but late-onset forms occur, including in adult life. Over the last six decades it has emerged that this complex neurodegenerative disorder encompasses more than 100 separate monogenic disorders associated with enormous clinical and biochemical heterogeneity. This chapter discusses clinical, biochemical and neuropathological aspects of the disorder, and postulated pathomechanisms. Known genetic causes, including defects of 16 mitochondrial DNA (mtDNA) genes and approaching 100 nuclear genes, are categorized into disorders of subunits and assembly factors of the five oxidative phosphorylation enzymes, disorders of pyruvate metabolism and vitamin and cofactor transport and metabolism, disorders of mtDNA maintenance, and defects of mitochondrial gene expression, protein quality control, lipid remodeling, dynamics, and toxicity. An approach to diagnosis is presented, together with known treatable causes and an overview of current supportive management options and emerging therapies on the horizon.
Collapse
Affiliation(s)
- Shamima Rahman
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Medicine Department, Great Ormond Street Hospital for Children, London, United Kingdom.
| |
Collapse
|
8
|
Wang K, Zhao S, Xie Z, Zhang M, Zhao H, Cheng X, Zhang Y, Niu Y, Liu J, Zhang TJ, Zhang Y, Wu Z, Chu J, Yang X, Wu N. Exome-wide Analysis of De Novo and Rare Genetic Variants in Patients With Brain Arteriovenous Malformation. Neurology 2022; 98:e1670-e1678. [PMID: 35228337 DOI: 10.1212/wnl.0000000000200114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Brain arteriovenous malformation (bAVM) is a congenital disorder and a leading cause of hemorrhagic stroke. Germline genetic variants play an essential role in the pathogenesis of brain arteriovenous malformation. However, the biological relevance of the disease-associated genes identified in previous studies is elusive. In this study, we aim to systematically investigate the contribution of germline variants to bAVM and explore the critical molecular pathways underlying the pathogenesis of bAVM. METHODS Probands with sporadic bAVM were consecutively recruited into this study from November 2015 to November 2018 and underwent exome sequencing. The controls were aggregated from individuals who were not known to have vascular malformation and underwent exome sequencing for clinical or research purposes. The retained control dataset included 4609 individuals, including 251 individuals with parental samples sequenced. We firstly compared de novo variants in cases and controls and performed a pathway enrichment analysis. A gene-based rare variant association analysis was then performed to identify genes whose variants were significantly enriched in cases. RESULTS We collected an exome-sequenced bAVM cohort consisting of 152 trios and 40 singletons. By firstly focusing on de novo variants, we observed a significant mutational burden of de novo likely gene-disrupting variants in cases versus controls. By performing a pathway enrichment analysis of all nonsynonymous de novo variants identified in cases, we found the angiopoietin-like protein 8 (ANGPTL8) regulatory pathway to be significantly enriched in patients with bAVM. Through an exome-wide rare variant association analysis utilizing 4394 in-house exome data as controls, we identified SLC19A3 as a disease-associated gene for bAVM. In addition, we found that the SLC19A3 variants in cases are preferably located at the N' side of the SLC19A3 protein. These findings implicate a phenotypic extension of SLC19A3-related disorders with a domain-specific effect. DISCUSSION This study provides insights into the biological basis of bAVM by identifying novel molecular pathways and candidate genes.
Collapse
Affiliation(s)
- Kun Wang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Sen Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Zhixin Xie
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Mingqi Zhang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Hengqiang Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Xi Cheng
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Terry Jianguo Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junsheng Chu
- Department of Neurosurgery, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Nan Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
9
|
Vanoevelen JM, Bierau J, Grashorn JC, Lambrichs E, Kamsteeg EJ, Bok LA, Wevers RA, van der Knaap MS, Bugiani M, Frisk JH, Colnaghi R, O'Driscoll M, Hellebrekers DMEI, Rodenburg R, Ferreira CR, Brunner HG, van den Wijngaard A, Abdel-Salam GMH, Wang L, Stumpel CTRM. DTYMK is essential for genome integrity and neuronal survival. Acta Neuropathol 2022; 143:245-262. [PMID: 34918187 PMCID: PMC8742820 DOI: 10.1007/s00401-021-02394-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022]
Abstract
Nucleotide metabolism is a complex pathway regulating crucial cellular processes such as nucleic acid synthesis, DNA repair and proliferation. This study shows that impairment of the biosynthesis of one of the building blocks of DNA, dTTP, causes a severe, early-onset neurodegenerative disease. Here, we describe two unrelated children with bi-allelic variants in DTYMK, encoding dTMPK, which catalyzes the penultimate step in dTTP biosynthesis. The affected children show severe microcephaly and growth retardation with minimal neurodevelopment. Brain imaging revealed severe cerebral atrophy and disappearance of the basal ganglia. In cells of affected individuals, dTMPK enzyme activity was minimal, along with impaired DNA replication. In addition, we generated dtymk mutant zebrafish that replicate this phenotype of microcephaly, neuronal cell death and early lethality. An increase of ribonucleotide incorporation in the genome as well as impaired responses to DNA damage were observed in dtymk mutant zebrafish, providing novel pathophysiological insights. It is highly remarkable that this deficiency is viable as an essential component for DNA cannot be generated, since the metabolic pathway for dTTP synthesis is completely blocked. In summary, by combining genetic and biochemical approaches in multiple models we identified loss-of-function of DTYMK as the cause of a severe postnatal neurodegenerative disease and highlight the essential nature of dTTP synthesis in the maintenance of genome stability and neuronal survival.
Collapse
Affiliation(s)
- Jo M Vanoevelen
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands.
- GROW-School for Oncology and Developmental Biology, 6229 ER, Maastricht, The Netherlands.
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Janine C Grashorn
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Ellen Lambrichs
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | - Levinus A Bok
- Department of Pediatrics, Màxima Medical Center, 5504 DB, Veldhoven, The Netherlands
| | - Ron A Wevers
- Translational Metabolic Laboratory, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | | | - Marianna Bugiani
- Department of Neuropathology, VUMC, 1105 AZ, Amsterdam, The Netherlands
| | - Junmei Hu Frisk
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Rita Colnaghi
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RH, UK
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RH, UK
| | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Richard Rodenburg
- Translational Metabolic Laboratory, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
- Department of Human Genetics, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
- GROW-School for Oncology and Developmental Biology, 6229 ER, Maastricht, The Netherlands
- MHENS School of Neuroscience, 6229 ER, Maastricht, The Netherlands
- Donders Institute of Neuroscience, Radboud UMC, 6525 GA, Nijmegen, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands
| | - Ghada M H Abdel-Salam
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Wesół-Kucharska D, Greczan M, Kaczor M, Pajdowska M, Piekutowska-Abramczuk D, Ciara E, Halat-Wolska P, Kowalski P, Jurkiewicz E, Rokicki D. Early treatment of biotin-thiamine-responsive basal ganglia disease improves the prognosis. Mol Genet Metab Rep 2021; 29:100801. [PMID: 34631424 PMCID: PMC8488057 DOI: 10.1016/j.ymgmr.2021.100801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Background Biotin–thiamine–responsive basal ganglia disease (BTBGD) is an autosomal recessive neurometabolic disorder associated with pathogenic variants in SLC19A3 gene. The clinical picture includes symptoms of subacute encephalopathy (e.g. confusion, dysphagia, dysarthria, and seizures), which respond very well to early treatment with thiamine and biotin. Method A retrospective review of clinical characteristics, magnetic resonance imaging and molecular findings in 3 patients with BTBGD. Results The first symptoms in all patients occurred at 12–24 months of age and they had subacute encephalopathy, ataxia and dystonia. The baseline magnetic resonance imaging demonstrated abnormal signal intensity in the basal ganglia with atrophy and necrosis of the basal ganglia during follow-up in two patients. One patient was diagnosed and the treatment was initiated after a long period from symptoms onset and he is currently severely affected, with dystonia, quadriparesis and seizures. The other two patients were diagnosed early in life and are currently stable on treatment, without the clinical symptoms. Genetic testing demonstrated pathogenic variants in SLC19A3 gene. Conclusion To avoid diagnostic errors and delayed or incorrect treatment, BTBGD must be recognized early. Adequate prompt treatment gives the chance of significant clinical improvement. Unexplained encephalopathy and MRI abnormalities including bilateral abnormal signal in the basal ganglia should alert the clinician to consider BTBGD in the differential, and the treatment with biotin and thiamine should be introduced immediately.
Collapse
Affiliation(s)
- Dorota Wesół-Kucharska
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Milena Greczan
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Kaczor
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Pajdowska
- Department of Biochemistry, Radioimmunology and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Poland
| | - Paulina Halat-Wolska
- Department of Medical Genetics, The Children's Memorial Health Institute, Poland
| | - Paweł Kowalski
- Department of Medical Genetics, The Children's Memorial Health Institute, Poland
| | - Elżbieta Jurkiewicz
- Department of Diagnostic Imaging, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
11
|
Wang J, Wang J, Han X, Liu Z, Ma Y, Chen G, Zhang H, Sun D, Xu R, Liu Y, Zhang Y, Wen Y, Bao X, Chen Q, Fang F. Report of the Largest Chinese Cohort With SLC19A3 Gene Defect and Literature Review. Front Genet 2021; 12:683255. [PMID: 34276785 PMCID: PMC8281341 DOI: 10.3389/fgene.2021.683255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Thiamine metabolism dysfunction syndrome 2 (THMD2) is a rare metabolic disorder caused by SLC19A3 mutations, inherited in autosomal recessive pattern. As a treatable disease, early diagnosis and therapy with vitamin supplementation is important to improve the prognosis. So far, the reported cases were mainly from Saudi Arab regions, and presented with relatively simple clinical course because of the hot spot mutation (T422A). Rare Chinese cases were described until now. In this study, we investigated 18 Chinese THMD2 patients with variable phenotypes, and identified 23 novel SLC19A3 mutations, which expanded the genetic and clinical spectrum of the disorder. Meanwhile, we reviewed all 146 reported patients from different countries. Approximately 2/3 of patients presented with classical BTBGD, while 1/3 of patients manifested as much earlier onset and poor prognosis, including infantile Leigh-like syndrome, infantile spasms, neonatal lactic acidosis and infantile BTBGD. Literature review showed that elevated lactate in blood and CSF, as well as abnormal OXPHOS activities of muscle or skin usually correlated with infantile phenotypes, which indicated poor outcome. Brainstem involvement on MRI was more common in deceased cases. Thiamine supplementation is indispensable in the treatment of THMD2, whereas combination of biotin and thiamine is not superior to thiamine alone. But biotin supplementation does work in some patients. Genotypic-phenotypic correlation remains unclear which needs further investigation, and biallelic truncated mutations usually led to more severe phenotype.
