1
|
Idrissi S, Erro R, Mascia MM, Trinchillo A, Esposito M, Velucci V, Pellicciari R, Ceravolo R, Cotelli MS, Schirinzi T, Cassano D, Castagna A, Altavista MC, Terranova C, Magistrelli L, Belvisi D, Ferrazzano G, Fabbrini G, Zibetti M, Barbero P, Muroni A, Pisani A, Squintani G, Marinelli L, Berardelli A, Defazio G. Phenotypic comparison between combined dystonia-parkinsonism and idiopathic adult-onset dystonia. J Neural Transm (Vienna) 2025; 132:803-810. [PMID: 40246732 DOI: 10.1007/s00702-025-02920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/26/2025] [Indexed: 04/19/2025]
Abstract
The clinical characteristics of dystonia occurring in association with sporadic neurodegenerative parkinsonism have not been systematically explored or compared with those of idiopathic adult-onset dystonia. This study aims to compare demographic and clinical features, including the distribution of dystonia at onset, dystonia-associated features, and the propensity for spread between patients with combined dystonia-parkinsonism and those with idiopathic adult-onset dystonia. Patients were selected from the Italian Dystonia Registry. The study cohort included 130 patients with combined dystonia-parkinsonism and 355 age- and sex-matched patients with isolated adult-onset idiopathic dystonia. The comparison between combined dystonia-parkinsonism and idiopathic dystonia revealed differences in the distribution of dystonia across body regions, with non-task-specific upper limb dystonia, lower limb dystonia, and trunk dystonia occurring more frequently in patients with combined dystonia-parkinsonism. Additionally, this group exhibited a lower frequency of head tremor, eye symptoms associated with blepharospasm, and sensory tricks, alongside a comparable frequency of neck pain related to cervical dystonia and a family history of dystonia or tremor. The clinical presentation of dystonia differs between combined dystonia-parkinsonism and idiopathic dystonia, especially in terms of the body regions affected. These differences underscore the necessity for additional research and suggest underlying pathophysiological disparities between etiological categories that could significantly influence future diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Sarah Idrissi
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | | | - Assunta Trinchillo
- Department of Medical, Motor and Wellness Sciences, University "Parthenope", ICS Maugeri Hermitage, Naples, Italy
- Neurology Unit, San Paolo Hospital, Naples, Italy
| | | | - Vittorio Velucci
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Roberta Pellicciari
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Giovanni Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | | | - Antonella Muroni
- Neurology Unit, University Hospital of Cagliari, Cagliari, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Giovanna Squintani
- Neurology Unit, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Giovanni Defazio
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| |
Collapse
|
2
|
Buraschi R, Pedersini P, Redegalli G, Pullara R, Pollet J, Rossi M, Gobbo M, Gueli S, Falso M. Efficacy of Segmental Muscle Vibration on Pain Modulation in Patients with Primary Cervical Dystonia Treated with Botulinum Type-A Toxin: A Protocol for a Randomized Controlled Trial. NEUROSCI 2025; 6:30. [PMID: 40265360 PMCID: PMC12015765 DOI: 10.3390/neurosci6020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/28/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Primary cervical dystonia (PCD), or spasmodic torticollis, is a focal dystonia characterized by involuntary and often painful muscle contractions, leading to abnormal cervical movements and postures. While botulinum toxin injections are the first-line treatment, additional therapies, such as segmental muscle vibration (SMV), remain underexplored. SMV, a non-invasive neuromodulation technique, may enhance motor cortex excitability and promote neuroplasticity, offering potential benefits in PCD management. This single-center triple-blinded randomized controlled trial evaluates SMV's efficacy in reducing dystonic pain and improving quality of life in PCD patients undergoing standardized rehabilitation after botulinum toxin treatment. Participants with a pain level of ≥3 on the Numerical Rating Scale will be randomized into two groups. The experimental group will receive 80 Hz SMV during a 10-session rehabilitation program, while the control group will undergo sham SMV. Both groups will follow identical physiotherapy and occupational therapy protocols. The primary outcomes include changes in pain intensity and function, assessed at baseline, mid-treatment, and post-treatment using validated scales. The secondary outcomes will evaluate quality of life and patient satisfaction. This study hypothesizes that SMV will significantly reduce dystonic pain and enhance quality of life, supporting its integration into multidisciplinary rehabilitation for dystonic disorders. Trial registration number: NCT06748846.