Collapse
Affiliation(s)
- Jiaping Wang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Junling Wang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaodi Han
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Zhimei Liu
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanli Ma
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Guohong Chen
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Haoya Zhang
- Department of Neurology, Wuhan Children's Hospital, Wuhan, China
| | - Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Wuhan, China
| | - Ruifeng Xu
- Department of Neurology, Gansu Maternal and Children's Hospital, Lanzhou, China
| | - Yi Liu
- Jinan Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Yuqin Zhang
- Department of Neurology, Tianjin Children's Hospital, Tianjin, China
| | - Yongxin Wen
- Department of Pediatric Neurology, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatric Neurology, Peking University First Hospital, Beijing, China
| | - Qian Chen
- Department of Neurology, Capital Institute of Pediatrics, Beijing, China
| | - Fang Fang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Mishra R, Bijarnia-Mahay S, Kumar P, Buxi TBS, Kulshrestha S, Kuldeep J, Gupta D, Saxena R, Sabharwal RK. Early Infantile Thiamine Transporter-2 Deficiency with Epileptic Spasms—A Phenotypic Spectrum with a Novel Mutation. JOURNAL OF PEDIATRIC EPILEPSY 2021. [DOI: 10.1055/s-0041-1731018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractEpileptic seizures are a frequent feature of thiamine transporter deficiency that may present as a clinical continuum between severe epileptic encephalopathy and mixed focal or generalized seizures. Thiamine metabolism dysfunction syndrome 2 (MIM: 607483) or biotin-thiamine-responsive basal ganglia disease (BTBGD) due to biallelic pathogenic mutation in the SLC19A3 gene is a well-recognized cause of early infantile encephalopathy with a Leigh syndrome-like presentation and a lesser-known phenotype of atypical infantile spasms. We reported a 4-month-old infant who presented with progressive epileptic spasms since 1 month of age, psychomotor retardation, and lactic acidosis. Magnetic resonance imaging (MRI) revealed altered signal intensities in bilateral thalamic and basal ganglia, cerebellum, brainstem, cortical and subcortical white matter. Whole exome sequencing identified a homozygous ENST00000258403.3: c.871G > C (p.Gly291Arg) variant in the SLC19A3 gene. We elucidate the features in the proband, which were an amalgamation of both the above subtypes of the SLC19A3 associated with early infantile encephalopathy. We also highlight the features which were atypical for either “Leigh syndrome-like” or “atypical infantile spasm” phenotypes and suggest that the two separate entities can be merged as a clinical continuum. Treatment outcome with high-dose biotin and thiamine is promising. In addition, we report a novel pathogenic variant in the SLC19A3 gene.
Collapse
Affiliation(s)
- Ranjana Mishra
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Kumar
- Department of Pediatric Neurology, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Jitendra Kuldeep
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Deepti Gupta
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Rama Kant Sabharwal
- Department of Pediatric Neurology, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
13
|
Saini AG, Sharma S. Biotin-Thiamine-Responsive Basal Ganglia Disease in Children: A Treatable Neurometabolic Disorder. Ann Indian Acad Neurol 2021; 24:173-177. [PMID: 34220059 PMCID: PMC8232498 DOI: 10.4103/aian.aian_952_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Biotin-thiamine-responsive basal ganglia disease is a rare, autosomal recessive, treatable, neurometabolic disorder associated with biallelic pathogenic variations in the SLC19A3 gene. The condition may present as an early-childhood encephalopathy, an early-infantile lethal encephalopathy with lactic acidosis, with or without infantile spasms, or a late-onset Wernicke-like encephalopathy. The key radiological features are bilateral, symmetrical lesions in the caudate, putamen, and medial thalamus, with variable extension into the brain stem, cerebral cortex, and cerebellum. Treatment is life long and includes initiation of high dose biotin and thiamine. Genetic testing confirms the diagnosis. The prognosis depends on the time from diagnosis to the time of vitamin supplementation. The genotype-phenotype correlations are not clear yet, but the early infantile phenotype portends a poorer prognosis. We provide a brief overview of the disorder and emphasize the initiation of high-dose biotin and thiamine in infants and children with unexplained encephalopathy and basal ganglia involvement.
Collapse
Affiliation(s)
- Arushi G. Saini
- Pediatric Neurology, Department of Pediatrics, Advanced Pediatric Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
14
|
Helman G, Viaene AN, Takanohashi A, Breur M, Berger R, Woidill S, Cottrell JR, Schiffmann R, Crow YJ, Simons C, Bugiani M, Vanderver A. Cerebral Microangiopathy in Leukoencephalopathy With Cerebral Calcifications and Cysts: A Pathological Description. J Child Neurol 2021; 36:133-140. [PMID: 32988269 DOI: 10.1177/0883073820958330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leukoencephalopathy with calcifications and cysts (LCC) is a neurological syndrome recently associated with pathogenic variants in SNORD118. We report autopsy neuropathological findings from an individual with genetically confirmed LCC. Histologic studies included staining of formalin-fixed paraffin-embedded tissue sections by hematoxylin and eosin, elastic van Gieson, and luxol fast blue. Immunohistochemistry stains against glial fibrillary acidic protein, proteolipid protein, phosphorylated neurofilament, CD31, alpha-interferon, LN3, and inflammatory markers were performed. Gross examination revealed dark tan/gray appearing white matter with widespread calcifications. Microscopy revealed a diffuse destructive process due to a vasculopathy with secondary ischemic lesions and mineralization. The vasculopathy involved clustered small vessels, resembling vascular malformations, and sporadic lymphocytic infiltration of vessel walls. The white matter was also diffusely abnormal, with concurrent loss of myelin and axons, tissue rarefaction with multifocal cystic degeneration, and the presence of foamy macrophages, secondary calcifications, and astrogliosis. The midbrain, pons, and cerebellum were diffusely involved. It is not understood why variants in SNORD118 result in a disorder that predominantly causes neurological disease and significantly disrupts the cerebral vasculature. Clinical and radiological benefit was recently reported in an LCC patient treated with Bevacizumab; it is important that these patients are rapidly diagnosed and trial of this treatment modality is considered in appropriate circumstances.
Collapse
Affiliation(s)
- Guy Helman
- 34361Murdoch Children's Research Institute, The Royal Children's Hospital Melbourne, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Asako Takanohashi
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marjolein Breur
- Department of Pediatrics/Child Neurology, 1209VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Pathology, 1209VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rebecca Berger
- Department of Pathology and Laboratory Medicine, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Woidill
- Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John R Cottrell
- University of Maryland Brain and Tissue Bank, College Park, MD, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Yanick J Crow
- Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Laboratory of Neurogenetics and Neuroinflammation, Paris Descartes University, Institut Imagine, Paris, France
| | - Cas Simons
- 34361Murdoch Children's Research Institute, The Royal Children's Hospital Melbourne, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, 1209VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Pathology, 1209VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Adeline Vanderver
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Neurology, 6567Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
15
|
Tiet MY, Lin Z, Gao F, Jennings MJ, Horvath R. Targeted Therapies for Leigh Syndrome: Systematic Review and Steps Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:885-897. [PMID: 34308912 PMCID: PMC8673543 DOI: 10.3233/jnd-210715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Leigh syndrome (LS) is the most frequent paediatric clinical presentation of mitochondrial disease. The clinical phenotype of LS is highly heterogeneous. Though historically the treatment for LS is largely supportive, new treatments are on the horizon. Due to the rarity of LS, large-scale interventional studies are scarce, limiting dissemination of information of therapeutic options to the wider scientific and clinical community. OBJECTIVE We conducted a systematic review of pharmacological therapies of LS following the guidelines for FAIR-compliant datasets. METHODS We searched for interventional studies within Clincialtrials.gov and European Clinical trials databases. Randomised controlled trials, observational studies, case reports and case series formed part of a wider MEDLINE search. RESULTS Of the 1,193 studies initially identified, 157 met our inclusion criteria, of which 104 were carried over into our final analysis. Treatments for LS included very few interventional trials using EPI-743 and cysteamine bitartrate. Wider literature searches identified case series and reports of treatments repleting glutathione stores, reduction of oxidative stress and restoration of oxidative phosphorylation. CONCLUSIONS Though interventional randomised controlled trials have begun for LS, the majority of evidence remains in case reports and case series for a number of treatable genes, encoding cofactors or transporter proteins of the mitochondria. Our findings will form part of the international expert-led Solve-RD efforts to assist clinicians initiating treatments in patients with treatable variants of LS.
Collapse
Affiliation(s)
- May Yung Tiet
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Zhiyuan Lin
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Fei Gao
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Matthew James Jennings
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Single gene, two diseases, and multiple clinical presentations: Biotin-thiamine-responsive basal ganglia disease. Brain Dev 2020; 42:572-580. [PMID: 32600842 DOI: 10.1016/j.braindev.2020.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022]
Abstract
AIM To present seven new genetically confirmed cases of biotin-thiamin-responsive basal ganglia disease (BTBGD) with different clinical and brain magnetic resonance imaging (MRI) characteristics. MATERIAL AND METHODS Genetic variants, clinical presentations, brain MRI findings, treatment response, and prognosis of seven selected patients with BTBGD, diagnosed with SLC19A3 mutations were described. RESULTS Among seven patients diagnosed with BTBGD, two had early infantile form, four had classic childhood form, and one was asymptomatic. Four different homozygous variants were found in the SLC19A3. Two patients with early infantile form presented with encephalopathy, dystonia, and refractory seizure in the neonatal period and have different variants. Their MRI findings were similar and pathognomonic for the early infantile form. Three siblings had same variants: one presented seizure and encephalopathy at the age of 4 months, one presented seizure at 14 years, and another was asymptomatic at 20 years. Only one of them had normal MRI findings, and the others MRI findings were similar and suggestive of the classic form. Other two siblings; one of them presented with developmental delay, seizure, and dystonia at 18 months and the other presented with subacute encephalopathy and ataxia at 20 months. Their MRI findings were also similar and suggestive of the classic form. CONCLUSION BTBGD may present with dissimilar clinical characteristics or remain asymptomatic for a long time period even in a family or patients with same variants. Brain MRI patterns may be important for the early diagnosis of BTBGD that would save children's lives.
Collapse
|
17
|
Li D, Song J, Li X, Liu Y, Dong H, Kang L, Liu Y, Zhang Y, Jin Y, Guan H, Zhou C, Yang Y. Eleven novel mutations and clinical characteristics in seven Chinese patients with thiamine metabolism dysfunction syndrome. Eur J Med Genet 2020; 63:104003. [PMID: 32679198 DOI: 10.1016/j.ejmg.2020.104003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022]
Abstract
Thiamine metabolism dysfunction syndrome (THMD) comprises a group of clinically and genetically heterogeneous encephalopathies with autosomal recessive inheritance. Four genes, SLC19A3, SLC25A19, SLC19A2, and TPK1, are associated with this disorder. This study aimed to explore the clinical, biochemical and molecular characteristics of seven Chinese patients with THMD. Targeted next-generation sequencing of mitochondrial DNA and nuclear DNA was used to identify the causative mutations. The patients presented with subacute encephalopathy between the ages of 1-27 months. Brain magnetic resonance imaging (MRI) revealed abnormalities in the basal ganglia, indicating Leigh syndrome. Urine α-ketoglutarate in five patients was elevated. In four patients, five novel mutations (c.1276_1278delTAC, c.265A > C, c.197T > C, c.850T > C, whole gene deletion) were found in SLC19A3, which is associated with THMD2. In two patients, four novel mutations (c.194C > T, c.454C > A, c.481G > A, and c.550G > C) were identified in SLC25A19, supporting a diagnosis of THMD4. In one patient, two novel mutations (c.395T > C and c.614-1G > A) were detected in TPK1, which is indicative of THMD5. The patients received thiamine, biotin, and symptomatic therapy, upon which six patients demonstrated clinical improvement. Our findings expanded the phenotypic and genotypic spectrum of THMD, with eleven novel mutations identified in seven Chinese patients. Early diagnosis and treatment have a significant impact on prognosis.
Collapse
Affiliation(s)
- Dongxiao Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xiyuan Li
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Lulu Kang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yupeng Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hanzhou Guan
- Department of Pediatrics, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Chongchen Zhou
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
18
|
Nemani T, Mehta P, Udwadia-Hegde A. Biotin–Thiamine Responsive Basal Ganglia Disease: A Treatable Metabolic Encephalopathy—Not to Be Missed! JOURNAL OF PEDIATRIC NEUROLOGY 2020. [DOI: 10.1055/s-0038-1676811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AbstractBiotin–thiamine responsive basal ganglia disease (BTBGD) is an autosomal recessive neurometabolic disorder, characterized by encephalopathy, extrapyramidal signs following mild infection, trauma or surgery and is potentially reversible with treatment. We describe a 15-month-old female child of Indian-Muslim origin with characteristic clinical and radiological features of BTBGD that showed complete resolution with treatment. A comparison with previously reported cases reveals a different mutation (exon 2 vs. exon 5 in middle east cases) in the SLC19A3 gene that could be specific for the Indian subcontinent. We also emphasize the importance of a trial of vitamins in patients with acute metabolic encephalopathy.
Collapse
Affiliation(s)
- Tarishi Nemani
- Department of Pediatric Neurology, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Puja Mehta
- Department of Child Neurology, SRCC Children's Hospital, Managed by Narayana Health, Mumbai, Maharashtra, India
| | - Anaita Udwadia-Hegde
- Department of Pediatric Neurology, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
19
|
Lee JS, Yoo T, Lee M, Lee Y, Jeon E, Kim SY, Lim BC, Kim KJ, Choi M, Chae JH. Genetic heterogeneity in Leigh syndrome: Highlighting treatable and novel genetic causes. Clin Genet 2020; 97:586-594. [PMID: 32020600 DOI: 10.1111/cge.13713] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 01/02/2023]
Abstract
Leigh syndrome (LS), the most common childhood mitochondrial disorder, has characteristic clinical and neuroradiologic features. Mutations in more than 75 genes have been identified in both the mitochondrial and nuclear genome, implicating a high degree of genetic heterogeneity in LS. To profile these genetic signatures and understand the pathophysiology of LS, we recruited 64 patients from 62 families who were clinically diagnosed with LS at Seoul National University Children's Hospital. Mitochondrial genetic analysis followed by whole-exome sequencing was performed on 61 patients. Pathogenic variants in mitochondrial DNA were identified in 18 families and nuclear DNA mutations in 22. The following 17 genes analyzed in 40 families were found to have genetic complexity: MTATP6, MTND1, MTND3, MTND5, MTND6, MTTK, NDUFS1, NDUFV1, NDUFAF6, SURF1, SLC19A3, ECHS1, PNPT1, IARS2, NARS2, VPS13D, and NAXE. Two treatable cases had biotin-thiamine responsive basal ganglia disease, and another three were identified as having defects in the newly recognized genes (VPS13D or NAXE). Variants in the nuclear genes that encoded mitochondrial aminoacyl tRNA synthetases were present in 27.3% of cases. Our findings expand the genetic and clinical spectrum of LS, showing genetic heterogeneity and highlighting treatable cases and those with novel genetic causes.
Collapse
Affiliation(s)
- Jin Sook Lee
- Department of Pediatrics, Department of Genome Medicine and Science, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Taekyeong Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Moses Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Youngha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Eunyoung Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, Koreal
| |
Collapse
|
20
|
Wolf NI, Breur M, Plug B, Beerepoot S, Westerveld ASR, van Rappard DF, de Vries SI, Kole MHP, Vanderver A, van der Knaap MS, Lindemans CA, van Hasselt PM, Boelens JJ, Matzner U, Gieselmann V, Bugiani M. Metachromatic leukodystrophy and transplantation: remyelination, no cross-correction. Ann Clin Transl Neurol 2020; 7:169-180. [PMID: 31967741 PMCID: PMC7034505 DOI: 10.1002/acn3.50975] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE In metachromatic leukodystrophy, a lysosomal storage disorder due to decreased arylsulfatase A activity, hematopoietic stem cell transplantation may stop brain demyelination and allow remyelination, thereby halting white matter degeneration. This is the first study to define the effects and therapeutic mechanisms of hematopoietic stem cell transplantation on brain tissue of transplanted metachromatic leukodystrophy patients. METHODS Autopsy brain tissue was obtained from eight (two transplanted and six nontransplanted) metachromatic leukodystrophy patients, and two age-matched controls. We examined the presence of donor cells by immunohistochemistry and microscopy. In addition, we assessed myelin content, oligodendrocyte numbers, and macrophage phenotypes. An unpaired t-test, linear regression or the nonparametric Mann-Whitney U-test was performed to evaluate differences between the transplanted, nontransplanted, and control group. RESULTS In brain tissue of transplanted patients, we found metabolically competent donor macrophages expressing arylsulfatase A distributed throughout the entire white matter. Compared to nontransplanted patients, these macrophages preferentially expressed markers of alternatively activated, anti-inflammatory cells that may support oligodendrocyte survival and differentiation. Additionally, transplanted patients showed higher numbers of oligodendrocytes and evidence for remyelination. Contrary to the current hypothesis on therapeutic mechanism of hematopoietic cell transplantation in metachromatic leukodystrophy, we detected no enzymatic cross-correction to resident astrocytes and oligodendrocytes. INTERPRETATION In conclusion, donor macrophages are able to digest accumulated sulfatides and may play a neuroprotective role for resident oligodendrocytes, thereby enabling remyelination, albeit without evidence of cross-correction of oligo- and astroglia. These results emphasize the importance of immunomodulation in addition to the metabolic correction, which might be exploited for improved outcomes.
Collapse
Affiliation(s)
- Nicole I. Wolf
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marjolein Breur
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of PathologyAmsterdam NeuroscienceAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Bonnie Plug
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of PathologyAmsterdam NeuroscienceAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Shanice Beerepoot
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Aimee S. R. Westerveld
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of PathologyAmsterdam NeuroscienceAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Diane F. van Rappard
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Sharon I. de Vries
- Department of Axonal SignalingNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Maarten H. P. Kole
- Department of Axonal SignalingNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
- Cell Biology Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Adeline Vanderver
- Division of NeurologyDepartment of PediatricsChildren’s Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Marjo S. van der Knaap
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Caroline A. Lindemans
- Department of PediatricsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Pediatric Blood and Marrow Transplantation ProgramPrincess Maxima CenterUtrechtThe Netherlands
| | - Peter M. van Hasselt
- Department of Metabolic DiseasesWilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jaap J. Boelens
- Department of PediatricsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ulrich Matzner
- Institute of Biochemistry and Molecular BiologyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular BiologyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Marianna Bugiani
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of PathologyAmsterdam NeuroscienceAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
21
|
Verdura E, Fons C, Schlüter A, Ruiz M, Fourcade S, Casasnovas C, Castellano A, Pujol A. Complete loss of KCNA1 activity causes neonatal epileptic encephalopathy and dyskinesia. J Med Genet 2019; 57:132-137. [PMID: 31586945 PMCID: PMC7029237 DOI: 10.1136/jmedgenet-2019-106373] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 11/29/2022]
Abstract
Background Since 1994, over 50 families affected by the episodic ataxia type 1 disease spectrum have been described with mutations in KCNA1, encoding the voltage-gated K+ channel subunit Kv1.1. All of these mutations are either transmitted in an autosomal-dominant mode or found as de novo events. Methods A patient presenting with a severe combination of dyskinesia and neonatal epileptic encephalopathy was sequenced by whole-exome sequencing (WES). A candidate variant was tested using cellular assays and patch-clamp recordings. Results WES revealed a homozygous variant (p.Val368Leu) in KCNA1, involving a conserved residue in the pore domain, close to the selectivity signature sequence for K+ ions (TVGYG). Functional analysis showed that mutant protein alone failed to produce functional channels in homozygous state, while coexpression with wild-type produced no effects on K+ currents, similar to wild-type protein alone. Treatment with oxcarbazepine, a sodium channel blocker, proved effective in controlling seizures. Conclusion This newly identified variant is the first to be reported to act in a recessive mode of inheritance in KCNA1. These findings serve as a cautionary tale for the diagnosis of channelopathies, in which an unreported phenotypic presentation or mode of inheritance for the variant of interest can hinder the identification of causative variants and adequate treatment choice.