Collapse
Affiliation(s)
- Riccardo Buraschi
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; (R.B.); (G.R.); (R.P.); (J.P.); (M.R.); (M.G.); (S.G.); (M.F.)
| | - Paolo Pedersini
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; (R.B.); (G.R.); (R.P.); (J.P.); (M.R.); (M.G.); (S.G.); (M.F.)
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giacomo Redegalli
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; (R.B.); (G.R.); (R.P.); (J.P.); (M.R.); (M.G.); (S.G.); (M.F.)
| | - Rosa Pullara
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; (R.B.); (G.R.); (R.P.); (J.P.); (M.R.); (M.G.); (S.G.); (M.F.)
| | - Joel Pollet
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; (R.B.); (G.R.); (R.P.); (J.P.); (M.R.); (M.G.); (S.G.); (M.F.)
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marina Rossi
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; (R.B.); (G.R.); (R.P.); (J.P.); (M.R.); (M.G.); (S.G.); (M.F.)
| | - Massimiliano Gobbo
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; (R.B.); (G.R.); (R.P.); (J.P.); (M.R.); (M.G.); (S.G.); (M.F.)
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Sara Gueli
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; (R.B.); (G.R.); (R.P.); (J.P.); (M.R.); (M.G.); (S.G.); (M.F.)
| | - Maurizio Falso
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; (R.B.); (G.R.); (R.P.); (J.P.); (M.R.); (M.G.); (S.G.); (M.F.)
| |
Collapse
|
3
|
Ferrari V, Nicoletti CG, Carparelli F, Schirinzi T, Mercuri NB, Stefani A, Conti M. Short-Term Effects of Continuous Theta Burst Stimulation in Treating a Young Patient Affected by Post-Ischemic Hemidystonia. Mov Disord Clin Pract 2025; 12:551-554. [PMID: 39865412 PMCID: PMC11998679 DOI: 10.1002/mdc3.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/08/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Affiliation(s)
- Valerio Ferrari
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | | | | | - Tommaso Schirinzi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
- UOSD Parkinson Centre, Tor Vergata University HospitalRomeItaly
| | | | - Alessandro Stefani
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
- UOSD Parkinson Centre, Tor Vergata University HospitalRomeItaly
| | - Matteo Conti
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| |
Collapse
|
4
|
Cai N, Shi W, Chen R, Chen B, Li Y, Wang N. Cerebral-Cerebellar Cortical Activity and Connectivity Underlying Sensory Trick in Cervical Dystonia. Ann Clin Transl Neurol 2024; 11:2633-2644. [PMID: 39152615 PMCID: PMC11514925 DOI: 10.1002/acn3.52177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the activity and connectivity of cerebral and cerebellar cortices underlying the sensory trick (ST) effects in patients with cervical dystonia (CD), using electroencephalography (EEG). METHODS We recruited 15 CD patients who exhibited clinically effective ST and 15 healthy controls (HCs) who mimicked the ST maneuver. EEG signals and multiple-channel electromyography (EMG) were recorded simultaneously during resting and acting stages. EEG source analysis and functional connectivity were performed. To account for the effects of sensory processing, we calculated relative power changes as the difference in power spectral density between resting and the maneuver execution. RESULTS ST induced a decrease in low gamma (30-50 Hz) spectral power in the primary sensory and cerebellar cortices, which remained lower than in HCs during the maintenance period. Compared with HCs, patients exhibited consistently strengthened connectivity within the sensorimotor network during the maintenance period, particularly in the primary sensory-sensorimotor cerebellum connection. INTERPRETATION The application of ST resulted in altered cortical excitability and functional connectivity regulated by gamma oscillation in CD patients, suggesting that this effect cannot be solely attributed to motor components. The cerebellum may play important roles in mediating the ST effects.