Collapse
Affiliation(s)
- Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carme Fons
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Pediatric Neurology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalunya, Spain.,Sant Joan de Déu Research Institute (IRSJD), Esplugues de Llobregat, Barcelona, Catalunya, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain
| | - Antonio Castellano
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Medical Physiology and Biophysics Departament, Universidad de Sevilla, Sevilla, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain .,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalunya, Spain
| |
Collapse
|
22
|
Diagnosis, prognosis, and treatment of leukodystrophies. Lancet Neurol 2019; 18:962-972. [DOI: 10.1016/s1474-4422(19)30143-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
|
23
|
Marcé-Grau A, Martí-Sánchez L, Baide-Mairena H, Ortigoza-Escobar JD, Pérez-Dueñas B. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies. J Inherit Metab Dis 2019; 42:581-597. [PMID: 31095747 DOI: 10.1002/jimd.12125] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/19/2023]
Abstract
Thiamine is a crucial cofactor involved in the maintenance of carbohydrate metabolism and participates in multiple cellular metabolic processes within the cytosol, mitochondria, and peroxisomes. Currently, four genetic defects have been described causing impairment of thiamine transport and metabolism: SLC19A2 dysfunction leads to diabetes mellitus, megaloblastic anemia and sensory-neural hearing loss, whereas SLC19A3, SLC25A19, and TPK1-related disorders result in recurrent encephalopathy, basal ganglia necrosis, generalized dystonia, severe disability, and early death. In order to achieve early diagnosis and treatment, biomarkers play an important role. SLC19A3 patients present a profound decrease of free-thiamine in cerebrospinal fluid (CSF) and fibroblasts. TPK1 patients show decreased concentrations of thiamine pyrophosphate in blood and muscle. Thiamine supplementation has been shown to improve diabetes and anemia control in Rogers' syndrome patients due to SLC19A2 deficiency. In a significant number of patients with SLC19A3, thiamine improves clinical outcome and survival, and prevents further metabolic crisis. In SLC25A19 and TPK1 defects, thiamine has also led to clinical stabilization in single cases. Moreover, thiamine supplementation leads to normal concentrations of free-thiamine in the CSF of SLC19A3 patients. Herein, we present a literature review of the current knowledge of the disease including related clinical phenotypes, treatment approaches, update of pathogenic variants, as well as in vitro and in vivo functional models that provide pathogenic evidence and propose mechanisms for thiamine deficiency in humans.
Collapse
Affiliation(s)
- Anna Marcé-Grau
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
| | - Laura Martí-Sánchez
- Department of Clinical Biochemistry, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Heidy Baide-Mairena
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
| | | | - Belén Pérez-Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron and Research Institute (VHIR), Barcelona, Spain
- Centre for Biochemical Research in Rare Diseases (CIBERER), Valencia, Spain
| |
Collapse
|
24
|
Piard J, Umanah GKE, Harms FL, Abalde-Atristain L, Amram D, Chang M, Chen R, Alawi M, Salpietro V, Rees MI, Chung SK, Houlden H, Verloes A, Dawson TM, Dawson VL, Van Maldergem L, Kutsche K. A homozygous ATAD1 mutation impairs postsynaptic AMPA receptor trafficking and causes a lethal encephalopathy. Brain 2019; 141:651-661. [PMID: 29390050 DOI: 10.1093/brain/awx377] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/27/2017] [Indexed: 11/12/2022] Open
Abstract
Members of the AAA+ superfamily of ATPases are involved in the unfolding of proteins and disassembly of protein complexes and aggregates. ATAD1 encoding the ATPase family, AAA+ domain containing 1-protein Thorase plays an important role in the function and integrity of mitochondria and peroxisomes. Postsynaptically, Thorase controls the internalization of excitatory, glutamatergic AMPA receptors by disassembling complexes between the AMPA receptor-binding protein, GRIP1, and the AMPA receptor subunit GluA2. Using whole-exome sequencing, we identified a homozygous frameshift mutation in the last exon of ATAD1 [c.1070_1071delAT; p.(His357Argfs*15)] in three siblings who presented with a severe, lethal encephalopathy associated with stiffness and arthrogryposis. Biochemical and cellular analyses show that the C-terminal end of Thorase mutant gained a novel function that strongly impacts its oligomeric state, reduces stability or expression of a set of Golgi, peroxisomal and mitochondrial proteins and affects disassembly of GluA2 and Thorase oligomer complexes. Atad1-/- neurons expressing Thorase mutantHis357Argfs*15 display reduced amount of GluA2 at the cell surface suggesting that the Thorase mutant may inhibit the recycling back and/or reinsertion of AMPA receptors to the plasma membrane. Taken together, our molecular and functional analyses identify an activating ATAD1 mutation as a new cause of severe encephalopathy and congenital stiffness.
Collapse
Affiliation(s)
- Juliette Piard
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France.,Integrative and Cognitive Neurosciences Research Unit EA481, University of Franche-Comté, Besançon, France
| | - George K Essien Umanah
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Leire Abalde-Atristain
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Amram
- Unité fonctionnelle de génétique clinique, Centre hospitalier intercommunal, Créteil, France
| | - Melissa Chang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Malik Alawi
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core Facility, 20246 Hamburg, Germany.,Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Virus Genomics, Hamburg, Germany
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Mark I Rees
- Neurology Research Group, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Seo-Kyung Chung
- Neurology Research Group, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Alain Verloes
- Department of Genetics, Robert-Debré Hospital, Paris, France
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lionel Van Maldergem
- Centre de génétique humaine, Université de Franche-Comté, Besançon, France.,Integrative and Cognitive Neurosciences Research Unit EA481, University of Franche-Comté, Besançon, France.,Clinical Investigation Center 1431, National Institute of Health and Medical Research (INSERM), University of Franche-Comté, Besançon, France
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
25
|
Schofield D, Rynehart L, Shresthra R, White SM, Stark Z. Long-term economic impacts of exome sequencing for suspected monogenic disorders: diagnosis, management, and reproductive outcomes. Genet Med 2019; 21:2586-2593. [DOI: 10.1038/s41436-019-0534-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
|
26
|
Savasta S, Bassanese F, Buschini C, Foiadelli T, Trabatti C, Efthymiou S, Salpietro V, Houlden H, Simoncelli A, Marseglia GL. Biotin-Thiamine Responsive Encephalopathy: Report of an Egyptian Family with a Novel SLC19A3 Mutation and Review of the Literature. J Pediatr Genet 2018; 8:100-108. [PMID: 31061755 DOI: 10.1055/s-0038-1676603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/27/2018] [Indexed: 10/27/2022]
Abstract
Biotin-thiamine responsive basal ganglia disease (BTRBGD) is an autosomal recessive neurometabolic disorder with poor genotype-phenotype correlation, caused by mutations in the SLC19A3 gene on chromosome 2q36.6. The disease is characterized by three stages: stage 1 is a sub-acute encephalopathy often triggered by febrile illness; stage 2 is an acute encephalopathy with seizures, loss of motor function, developmental regression, dystonia, external ophthalmoplegia, dysphagia, and dysarthria; stage 3 is represented by chronic or slowly progressive encephalopathy. Clinical and biochemical findings, as well as the magnetic resonance imaging (MRI) pattern, resemble those of Leigh's syndrome, so that BTRBGD can be misdiagnosed as a mitochondrial encephalopathy.Here we report the clinical and radiological phenotypes of two siblings diagnosed with BTRBGD in which a novel SLC19A3 mutation (NM_025243.3: c.548C > T; p.Ala183Val) was found by whole exome sequencing (WES) of the family members.
Collapse
Affiliation(s)
- Salvatore Savasta
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Francesco Bassanese
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Chiara Buschini
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Thomas Foiadelli
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Chiara Trabatti
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | | | - Gian Luigi Marseglia
- Pediatric Clinic, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| |
Collapse
|
27
|
Novel Homozygous Variant in TTC19 Causing Mitochondrial Complex III Deficiency with Recurrent Stroke-Like Episodes: Expanding the Phenotype. Semin Pediatr Neurol 2018; 26:16-20. [PMID: 29961508 DOI: 10.1016/j.spen.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A 7-year-old boy with family history of consanguinity presented with developmental delay and recurrent hemiplegia involving both sides of the body, with variable facial and ocular involvement. Brain MRI showed bilateral striatal necrosis with cystic degeneration and lactate peaks on spectroscopy. Biochemical testing demonstrated mildly elevated lactate and pyruvate. Whole-exome sequencing revealed a novel homozygous pathogenic frameshift mutation in gene TTC19, diagnostic of mitochondrial complex III deficiency.
Collapse
|
28
|
Tonduti D, Invernizzi F, Panteghini C, Pinelli L, Battaglia S, Fazzi E, Zorzi G, Moroni I, Garavaglia B, Chiapparini L, Nardocci N. SLC19A3 related disorder: Treatment implication and clinical outcome of 2 new patients. Eur J Paediatr Neurol 2018; 22:332-335. [PMID: 29287834 DOI: 10.1016/j.ejpn.2017.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022]
Abstract
Encephalopathies with neostriatal involvement constitute a heterogeneous group of acquired and genetically inherited conditions that include Bilateral Striatal Necrosis (BSN) and other Striatal Lesions (SL) (Tonduti et al). We describe two new patients suffering from BSN due to biallelic SLC19A3 mutations. In the first patient vitamin supplementation was started early on, resulting in the remission of the clinical picture, and an almost complete normalization of the neuroradiological findings. In the second one treatment was started late, compliance was irregular and the resulting clinical outcome was poor. The clinical outcome of our two patients confirms and further stresses the importance of the early administration of vitamin supplementation in all patients presenting with neostriatal lesions, or clear bilateral striatal necrosis. Patient 2 didn't present any additional episode of acute decompensation after the age of 20 years despite having completely stopped treatment. This suggests the existence of an age dependency of thiamin requirement in humans.