Collapse
Affiliation(s)
- Nai‐Qing Cai
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Wu‐Xiang Shi
- Department of Fujian Provincial Key Lab. of Medical Instrument and Pharmaceutical TechnologyFuzhou UniversityFuzhou350108FujianChina
- College of Electrical Engineering and AutomationFuzhou UniversityFuzhou350108FujianChina
| | - Ru‐Kai Chen
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Bo‐Li Chen
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| | - Yu‐Rong Li
- Department of Fujian Provincial Key Lab. of Medical Instrument and Pharmaceutical TechnologyFuzhou UniversityFuzhou350108FujianChina
- College of Electrical Engineering and AutomationFuzhou UniversityFuzhou350108FujianChina
| | - Ning Wang
- Department of Neurology, the First Affiliated HospitalFujian Medical UniversityFuzhou350005FujianChina
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhou350212FujianChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou350005FujianChina
| |
Collapse
|
5
|
Guo Z, Lin JP, Simeone O, Mills KR, Cvetkovic Z, McClelland VM. Cross-frequency cortex-muscle interactions are abnormal in young people with dystonia. Brain Commun 2024; 6:fcae061. [PMID: 38487552 PMCID: PMC10939448 DOI: 10.1093/braincomms/fcae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Sensory processing and sensorimotor integration are abnormal in dystonia, including impaired modulation of beta-corticomuscular coherence. However, cortex-muscle interactions in either direction are rarely described, with reports limited predominantly to investigation of linear coupling, using corticomuscular coherence or Granger causality. Information-theoretic tools such as transfer entropy detect both linear and non-linear interactions between processes. This observational case-control study applies transfer entropy to determine intra- and cross-frequency cortex-muscle coupling in young people with dystonia/dystonic cerebral palsy. Fifteen children with dystonia/dystonic cerebral palsy and 13 controls, aged 12-18 years, performed a grasp task with their dominant hand. Mechanical perturbations were provided by an electromechanical tapper. Bipolar scalp EEG over contralateral sensorimotor cortex and surface EMG over first dorsal interosseous were recorded. Multi-scale wavelet transfer entropy was applied to decompose signals into functional frequency bands of oscillatory activity and to quantify intra- and cross-frequency coupling between brain and muscle. Statistical significance against the null hypothesis of zero transfer entropy was established, setting individual 95% confidence thresholds. The proportion of individuals in each group showing significant transfer entropy for each frequency combination/direction was compared using Fisher's exact test, correcting for multiple comparisons. Intra-frequency transfer entropy was detected in all participants bidirectionally in the beta (16-32 Hz) range and in most participants from EEG to EMG in the alpha (8-16 Hz) range. Cross-frequency transfer entropy across multiple frequency bands was largely similar between groups, but a specific coupling from low-frequency EMG to beta EEG was significantly reduced in dystonia [P = 0.0061 (corrected)]. The demonstration of bidirectional cortex-muscle communication in dystonia emphasizes the value of transfer entropy for exploring neural communications in neurological disorders. The novel finding of diminished coupling from low-frequency EMG to beta EEG in dystonia suggests impaired cortical feedback of proprioceptive information with a specific frequency signature that could be relevant to the origin of the excessive low-frequency drive to muscle.
Collapse
Affiliation(s)
- Zhenghao Guo
- Department of Engineering, King's College London, London WC2R 2LS, UK
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jean-Pierre Lin
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
| | - Osvaldo Simeone
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Kerry R Mills
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| | - Zoran Cvetkovic
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Verity M McClelland
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| |
Collapse
|
6
|
Rizzo G, Martino D, Avanzino L, Avenanti A, Vicario CM. Social cognition in hyperkinetic movement disorders: a systematic review. Soc Neurosci 2023; 18:331-354. [PMID: 37580305 DOI: 10.1080/17470919.2023.2248687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Numerous lines of research indicate that our social brain involves a network of cortical and subcortical brain regions that are responsible for sensing and controlling body movements. However, it remains unclear whether movement disorders have a systematic impact on social cognition. To address this question, we conducted a systematic review examining the influence of hyperkinetic movement disorders (including Huntington disease, Tourette syndrome, dystonia, and essential tremor) on social cognition. Following the PRISMA guidelines and registering the protocol in the PROSPERO database (CRD42022327459), we analyzed 50 published studies focusing on theory of mind (ToM), social perception, and empathy. The results from these studies provide evidence of impairments in ToM and social perception in all hyperkinetic movement disorders, particularly during the recognition of negative emotions. Additionally, individuals with Huntington's Disease and Tourette syndrome exhibit empathy disorders. These findings support the functional role of subcortical structures (such as the basal ganglia and cerebellum), which are primarily responsible for movement disorders, in deficits related to social cognition.
Collapse
Affiliation(s)
- Gaetano Rizzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Carmelo Mario Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| |
Collapse
|
7
|
Lumsden DE. Spastic dystonia: Still a valid term. Dev Med Child Neurol 2023; 65:1308-1315. [PMID: 36940234 DOI: 10.1111/dmcn.15582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Hypertonia in childhood may arise because of a variable combination of neuronal and non-neuronal factors. Involuntary muscle contraction may be due to spasticity or dystonia, which represent disorders of the spinal reflex arch and of central motor output respectively. Whilst consensus definitions for dystonia have been established, definitions of spasticity vary, highlighting the lack of a single unifying nomenclature in the field of clinical movement science. The term spastic dystonia refers to involuntary tonic muscle contraction in the context of an upper motor neuron (UMN) lesion. This review considers the utility of the term spastic dystonia, exploring our understanding of the pathophysiology of dystonia and the UMN syndrome. An argument is advanced that spastic dystonia is a valid construct that warrants further exploration. WHAT THIS PAPER ADDS: There is no single universally accepted definitions for terms commonly used to describe motor disorders. Spasticity and dystonia are phenomenologically and pathophysiologically distinct entities. Spastic dystonia represents a subset of dystonia, but with pathophysiological mechanisms more in common with spasticity.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorders Service, Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Perinatal imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
8
|
Defazio G, Gigante AF, Erro R, Belvisi D, Esposito M, Trinchillo A, De Joanna G, Ceravolo R, Mazzucchi S, Unti E, Barone P, Scannapieco S, Cotelli MS, Turla M, Bianchi M, Bertolasi L, Pisani A, Valentino F, Altavista MC, Moschella V, Girlanda P, Terranova C, Bono F, Spano G, Fabbrini G, Ferrazzano G, Albanese A, Castagna A, Cassano D, Coletti Moja M, Pellicciari R, Bentivoglio AR, Eleopra R, Cossu G, Ercoli T, Mascia MM, Di Biasio F, Misceo S, Magistrelli L, Romano M, Scaglione CLM, Tinazzi M, Maderna L, Zibetti M, Berardelli A. Phenotypic Variability in Acquired and Idiopathic Dystonia. Mov Disord Clin Pract 2023; 10:1107-1113. [PMID: 37476305 PMCID: PMC10354612 DOI: 10.1002/mdc3.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 07/22/2023] Open
Abstract
Background To date, a few studies have systematically investigated differences in the clinical spectrum between acquired and idiopathic dystonias. Objectives To compare demographic data and clinical features in patients with adult-onset acquired and idiopathic dystonias. Methods Patients were identified from among those included in the Italian Dystonia Registry, a multicenter Italian dataset of patients with adult-onset dystonia. Study population included 116 patients with adult-onset acquired dystonia and 651 patients with isolated adult-onset idiopathic dystonia. Results Comparison of acquired and idiopathic dystonia revealed differences in the body distribution of dystonia, with oromandibular dystonia, limb and trunk dystonia being more frequent in patients with acquired dystonia. The acquired dystonia group was also characterized by lower age at dystonia onset, greater tendency to spread, lower frequency of head tremor, sensory trick and eye symptoms, and similar frequency of neck pain associated with CD and family history of dystonia/tremor. Conclusions The clinical phenomenology of dystonia may differ between acquired and idiopathic dystonia, particularly with regard to the body localization of dystonia and the tendency to spread. This dissimilarity raises the possibility of pathophysiological differences between etiologic categories.