Collapse
Affiliation(s)
- Davide Tonduti
- Child Neurology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Federica Invernizzi
- Molecular Neurogenetics Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Celeste Panteghini
- Molecular Neurogenetics Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Pinelli
- Neuroradiology Unit, Pediatric Neuroradiology Section, ASST Spedali Civili, Brescia, Italy
| | - Silvia Battaglia
- Child Neurology and Psychiatry Unit, ASST Spedali Civili - Dept. of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Elisa Fazzi
- Child Neurology and Psychiatry Unit, ASST Spedali Civili - Dept. of Clinical and Experimental Sciences, University of Brescia, Italy
| | - Giovanna Zorzi
- Child Neurology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Moroni
- Child Neurology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Garavaglia
- Molecular Neurogenetics Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Chiapparini
- Neuroradiology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nardo Nardocci
- Child Neurology Unit, IRCCS-Fondazione Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
29
|
de Beaurepaire I, Grévent D, Rio M, Desguerre I, de Lonlay P, Levy R, Dangouloff-Ros V, Bonnefont JP, Barcia G, Funalot B, Besmond C, Metodiev MD, Ruzzenente B, Assouline Z, Munnich A, Rötig A, Boddaert N. High predictive value of brain MRI imaging in primary mitochondrial respiratory chain deficiency. J Med Genet 2018; 55:378-383. [DOI: 10.1136/jmedgenet-2017-105094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 01/09/2023]
Abstract
BackgroundBecause the mitochondrial respiratory chain (RC) is ubiquitous, its deficiency can theoretically give rise to any symptom in any organ or tissue at any age with any mode of inheritance, owing to the twofold genetic origin of respiratory enzyme machinery, that is, nuclear and mitochondrial. Not all respiratory enzyme deficiencies are primary and secondary or artefactual deficiency is frequently observed, leading to a number of misleading conclusions and inappropriate investigations in clinical practice. This study is aimed at investigating the potential role of brain MRI in distinguishing primary RC deficiency from phenocopies and other aetiologies.MethodsStarting from a large series of 189 patients (median age: 3.5 years (8 days–56 years), 58% males) showing signs of RC enzyme deficiency, for whom both brain MRIs and disease-causing mutations were available, we retrospectively studied the positive predictive value (PPV) and the positive likelihood ratio (LR+) of brain MRI imaging and its ability to discriminate between two groups: primary deficiency of the mitochondrial RC machinery and phenocopies.ResultsDetection of (1) brainstem hyperintensity with basal ganglia involvement (P≤0.001) and (2) lactate peak with either brainstem or basal ganglia hyperintensity was highly suggestive of primary RC deficiency (P≤0.01). Fourteen items had a PPV>95% and LR+ was greater than 9 for seven signs. Biallelic SLC19A3 mutations represented the main differential diagnosis. Non-significant differences between the two groups were found for cortical/subcortical atrophy, leucoencephalopathy and involvement of caudate nuclei, spinothalamic tract and corpus callosum.ConclusionBased on these results and owing to invasiveness of skeletal muscle biopsies and cost of high-throughput DNA sequencing, we suggest giving consideration to brain MRI imaging as a diagnostic marker and an informative investigation to be performed in patients showing signs of RC enzyme deficiency.
Collapse
|
30
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
31
|
Eichler FS, Swoboda KJ, Hunt AL, Cestari DM, Rapalino O. Case 38-2017. A 20-Year-Old Woman with Seizures and Progressive Dystonia. N Engl J Med 2017; 377:2376-2385. [PMID: 29236641 DOI: 10.1056/nejmcpc1706109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Florian S Eichler
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| | - Kathryn J Swoboda
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| | - Ann L Hunt
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| | - Dean M Cestari
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| | - Otto Rapalino
- From the Departments of Neurology (F.S.E., K.J.S., A.L.H.) and Radiology (O.R.), Massachusetts General Hospital, the Departments of Neurology (F.S.E., K.J.S., A.L.H.), Ophthalmology (D.M.C.), and Radiology (O.R.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear Infirmary (D.M.C.) - all in Boston
| |
Collapse
|
32
|
Whitford W, Hawkins I, Glamuzina E, Wilson F, Marshall A, Ashton F, Love DR, Taylor J, Hill R, Lehnert K, Snell RG, Jacobsen JC. Compound heterozygous SLC19A3 mutations further refine the critical promoter region for biotin-thiamine-responsive basal ganglia disease. Cold Spring Harb Mol Case Stud 2017; 3:mcs.a001909. [PMID: 28696212 PMCID: PMC5701311 DOI: 10.1101/mcs.a001909] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
Mutations in the gene SLC19A3 result in thiamine metabolism dysfunction syndrome 2, also known as biotin-thiamine-responsive basal ganglia disease (BTBGD). This neurometabolic disease typically presents in early childhood with progressive neurodegeneration, including confusion, seizures, and dysphagia, advancing to coma and death. Treatment is possible via supplement of biotin and/or thiamine, with early treatment resulting in significant lifelong improvements. Here we report two siblings who received a refined diagnosis of BTBGD following whole-genome sequencing. Both children inherited compound heterozygous mutations from unaffected parents; a missense single-nucleotide variant (p.G23V) in the first transmembrane domain of the protein, and a 4808-bp deletion in exon 1 encompassing the 5′ UTR and minimal promoter region. This deletion is the smallest promoter deletion reported to date, further defining the minimal promoter region of SLC19A3. Unfortunately, one of the siblings died prior to diagnosis, but the other is showing significant improvement after commencement of therapy. This case demonstrates the power of whole-genome sequencing for the identification of structural variants and subsequent diagnosis of rare neurodevelopmental disorders.
Collapse
Affiliation(s)
- Whitney Whitford
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Isobel Hawkins
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic Service, Starship Children's Hospital, Auckland 1023, New Zealand
| | - Francessa Wilson
- Department of Paediatric Radiology, Starship Children's Hospital, Auckland 1023, New Zealand
| | - Andrew Marshall
- Department of Paediatrics and Child Health, Wellington Hospital, Wellington 6021, New Zealand
| | - Fern Ashton
- Diagnostic Genetics LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - Donald R Love
- Diagnostic Genetics LabPLUS, Auckland City Hospital, Auckland 1023, New Zealand
| | - Juliet Taylor
- Genetic Health Service New Zealand, Auckland City Hospital, Auckland 1023, New Zealand
| | - Rosamund Hill
- Department of Neurology, Auckland City Hospital, Auckland 1023, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Russell G Snell
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand.,Centre for Brain Research, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
33
|
Alfadhel M. Early Infantile Leigh-like SLC19A3 Gene Defects Have a Poor Prognosis: Report and Review. J Cent Nerv Syst Dis 2017; 9:1179573517737521. [PMID: 29123435 PMCID: PMC5661663 DOI: 10.1177/1179573517737521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/18/2017] [Indexed: 11/15/2022] Open
Abstract
Solute carrier family 19 (thiamine transporter), member 3 (SCL19A3) gene defect produces an autosomal recessive neurodegenerative disorder associated with different phenotypes and acronyms. One of the common presentations is early infantile lethal Leigh-like syndrome. We report a case of early infantile Leigh-like SLC19A3 gene defects of patients who died at 4 months of age with no response to a high dose of biotin and thiamine. In addition, we report a novel mutation that was not reported previously. Finally, we review the literature regarding early infantile Leigh-like SLC19A3 gene defects and compare the literature with our patient.
Collapse
Affiliation(s)
- Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Alfadhel M, Al-Bluwi A. Psychological Assessment of Patients With Biotin-Thiamine-Responsive Basal Ganglia Disease. Child Neurol Open 2017; 4:2329048X17730742. [PMID: 28944253 PMCID: PMC5604839 DOI: 10.1177/2329048x17730742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 12/02/2022] Open
Abstract
Biotin-thiamine-responsive basal ganglia disease is a devastating autosomal recessive inherited neurological disorder. We conducted a retrospective chart review of all patients with biotin-thiamine-responsive basal ganglia disease who underwent a formal psychological assessment. Six females and 3 males were included. Five patients (56%) had an average IQ, two patients (22%) had mild delay, and two (22%) had severe delay. A normal outcome was directly related to the time of diagnosis and initiation of treatment. Early diagnosis and immediate commencement of treatment were associated with a favorable outcome and vice versa. The most affected domain was visual motor integration, while understanding and mathematical problem-solving were the least affected. In summary, this is the first study discussing the psychological assessment of patients with biotin-thiamine-responsive basal ganglia disease. The results of this study alert clinicians to consider prompt initiation of biotin and thiamine in any patient presenting with neuroregression and a basal ganglia lesion on a brain magnetic resonance imaging.