Collapse
Affiliation(s)
- Giovanni Defazio
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | | | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana"University of SalernoFiscianoItaly
| | - Daniele Belvisi
- IRCCS NeuromedPozzilliItaly
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | | | - Assunta Trinchillo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology“Federico II” UniversityNaplesItaly
| | | | - Roberto Ceravolo
- Parkinson and Movement Disorders CentreNeurology Unit Azienda Ospedaliero‐Universitaria PisanaPisaItaly
- Clinical and Experimental Medicine University of PisaPisaItaly
| | - Sonia Mazzucchi
- Parkinson and Movement Disorders CentreNeurology Unit Azienda Ospedaliero‐Universitaria PisanaPisaItaly
- Clinical and Experimental Medicine University of PisaPisaItaly
| | - Elisa Unti
- Parkinson and Movement Disorders CentreNeurology Unit Azienda Ospedaliero‐Universitaria PisanaPisaItaly
- Clinical and Experimental Medicine University of PisaPisaItaly
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana"University of SalernoFiscianoItaly
| | - Sara Scannapieco
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana"University of SalernoFiscianoItaly
| | | | | | | | | | - Antonio Pisani
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- IRCCS Mondino FoundationPaviaItaly
| | | | | | | | - Paolo Girlanda
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
| | - Carmen Terranova
- Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly
| | - Francesco Bono
- Center for Botulinum Toxin TherapyNeurology Unit, A.O.U. Mater dominiCatanzaroItaly
| | - Giorgio Spano
- Center for Botulinum Toxin TherapyNeurology Unit, A.O.U. Mater dominiCatanzaroItaly
| | - Giovanni Fabbrini
- IRCCS NeuromedPozzilliItaly
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Gina Ferrazzano
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| | - Alberto Albanese
- Department of NeurologyIRCCS Humanitas Research HospitalMilanItaly
| | | | | | | | - Roberta Pellicciari
- Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of Bari “Aldo Moro”BariItaly
| | - Anna Rita Bentivoglio
- Agostino Gemelli IRCCS University Hospital FoundationRomeItaly
- Institute of NeurologyUniversità Cattolica del Sacro CuoreRomeItaly
| | - Roberto Eleopra
- Neurology Unit 1, Fondazione IRCSSIstituto Neurologico “Carlo Besta”MilanItaly
| | - Giovanni Cossu
- Neurology Service and Stroke Unit, Department of NeuroscienceAO BrotzuCagliariItaly
| | - Tommaso Ercoli
- Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
| | | | | | | | - Luca Magistrelli
- Movement Disorders Centre, Neurology Unit, Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | | | | | - Michele Tinazzi
- Neurology Unit, Department of Neuroscience, Biomedicine and MovementUniversity of VeronaVeronaItaly
| | - Luca Maderna
- Department of Neuroscience, U.O. of NeurophysiologyIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Maurizio Zibetti
- Department of Neuroscience “Rita Levi Montalcini”University of TorinoTorinoItaly
- Neurology 2 UnitA.O.U. Città Della Salute e Della Scienza di TorinoTorinoItaly
| | - Alfredo Berardelli
- IRCCS NeuromedPozzilliItaly
- Department of Human NeurosciencesSapienza University of RomeRomeItaly
| |
Collapse
|
9
|
Al-Fatly B, Giesler SJ, Oxenford S, Li N, Dembek TA, Achtzehn J, Krause P, Visser-Vandewalle V, Krauss JK, Runge J, Tadic V, Bäumer T, Schnitzler A, Vesper J, Wirths J, Timmermann L, Kühn AA, Koy A. Neuroimaging-based analysis of DBS outcomes in pediatric dystonia: Insights from the GEPESTIM registry. Neuroimage Clin 2023; 39:103449. [PMID: 37321142 PMCID: PMC10275720 DOI: 10.1016/j.nicl.2023.103449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an established treatment in patients of various ages with pharmaco-resistant neurological disorders. Surgical targeting and postoperative programming of DBS depend on the spatial location of the stimulating electrodes in relation to the surrounding anatomical structures, and on electrode connectivity to a specific distribution pattern within brain networks. Such information is usually collected using group-level analysis, which relies on the availability of normative imaging resources (atlases and connectomes). Analysis of DBS data in children with debilitating neurological disorders such as dystonia would benefit from such resources, especially given the developmental differences in neuroimaging data between adults and children. We assembled pediatric normative neuroimaging resources from open-access datasets in order to comply with age-related anatomical and functional differences in pediatric DBS populations. We illustrated their utility in a cohort of children with dystonia treated with pallidal DBS. We aimed to derive a local pallidal sweetspot and explore a connectivity fingerprint associated with pallidal stimulation to exemplify the utility of the assembled imaging resources. METHODS An average pediatric brain template (the MNI brain template 4.5-18.5 years) was implemented and used to localize the DBS electrodes in 20 patients from the GEPESTIM registry cohort. A pediatric subcortical atlas, analogous to the DISTAL atlas known in DBS research, was also employed to highlight the anatomical structures of interest. A local pallidal sweetspot was modeled, and its degree of overlap with stimulation volumes was calculated as a correlate of individual clinical outcomes. Additionally, a pediatric functional connectome of 100 neurotypical subjects from the Consortium for Reliability and Reproducibility was built to allow network-based analyses and decipher a connectivity fingerprint responsible for the clinical improvements in our cohort. RESULTS We successfully implemented a pediatric neuroimaging dataset that will be made available for public use as a tool for DBS analyses. Overlap of stimulation volumes with the identified DBS-sweetspot model correlated significantly with improvement on a local spatial level (R = 0.46, permuted p = 0.019). The functional connectivity fingerprint of DBS outcomes was determined to be a network correlate of therapeutic pallidal stimulation in children with dystonia (R = 0.30, permuted p = 0.003). CONCLUSIONS Local sweetspot and distributed network models provide neuroanatomical substrates for DBS-associated clinical outcomes in dystonia using pediatric neuroimaging surrogate data. Implementation of this pediatric neuroimaging dataset might help to improve the practice and pave the road towards a personalized DBS-neuroimaging analyses in pediatric patients.
Collapse
Affiliation(s)
- Bassam Al-Fatly
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
| | - Sabina J Giesler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Oxenford
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Ningfei Li
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Johannes Achtzehn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Patricia Krause
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Vera Tadic
- Department of Neurology, University Medical Center Schleswig Holstein, Lübeck Campus, Lübeck, Germany
| | - Tobias Bäumer
- Institute of System Motor Science, University Medical Center Schleswig Holstein, Lübeck Campus, Lübeck, Germany
| | - Alfons Schnitzler
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Vesper
- Department of Neurology, Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - Andrea A Kühn
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany.
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
11
|
Fischer P, Piña-Fuentes D, Kassavetis P, Sadnicka A. Physiology of dystonia: Human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:137-162. [PMID: 37482391 DOI: 10.1016/bs.irn.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In this chapter, we discuss neurophysiological techniques that have been used in the study of dystonia. We examine traditional disease models such as inhibition and excessive plasticity and review the evidence that these play a causal role in pathophysiology. We then review the evidence for sensory and peripheral influences within pathophysiology and look at an emergent literature that tries to probe how oscillatory brain activity may be linked to dystonia pathophysiology.
Collapse
Affiliation(s)
- Petra Fischer
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Dan Piña-Fuentes
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, The Netherlands; Department of Neurology, OLVG, Amsterdam, The Netherlands
| | | | - Anna Sadnicka
- Motor Control and Movement Disorders Group, St George's University of London, London, United Kingdom; Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
12
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
13
|
Frey J, Ramirez-Zamora A, Wagle Shukla A. Applications of Transcranial Magnetic Stimulation for Understanding and Treating Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:119-139. [PMID: 37338699 DOI: 10.1007/978-3-031-26220-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transcranial magnetic stimulation (TMS)-based studies have led to an advanced understanding of the pathophysiology of dystonia. This narrative review summarizes the TMS data contributed to the literature so far. Many studies have shown that increased motor cortex excitability, excessive sensorimotor plasticity, and abnormal sensorimotor integration are the core pathophysiological substrates for dystonia. However, an increasing body of evidence supports a more widespread network dysfunction involving many other brain regions. Repetitive TMS pulses (rTMS) in dystonia have therapeutic potential as they can induce local and network-wide effects through modulation of excitability and plasticity. The bulk of rTMS studies has targeted the premotor cortex with some promising results in focal hand dystonia. Some studies have targeted the cerebellum for cervical dystonia and the anterior cingulate cortex for blepharospasm. We believe that therapeutic potential could be leveraged better when rTMS is implemented in conjunction with standard-of-care pharmacological treatments. However, due to several limitations in the studies conducted to date, including small samples, heterogeneous populations, variability in the target sites, and inconsistencies in the study design and control arm, it is hard to draw a definite conclusion. Further studies are warranted to determine optimal targets and protocols yielding the most beneficial outcomes that will translate into meaningful clinical changes.