Collapse
Affiliation(s)
- Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (NGHA), King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Amal Al-Bluwi
- Division of Mental Health, Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Ortigoza-Escobar JD, Alfadhel M, Molero-Luis M, Darin N, Spiegel R, de Coo IF, Gerards M, Taylor RW, Artuch R, Nashabat M, Rodríguez-Pombo P, Tabarki B, Pérez-Dueñas B. Thiamine deficiency in childhood with attention to genetic causes: Survival and outcome predictors. Ann Neurol 2017; 82:317-330. [PMID: 28856750 DOI: 10.1002/ana.24998] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 01/09/2023]
Abstract
Primary and secondary conditions leading to thiamine deficiency have overlapping features in children, presenting with acute episodes of encephalopathy, bilateral symmetric brain lesions, and high excretion of organic acids that are specific of thiamine-dependent mitochondrial enzymes, mainly lactate, alpha-ketoglutarate, and branched chain keto-acids. Undiagnosed and untreated thiamine deficiencies are often fatal or lead to severe sequelae. Herein, we describe the clinical and genetic characterization of 79 patients with inherited thiamine defects causing encephalopathy in childhood, identifying outcome predictors in patients with pathogenic SLC19A3 variants, the most common genetic etiology. We propose diagnostic criteria that will aid clinicians to establish a faster and accurate diagnosis so that early vitamin supplementation is considered. Ann Neurol 2017;82:317-330.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Division of Child Neurology, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Marta Molero-Luis
- Division of Biochemistry, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
| | - Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ronen Spiegel
- Rappaport School of Medicine, Technion, Haifa, Israel; Department of Pediatrics B, Emek Medical Center, Afula, Israel
| | - Irenaeus F de Coo
- Department of Neurology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Mike Gerards
- MaCSBio (Maastricht Centre for Systems Biology), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rafael Artuch
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Division of Biochemistry, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
- CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Pilar Rodríguez-Pombo
- CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Departamento de Biología Molecular, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, IDIPAZ, Universidad Autónoma de Madrid, Madrid, Spain
| | - Brahim Tabarki
- Divisions of Pediatric Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Belén Pérez-Dueñas
- Division of Child Neurology, Sant Joan de Déu Hospital, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
36
|
Veldhuijzen van Zanten SEM, Sewing ACP, van Lingen A, Hoekstra OS, Wesseling P, Meel MH, van Vuurden DG, Kaspers GJL, Hulleman E, Bugiani M. Multiregional Tumor Drug-Uptake Imaging by PET and Microvascular Morphology in End-Stage Diffuse Intrinsic Pontine Glioma. J Nucl Med 2017; 59:612-615. [PMID: 28818988 DOI: 10.2967/jnumed.117.197897] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022] Open
Abstract
Inadequate tumor uptake of the vascular endothelial growth factor antibody bevacizumab could explain lack of effect in diffuse intrinsic pontine glioma. Methods: By combining data from a PET imaging study using 89Zr-labeled bevacizumab and an autopsy study, a 1-on-1 analysis of multiregional in vivo and ex vivo 89Zr-bevacizumab uptake, tumor histology, and vascular morphology in a diffuse intrinsic pontine glioma patient was performed. Results: In vivo 89Zr-bevacizumab measurements showed heterogeneity between lesions. Additional ex vivo measurements and immunohistochemistry of cervicomedullary metastasis samples showed uptake to be highest in the area with marked microvascular proliferation. In the primary pontine tumor, all samples showed similar vascular morphology. Other histologic features were similar between the samples studied. Conclusion: In vivo 89Zr-bevacizumab PET serves to identify heterogeneous uptake between tumor lesions, whereas subcentimeter intralesional heterogeneity could be identified only by ex vivo measurements. 89Zr-bevacizumab uptake is enhanced by vascular proliferation, although our results suggest it is not the only determinant of intralesional uptake heterogeneity.
Collapse
Affiliation(s)
- Sophie E M Veldhuijzen van Zanten
- Division of Oncology/Haematology, Department of Pediatrics, VUmc, Amsterdam, The Netherlands .,Neuro-Oncology Research Group, Cancer Center Amsterdam, VUmc, Amsterdam, The Netherlands
| | - A Charlotte P Sewing
- Division of Oncology/Haematology, Department of Pediatrics, VUmc, Amsterdam, The Netherlands.,Neuro-Oncology Research Group, Cancer Center Amsterdam, VUmc, Amsterdam, The Netherlands
| | - Arthur van Lingen
- Department of Radiology and Nuclear Medicine, VUmc, Amsterdam, The Netherlands
| | - Otto S Hoekstra
- Department of Radiology and Nuclear Medicine, VUmc, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Neuro-Oncology Research Group, Cancer Center Amsterdam, VUmc, Amsterdam, The Netherlands.,Department of Pathology, VUmc, Amsterdam, The Netherlands.,Department of Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; and
| | - Michaël H Meel
- Division of Oncology/Haematology, Department of Pediatrics, VUmc, Amsterdam, The Netherlands.,Neuro-Oncology Research Group, Cancer Center Amsterdam, VUmc, Amsterdam, The Netherlands
| | - Dannis G van Vuurden
- Division of Oncology/Haematology, Department of Pediatrics, VUmc, Amsterdam, The Netherlands.,Neuro-Oncology Research Group, Cancer Center Amsterdam, VUmc, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Division of Oncology/Haematology, Department of Pediatrics, VUmc, Amsterdam, The Netherlands.,Department of Pediatrics, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Esther Hulleman
- Division of Oncology/Haematology, Department of Pediatrics, VUmc, Amsterdam, The Netherlands.,Neuro-Oncology Research Group, Cancer Center Amsterdam, VUmc, Amsterdam, The Netherlands
| | | |
Collapse
|
37
|
Schorling DC, Rost S, Lefeber DJ, Brady L, Müller CR, Korinthenberg R, Tarnopolsky M, Bönnemann CG, Rodenburg RJ, Bugiani M, Beytia M, Krüger M, van der Knaap M, Kirschner J. Early and lethal neurodegeneration with myasthenic and myopathic features: A new ALG14-CDG. Neurology 2017; 89:657-664. [PMID: 28733338 DOI: 10.1212/wnl.0000000000004234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/28/2017] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To describe the presentation and identify the cause of a new clinical phenotype, characterized by early severe neurodegeneration with myopathic and myasthenic features. METHODS This case study of 5 patients from 3 families includes clinical phenotype, serial MRI, electrophysiologic testing, muscle biopsy, and full autopsy. Genetic workup included whole exome sequencing and segregation analysis of the likely causal mutation. RESULTS All 5 patients showed severe muscular hypotonia, progressive cerebral atrophy, and therapy-refractory epilepsy. Three patients had congenital contractures. All patients died during their first year of life. In 2 of our patients, electrophysiologic testing showed abnormal decrement, but treatment with pyridostigmine led only to temporary improvement. Causative mutations in ALG14 were identified in all patients. The mutation c.220 G>A (p.Asp74Asn) was homozygous in 2 patients and heterozygous in the other 3 patients. Additional heterozygous mutations were c.422T>G (p.Val141Gly) and c.326G>A (p.Arg109Gln). In all cases, parents were found to be heterozygous carriers. None of the identified variants has been described previously. CONCLUSIONS We report a genetic syndrome combining myasthenic features and severe neurodegeneration with therapy-refractory epilepsy. The underlying cause is a glycosylation defect due to mutations in ALG14. These cases broaden the phenotypic spectrum associated with ALG14 congenital disorders of glycosylation as previously only isolated myasthenia has been described.
Collapse
Affiliation(s)
- David C Schorling
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Simone Rost
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Dirk J Lefeber
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Lauren Brady
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Clemens R Müller
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rudolf Korinthenberg
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Mark Tarnopolsky
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Carsten G Bönnemann
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Richard J Rodenburg
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marianna Bugiani
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Maria Beytia
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marcus Krüger
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marjo van der Knaap
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jan Kirschner
- From the Division of Neuropaediatrics and Muscle Disorders (D.C.S., R.K., M. Beytia, J.K.) and Center of Pediatric and Adolescent Medicine (M.K.), Faculty of Medicine, Medical Center, University of Freiburg; Department of Human Genetics (S.R., C.R.M., M. Beytia), Biozentrum, University of Würzburg, Germany; Department of Neurology, Translational Metabolic Laboratory, Donders Institute for Brain, Cognition and Behavior (D.J.L.), and Radboud Center for Mitochondrial Medicine, Department of Pediatrics (R.J.R.), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pediatrics (Neuromuscular and Neurometabolic Disorders) (L.B., M.T.), McMaster Children's Hospital, Hamilton, Canada; Neuromuscular and Neurogenetic Disorders of Childhood Section (C.G.B.), National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD; Departments of Child Neurology (M. Bugiani, M.v.d.K.) and Pathology (M. Bugiani), VU University Medical Center; and Department of Functional Genomics (M.v.d.K.), VU University, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
38
|
Thiamine metabolism is critical for regulating correlated growth of dendrite arbors and neuronal somata. Sci Rep 2017; 7:5342. [PMID: 28706281 PMCID: PMC5509691 DOI: 10.1038/s41598-017-05476-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Thiamine is critical for cellular function, as its phosphorylated and active form, thiamine diphosphate (TDP), acts as coenzyme for three key enzymes in glucose metabolism. Mutations in thiamine transporter, TDP synthesizing enzyme or carrier, including solute carrier family 19 member 3 (SLC19A3), thiamine pyrophosphokinase (TPK1) and solute carrier family 25 member 19 (SLC25A19), have been associated with developmental neurological disorders, including microcephaly and Leigh syndrome. However, little is known about how thiamine metabolism regulates neuronal morphology at the cellular level. Here, using primary rat hippocampal neuronal cultures, we showed that reducing the expression of Tpk1, Slc25a19 or Slc19a3 in individual neurons significantly reduced dendrite complexity, as measured by total dendritic branch tip number (TDBTN) and total dendritic branch length (TDBL). The specificity of the RNAi effects were verified by overexpression of RNAi resistant human constructs. Importantly, changes in both TDBTN and TDBL tightly correlated with reduction in soma size, demonstrating coordinated regulation of soma and dendrite growth by thiamine. The requirement of thiamine metabolism for coordinated somata and dendrite growth is highly consistent with the microcephaly and neurodegenerative phenotypes observed in thiamine loss-of-function diseases.
Collapse
|
39
|
Sharma S, Prasad AN. Inborn Errors of Metabolism and Epilepsy: Current Understanding, Diagnosis, and Treatment Approaches. Int J Mol Sci 2017; 18:ijms18071384. [PMID: 28671587 PMCID: PMC5535877 DOI: 10.3390/ijms18071384] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Inborn errors of metabolism (IEM) are a rare cause of epilepsy, but seizures and epilepsy are frequently encountered in patients with IEM. Since these disorders are related to inherited enzyme deficiencies with resulting effects on metabolic/biochemical pathways, the term “metabolic epilepsy” can be used to include these conditions. These epilepsies can present across the life span, and share features of refractoriness to anti-epileptic drugs, and are often associated with co-morbid developmental delay/regression, intellectual, and behavioral impairments. Some of these disorders are amenable to specific treatment interventions; hence timely and appropriate diagnosis is critical to improve outcomes. In this review, we discuss those disorders in which epilepsy is a dominant feature and present an approach to the clinical recognition, diagnosis, and management of these disorders, with a greater focus on primarily treatable conditions. Finally, we propose a tiered approach that will permit a clinician to systematically investigate, identify, and treat these rare disorders.