Collapse
Affiliation(s)
- Jessica Frey
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
McClelland VM, Lin JP. Dystonia in Childhood: How Insights from Paediatric Research Enrich the Network Theory of Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:1-22. [PMID: 37338693 DOI: 10.1007/978-3-031-26220-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Dystonia is now widely accepted as a network disorder, with multiple brain regions and their interconnections playing a potential role in the pathophysiology. This model reconciles what could previously have been viewed as conflicting findings regarding the neuroanatomical and neurophysiological characteristics of the disorder, but there are still significant gaps in scientific understanding of the underlying pathophysiology. One of the greatest unmet challenges is to understand the network model of dystonia in the context of the developing brain. This article outlines how research in childhood dystonia supports and contributes to the network theory and highlights aspects where data from paediatric studies has revealed novel and unique physiological insights, with important implications for understanding dystonia across the lifespan.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Women and Children's Institute, Faculty of Life Sciences and Medicine (FolSM), King's College London, London, UK
| |
Collapse
|
15
|
di Biase L, Di Santo A, Caminiti ML, Pecoraro PM, Carbone SP, Di Lazzaro V. Dystonia Diagnosis: Clinical Neurophysiology and Genetics. J Clin Med 2022; 11:jcm11144184. [PMID: 35887948 PMCID: PMC9320296 DOI: 10.3390/jcm11144184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 12/12/2022] Open
Abstract
Dystonia diagnosis is based on clinical examination performed by a neurologist with expertise in movement disorders. Clues that indicate the diagnosis of a movement disorder such as dystonia are dystonic movements, dystonic postures, and three additional physical signs (mirror dystonia, overflow dystonia, and geste antagonists/sensory tricks). Despite advances in research, there is no diagnostic test with a high level of accuracy for the dystonia diagnosis. Clinical neurophysiology and genetics might support the clinician in the diagnostic process. Neurophysiology played a role in untangling dystonia pathophysiology, demonstrating characteristic reduction in inhibition of central motor circuits and alterations in the somatosensory system. The neurophysiologic measure with the greatest evidence in identifying patients affected by dystonia is the somatosensory temporal discrimination threshold (STDT). Other parameters need further confirmations and more solid evidence to be considered as support for the dystonia diagnosis. Genetic testing should be guided by characteristics such as age at onset, body distribution, associated features, and coexistence of other movement disorders (parkinsonism, myoclonus, and other hyperkinesia). The aim of the present review is to summarize the state of the art regarding dystonia diagnosis focusing on the role of neurophysiology and genetic testing.
Collapse
Affiliation(s)
- Lazzaro di Biase
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Brain Innovations Lab., Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
- Correspondence: or ; Tel.: +39-062-2541-1220
| | - Alessandro Di Santo
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Maria Letizia Caminiti
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Pasquale Maria Pecoraro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Simona Paola Carbone
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology Unit, Campus Bio-Medico University Hospital Foundation, Via Álvaro del Portillo 200, 00128 Rome, Italy; (A.D.S.); (M.L.C.); (P.M.P.); (S.P.C.); (V.D.L.)
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
16
|
Bologna M, Valls-Solè J, Kamble N, Pal PK, Conte A, Guerra A, Belvisi D, Berardelli A. Dystonia, chorea, hemiballismus and other dyskinesias. Clin Neurophysiol 2022; 140:110-125. [PMID: 35785630 DOI: 10.1016/j.clinph.2022.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
Hyperkinesias are heterogeneous involuntary movements that significantly differ in terms of clinical and semeiological manifestations, including rhythm, regularity, speed, duration, and other factors that determine their appearance or suppression. Hyperkinesias are due to complex, variable, and largely undefined pathophysiological mechanisms that may involve different brain areas. In this chapter, we specifically focus on dystonia, chorea and hemiballismus, and other dyskinesias, specifically, levodopa-induced, tardive, and cranial dyskinesia. We address the role of neurophysiological studies aimed at explaining the pathophysiology of these conditions. We mainly refer to human studies using surface and invasive in-depth recordings, as well as spinal, brainstem, and transcortical reflexology and non-invasive brain stimulation techniques. We discuss the extent to which the neurophysiological abnormalities observed in hyperkinesias may be explained by pathophysiological models. We highlight the most relevant issues that deserve future research efforts. The potential role of neurophysiological assessment in the clinical context of hyperkinesia is also discussed.