Collapse
Affiliation(s)
- Suvasini Sharma
- Department of Pediatrics, Lady Hardinge Medical College, New Delhi 110001, India.
| | - Asuri N Prasad
- Department of Pediatrics and Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Children's Hospital of Western Ontario and London Health Sciences Centre, London, ON N6A5W9, Canada.
| |
Collapse
|
40
|
High-dose thiamine prevents brain lesions and prolongs survival of Slc19a3-deficient mice. PLoS One 2017; 12:e0180279. [PMID: 28665968 PMCID: PMC5493381 DOI: 10.1371/journal.pone.0180279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/13/2017] [Indexed: 12/14/2022] Open
Abstract
SLC19A3 deficiency, also called thiamine metabolism dysfunction syndrome-2 (THMD2; OMIM 607483), is an autosomal recessive neurodegenerative disorder caused by mutations in SLC19A3, the gene encoding thiamine transporter 2. To investigate the molecular mechanisms of neurodegeneration in SLC19A3 deficiency and whether administration of high-dose thiamine prevents neurodegeneration, we generated homozygous Slc19a3 E314Q knock-in (KI) mice harboring the mutation corresponding to the human SLC19A3 E320Q, which is associated with the severe form of THMD2. Homozygous KI mice and previously reported homozygous Slc19a3 knock-out (KO) mice fed a thiamine-restricted diet (thiamine: 0.60 mg/100 g food) died within 30 and 12 days, respectively, with dramatically decreased thiamine concentration in the blood and brain, acute neurodegeneration, and astrogliosis in the submedial nucleus of the thalamus and ventral anterior-lateral complex of the thalamus. These findings may bear some features of thiamine-deficient mice generated by pyrithiamine injection and a thiamine-deficient diet, suggesting that the primary cause of THMD2 could be thiamine pyrophosphate (TPP) deficiency. Next, we analyzed the therapeutic effects of high-dose thiamine treatment. When the diet was reverted to a conventional diet (thiamine: 1.71 mg/100 g food) after thiamine restriction, all homozygous KO mice died. In contrast, when the diet was changed to a high-thiamine diet (thiamine: 8.50 mg/100 g food) after thiamine restriction, more than half of homozygous KO mice survived, without progression of brain lesions. Unexpectedly, when the high-thiamine diet of recovered mice was reverted to a conventional diet, some homozygous KO mice died. These results showed that acute neurodegeneration caused by thiamine deficiency is preventable in most parts, and prompt high-dose thiamine administration is critical for the treatment of THMD2. However, reduction of thiamine should be performed carefully to prevent recurrence after recovery of the disease.
Collapse
|
41
|
Ferreira CR, Whitehead MT, Leon E. Biotin-thiamine responsive basal ganglia disease: Identification of a pyruvate peak on brain spectroscopy, novel mutation in SLC19A3, and calculation of prevalence based on allele frequencies from aggregated next-generation sequencing data. Am J Med Genet A 2017; 173:1502-1513. [PMID: 28402605 PMCID: PMC10506158 DOI: 10.1002/ajmg.a.38189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/03/2017] [Accepted: 02/01/2017] [Indexed: 12/21/2022]
Abstract
Biotin-thiamine responsive basal ganglia disease is an inborn error of metabolism caused by mutations in SLC19A3, encoding a transporter of thiamine across the plasma membrane. We report a novel mutation identified in the homozygous state in a patient with typical brain MRI changes. In addition, this patient had markedly elevated CSF pyruvate, a low lactate-to-pyruvate molar ratio, and an abnormal pyruvate peak at 2.4 ppm on brain magnetic resonance spectroscopy. Using aggregated exome sequencing data, we calculate the carrier frequency of mutations in SLC19A3 as 1 in 232 individuals in the general population, for an estimated prevalence of the disease of approximately 1 in 215,000 individuals. The disease is thus more frequent than previously recognized, and the presence of a pyruvate peak on spectroscopy could serve as an important diagnostic clue.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
- Division of Genetics and Metabolism, Children’s National Health System, Washington, District of Columbia
- The George Washington University School of Medicine, Washington, District of Columbia
| | - Matthew T. Whitehead
- The George Washington University School of Medicine, Washington, District of Columbia
- Division of Diagnostic Imaging and Radiology, Children’s National Health System, Washington, District of Columbia
| | - Eyby Leon
- Division of Genetics and Metabolism, Children’s National Health System, Washington, District of Columbia
| |
Collapse
|
42
|
The Pediatric Cerebellum in Inherited Neurodegenerative Disorders: A Pattern-recognition Approach. Neuroimaging Clin N Am 2017; 26:373-416. [PMID: 27423800 DOI: 10.1016/j.nic.2016.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of imaging studies of the cerebellum in inherited neurodegenerative disorders is aided by attention to neuroimaging patterns based on anatomic determinants, including biometric analysis, hyperintense signal of structures, including the cerebellar cortex, white matter, dentate nuclei, brainstem tracts, and nuclei, the presence of cysts, brain iron, or calcifications, change over time, the use of diffusion-weighted/diffusion tensor imaging and T2*-weighted sequences, magnetic resonance spectroscopy; and, in rare occurrences, the administration of contrast material.
Collapse
|
43
|
Pronicka E. Hypocapnic hypothesis of Leigh disease. Med Hypotheses 2017; 101:23-27. [PMID: 28351484 DOI: 10.1016/j.mehy.2017.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/05/2017] [Accepted: 01/26/2017] [Indexed: 11/15/2022]
Abstract
Leigh syndrome (LS) is a neurogenetic disorder of children caused by mutations in at least 75 genes which impair mitochondrial bioenergetics. The changes have typical localization in basal ganglia and brainstem, and typical histological picture of spongiform appearance, vascular proliferation and gliosis. ATP deprivation, free radicals and lactate accumulation are suspected to be the causes. Hypocapnic hypothesis proposed in the paper questions the energy deprivation as the mechanism of LS. We assume that the primary harmful factor is hypocapnia (decrease in pCO2) and respiratory alkalosis (increase in pH) due to hyperventilation, permanent or in response to stress. Inside mitochondria, the pH signal of high pH/low bicarbonate ion (HCO-3) is transmitted by soluble adenyl cyclase (sAC) through cAMP dependent manner. The process can initiate brain lesions (necrosis, apoptosis, hypervascularity) in OXPHOS deficient cells residing at the LS area of the brain. The major message of the article is that it is not the ATP depletion but intracellular alkalization (and/or hyperoxia?) which seem to be the cause of LS. The paper includes suggestions concerning the methodology for further research on the LS mechanism and for therapeutic strategy.
Collapse
Affiliation(s)
- Ewa Pronicka
- The Children's Memorial Health Institute, Department of Pediatrics, Nutrition and Metabolic Diseases, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland.
| |
Collapse
|
44
|
Neurological Disorders Associated with Striatal Lesions: Classification and Diagnostic Approach. Curr Neurol Neurosci Rep 2016; 16:54. [PMID: 27074771 DOI: 10.1007/s11910-016-0656-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neostriatal abnormalities can be observed in a very large number of neurological conditions clinically dominated by the presence of movement disorders. The neuroradiological picture in some cases has been described as "bilateral striatal necrosis" (BSN). BSN represents a condition histo-pathologically defined by the involvement of the neostriata and characterized by initial swelling of putamina and caudates followed by degeneration and cellular necrosis. After the first description in 1975, numerous acquired and hereditary conditions have been associated with the presence of BSN. At the same time, a large number of disorders involving neostriata have been described as BSN, in some cases irrespective of the presence of signs of cavitation on MRI. As a consequence, the etiological spectrum and the nosographic boundaries of the syndrome have progressively become less clear. In this study, we review the clinical and radiological features of the conditions associated with MRI evidence of bilateral striatal lesions. Based on MRI findings, we have distinguished two groups of disorders: BSN and other neostriatal lesions (SL). This distinction is extremely helpful in narrowing the differential diagnosis to a small group of known conditions. The clinical picture and complementary exams will finally lead to the diagnosis. We provide an update on the etiological spectrum of BSN and propose a diagnostic flowchart for clinicians.
Collapse
|
45
|
Ortigoza Escobar JD, Pérez Dueñas B. Treatable Inborn Errors of Metabolism Due to Membrane Vitamin Transporters Deficiency. Semin Pediatr Neurol 2016; 23:341-350. [PMID: 28284395 DOI: 10.1016/j.spen.2016.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B vitamins act as cofactors for strategic metabolic processes. The SLC19 gene family of solute carriers has a significant structural similarity, transporting substrates with different structure and ionic charge. Three proteins of this family are expressed ubiquitously and mediate the transport of 2 important water-soluble vitamins, folate, and thiamine. SLC19A1 transports folate and SLC19A2 and SLC19A3 transport thiamine. PCFT and FOLR1 ensure intestinal absorption and transport of folate through the blood-brain barrier and SLC19A25 transports thiamine into the mitochondria. Several damaging genetic defects in vitamin B transport and metabolism have been reported. The most relevant feature of thiamine and folate transport defects is that both of them are treatable disorders. In this article, we discuss the biology and transport of thiamine and folate, as well as the clinical phenotype of the genetic defects.
Collapse
Affiliation(s)
- Juan Darío Ortigoza Escobar
- Department of Child Neurology, Pediatric Research Institute, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Belén Pérez Dueñas
- Department of Child Neurology, Pediatric Research Institute, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
46
|
Aljabri MF, Kamal NM, Arif M, AlQaedi AM, Santali EY. A case report of biotin-thiamine-responsive basal ganglia disease in a Saudi child: Is extended genetic family study recommended? Medicine (Baltimore) 2016; 95:e4819. [PMID: 27749535 PMCID: PMC5059037 DOI: 10.1097/md.0000000000004819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Biotin-thiamine-responsive basal ganglia disease (BTRBGD) is a neurometabolic autosomal recessive (AR) disorder characterized by subacute encephalopathy with confusion, convulsions, dysarthria, and dystonia. The disease is completely reversible if treated early with biotin and thiamine, and can be fatal if left untreated.We herein present our experience with in an extended family study of an index case of BTRBGD aiming to support its AR mode of inheritance, diagnose asymptomatic and missed symptomatic cases, and provide family screening with proper genetic counseling. METHODS An index case of BTRBGD and his family underwent thorough clinical and radiological assessment along with genetic molecular testing. RESULTS Two-and-half years old Saudi male child whose parents are consanguineous fulfilled the clinical and magnetic resonance imaging (MRI) criteria of BTRBGD. He was proved by molecular genetic testing to have homozygous mutation of c.1264A>G (p.Thr422Ala) in the SLC19A3 gene of BTRBGD. Extended clinical, radiological, and genetic family study revealed 2 affected members: a neglected symptomatic cousin with subtle neurological affection and an asymptomatic brother carrying the disease mutation in homozygous status. Heterozygous pattern was detected in his parents, his grandma and grandpa, his aunt and her husband, 2 siblings, and 1 cousin while 1 sibling and 2 cousins were negative to this mutation.Treatment of the patient and his diseased cousin with biotin and thiamine was initiated with gradual improvement of symptoms within few days. Treatment of his asymptomatic brother was also initiated. CONCLUSION BTRBGD requires high index of suspicion in any child presenting with unexplained subacute encephalopathy, abnormal movement, and characteristic MRI findings. Extended family study is crucial to diagnose asymptomatic diseased cases and those with subtle neurological symptoms.
Collapse
Affiliation(s)
| | - Naglaa M. Kamal
- Alhada Armed Forces Hospital, Taif, Saudi Arabia
- Faculty of Medicine, Cairo University, Cairo, Egypt
- Correspondence: Naglaa M. Kamal, Faculty of Medicine, Cairo University, Cairo, Egypt, and Alhada Armed Forces Hospital, Taif, Saudi Arabia (e-mail: )
| | - Moinuddin Arif
- Pediatric Consultant, Hera General Hospital, Holly Makkah, Saudi Arabia
| | | | | |
Collapse
|
47
|
Alaei MR, Talebi S, Ghofrani M, Taghizadeh M, Keramatipour M. Whole Exome Sequencing Reveals a BSCL2 Mutation Causing Progressive Encephalopathy with Lipodystrophy (PELD) in an Iranian Pediatric Patient. IRANIAN BIOMEDICAL JOURNAL 2016; 20:295-301. [PMID: 27452399 PMCID: PMC5075143 DOI: 10.22045/ibj.2016.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Progressive encephalopathy with or without lipodystrophy is a rare autosomal recessive childhood-onset seipin-associated neurodegenerative syndrome, leading to developmental regression of motor and cognitive skills. In this study, we introduce a patient with developmental regression and autism. The causative mutation was found by exome sequencing. Methods: The proband showed a generalized hypertonia and regression of all developmental milestones. Based on the advantages of next-generation sequencing (NGS), whole exome sequencing (WES) was requested. The functional significance of variants was evaluated by NGS-specific prediction servers. Sanger sequencing was used for segregation analysis in the family. Results: There was no specific sign in the clinical and paraclinical investigations of the patient to establish a conclusive clinical diagnosis. WES detected a known homozygous nonsense mutation in BSCL2 (NM_001122955.3:c. 985C>T; p.Arg329*). The variant is segregating in the pedigree with an autosomal recessive pattern. Conclusion: Exome sequencing is a robust method for identifying the candidate gene variants in Mendelian traits.
Collapse
Affiliation(s)
- Mohammad Reza Alaei
- Department of Pediatric Endocrinology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghofrani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Taghizadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Pronicka E, Piekutowska-Abramczuk D, Ciara E, Trubicka J, Rokicki D, Karkucińska-Więckowska A, Pajdowska M, Jurkiewicz E, Halat P, Kosińska J, Pollak A, Rydzanicz M, Stawinski P, Pronicki M, Krajewska-Walasek M, Płoski R. New perspective in diagnostics of mitochondrial disorders: two years' experience with whole-exome sequencing at a national paediatric centre. J Transl Med 2016; 14:174. [PMID: 27290639 PMCID: PMC4903158 DOI: 10.1186/s12967-016-0930-9] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
Background Whole-exome sequencing (WES) has led to an exponential increase in identification of causative variants in mitochondrial disorders (MD). Methods We performed WES in 113 MD suspected patients from Polish paediatric reference centre, in whom routine testing failed to identify a molecular defect. WES was performed using TruSeqExome enrichment, followed by variant prioritization, validation by Sanger sequencing, and segregation with the disease phenotype in the family. Results Likely causative mutations were identified in 67 (59.3 %) patients; these included variants in mtDNA (6 patients) and nDNA: X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients, 11 homozygotes). Novel variants accounted for 50.5 % (50/99) of all detected changes. In 47 patients, changes in 31 MD-related genes (ACAD9, ADCK3, AIFM1, CLPB, COX10, DLD, EARS2, FBXL4, MTATP6, MTFMT, MTND1, MTND3, MTND5, NAXE, NDUFS6, NDUFS7, NDUFV1, OPA1, PARS2, PC, PDHA1, POLG, RARS2, RRM2B, SCO2, SERAC1, SLC19A3, SLC25A12, TAZ, TMEM126B, VARS2) were identified. The ACAD9, CLPB, FBXL4, PDHA1 genes recurred more than twice suggesting higher general/ethnic prevalence. In 19 cases, variants in 18 non-MD related genes (ADAR, CACNA1A, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were found. The percentage of positive WES results rose gradually with increasing probability of MD according to the Mitochondrial Disease Criteria (MDC) scale (from 36 to 90 % for low and high probability, respectively). The percentage of detected MD-related genes compared with non MD-related genes also grew with the increasing MD likelihood (from 20 to 97 %). Molecular diagnosis was established in 30/47 (63.8 %) neonates and in 17/28 (60.7 %) patients with basal ganglia involvement. Mutations in CLPB, SERAC1, TAZ genes were identified in neonates with 3-methylglutaconic aciduria (3-MGA) as a discriminative feature. New MD-related candidate gene (NDUFB8) is under verification. Conclusions We suggest WES rather than targeted NGS as the method of choice in diagnostics of MD in children, including neonates with 3-MGA aciduria, who died without determination of disease cause and with limited availability of laboratory data. There is a strong correlation between the degree of MD diagnosis by WES and MD likelihood expressed by the MDC scale. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0930-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ewa Pronicka
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland. .,Department of Paediatrics, Nutrition and Metabolic Diseases,, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Joanna Trubicka
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Dariusz Rokicki
- Department of Paediatrics, Nutrition and Metabolic Diseases,, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Magdalena Pajdowska
- Department of Biochemistry and Experimental Medicine, The Children's Memorial Health Institute, Warsaw, Poland
| | - Elżbieta Jurkiewicz
- Department of Radiology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Paulina Halat
- Department of Medical Genetics, The Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Warsaw Medical University, Pawińskiego str, 02-106, Warsaw, Poland
| | - Agnieszka Pollak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Nadarzyn, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Warsaw Medical University, Pawińskiego str, 02-106, Warsaw, Poland
| | - Piotr Stawinski
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Nadarzyn, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Pawińskiego str, 02-106, Warsaw, Poland.
| |
Collapse
|
49
|
Ortigoza-Escobar JD, Molero-Luis M, Arias A, Martí-Sánchez L, Rodriguez-Pombo P, Artuch R, Pérez-Dueñas B. Treatment of genetic defects of thiamine transport and metabolism. Expert Rev Neurother 2016; 16:755-63. [DOI: 10.1080/14737175.2016.1187562] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Department of Child Neurology, Hospital General de Granollers, Barcelona, Spain
| | - Marta Molero-Luis
- Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Angela Arias
- Division of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Laura Martí-Sánchez
- Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Pilar Rodriguez-Pombo
- Departamento de Biología Molecular, Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa CSIC-UAM, IDIPAZ, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Rafael Artuch
- Clinical Biochemistry, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Belén Pérez-Dueñas
- Department of Child Neurology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centre for the Biomedical Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
50
|
Ygberg S, Naess K, Eriksson M, Stranneheim H, Lesko N, Barbaro M, Wibom R, Wang C, Wedell A, Wickström R. Biotin and Thiamine Responsive Basal Ganglia Disease--A vital differential diagnosis in infants with severe encephalopathy. Eur J Paediatr Neurol 2016; 20:457-61. [PMID: 26975589 DOI: 10.1016/j.ejpn.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/22/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED We report two siblings of Swedish origin with infantile Biotin and Thiamine Responsive Basal Ganglia Disease (BTRBG). CASE REPORT Initial symptoms were in both cases lethargia, with reduced contact and poor feeding from the age of 5 weeks. Magnetic resonance imaging showed altered signal in the basal ganglia, along with grey and white matter abnormalities. The diagnosis BTRBG was not recognized in the first sibling who died at the age of 8 weeks. The second sibling was started on biotin and thiamine immediately upon development of symptoms, leading to clinical improvement and partial reversion of the magnetic resonance imaging findings. Genetic analysis of the SLC19A3 gene identified two mutations, c.74dupT and c.1403delA, carried in compound heterozygous form in both boys, each inherited from one parent. COMMENTS The first mutation has previously been described in children with BTRBG, and the second mutation is novel. Although the clinical picture in BTRGB is very severe it is also rather unspecific and the diagnosis may be missed. CONCLUSION This report highlights the importance of considering biotin and thiamine treatment also in a European infant born to non-consanguineous parents, who presents with symptoms of acute/subacute encephalopathy.
Collapse
Affiliation(s)
- Sofia Ygberg
- Unit of Clinical Pediatrics, Dept of Women's and Children's Health, Karolinska Institutet, Sweden.
| | - Karin Naess
- Neuropediatric Unit, Dept of Women's and Children's Health, Karolinska Institutet, Sweden; Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden
| | - Mats Eriksson
- Neuropediatric Unit, Dept of Women's and Children's Health, Karolinska Institutet, Sweden
| | - Henrik Stranneheim
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Sweden
| | - Nicole Lesko
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Michela Barbaro
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Laboratory Medicine, Karolinska Institutet, Sweden
| | - Chen Wang
- Dept of Neuroradiology, Karolinska University Hospital, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Sweden; Dept of Molecular Medicine and Surgery, Science for Life Laboratory, Karolinska Institutet, Sweden
| | - Ronny Wickström
- Neuropediatric Unit, Dept of Women's and Children's Health, Karolinska Institutet, Sweden
| |
Collapse
|