Collapse
Affiliation(s)
- Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Josep Valls-Solè
- Institut d'Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, India
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | | | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| |
Collapse
|
17
|
Guerra A, Bologna M. Low-Intensity Transcranial Ultrasound Stimulation: Mechanisms of Action and Rationale for Future Applications in Movement Disorders. Brain Sci 2022; 12:brainsci12050611. [PMID: 35624998 PMCID: PMC9139935 DOI: 10.3390/brainsci12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique that uses acoustic energy to induce changes in neuronal activity. However, although low-intensity TUS is a promising neuromodulation tool, it has been poorly studied as compared to other methods, i.e., transcranial magnetic and electrical stimulation. In this article, we first focus on experimental studies in animals and humans aimed at explaining its mechanisms of action. We then highlight possible applications of TUS in movement disorders, particularly in patients with parkinsonism, dystonia, and tremor. Finally, we highlight the knowledge gaps and possible limitations that currently limit potential TUS applications in movement disorders. Clarifying the potential role of TUS in movement disorders may further promote studies with therapeutic perspectives in this field.
Collapse
Affiliation(s)
| | - Matteo Bologna
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Serotonergic system in vivo with [ 11C]DASB PET scans in GTP-cyclohydrolase deficient dopa-responsive dystonia patients. Sci Rep 2022; 12:6292. [PMID: 35428769 PMCID: PMC9012759 DOI: 10.1038/s41598-022-10067-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/15/2022] [Indexed: 11/23/2022] Open
Abstract
GTP-cyclohydrolase deficiency in dopa-responsive dystonia (DRD) patients impairs the biosynthesis of dopamine, but also of serotonin. The high prevalence of non-motor symptoms suggests involvement of the serotonergic pathway. Our study aimed to investigate the serotonergic system in vivo in the brain of`DRD patients and correlate this to (non-)motor symptoms. Dynamic [11C]DASB PET scans, a marker of serotonin transporter availability, were performed. Ten DRD, 14 cervical dystonia patients and 12 controls were included. Univariate- and network-analysis did not show differences in binding between DRD patients compared to controls. Sleep disturbances were correlated with binding in the dorsal raphe nucleus (all participants: rs = 0.45, p = 0.04; patients: rs = 0.64, p = 0.05) and participants with a psychiatric disorder had a lower binding in the hippocampus (all participants: p = 0.00; patients: p = 0.06). Post-hoc analysis with correction for psychiatric co-morbidity showed a significant difference in binding in the hippocampus between DRD patients and controls (p = 0.00). This suggests that psychiatric symptoms might mask the altered serotonergic metabolism in DRD patients, but definite conclusions are difficult as psychiatry is considered part of the phenotype. We hypothesize that an imbalance between different neurotransmitter systems is responsible for the non-motor symptoms, and further research investigating multiple neurotransmitters and psychiatry in DRD is necessary.
Collapse
|
19
|
Owen RL, Grewal SS, Thompson JM, Hassan A, Lee KH, Klassen BT. Effectiveness of Thalamic Ventralis Oralis Anterior and Posterior Nuclei Deep Brain Stimulation for Posttraumatic Dystonia. Mayo Clin Proc Innov Qual Outcomes 2022; 6:137-142. [PMID: 35243206 PMCID: PMC8866047 DOI: 10.1016/j.mayocpiqo.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Herein we report that the ventralis oralis anterior and posterior (Voa/Vop) nuclei of the thalamus may be effective alternative targets for deep brain stimulation (DBS) to improve posttraumatic dystonia when the globus pallidus interna is traumatically damaged. This patient presented at age 35 years with a clinical diagnosis of posttraumatic cervical and bilateral upper limb acquired dystonia resulting from intracerebral and intraventricular hemorrhage after a motorcycle accident at age 19 years. Due to a right globus pallidus interna traumatic lesion, conventional DBS targeting of the inferior basal ganglia was not possible; thus, the alternative Voa/Vop nuclei target was implanted. The patient realized significant benefit and at last follow-up 3 years postoperatively continued to endorse marked benefit and improvement of dystonia symptoms with minimal adverse effects from bilateral DBS implantation in the alternative targets of the Voa/Vop nuclei of the thalamus.
Collapse
|
20
|
Huang X, Lin J, Shang H, Yang J. Voxel-based meta-analysis of gray matter abnormalities in idiopathic dystonia. J Neurol 2022; 269:2862-2873. [PMID: 35013788 DOI: 10.1007/s00415-022-10961-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroimaging studies have reported gray matter changes in patients with idiopathic dystonia but with considerable variations. Here, we aimed to investigate the convergence of dystonia-related gray matter changes across studies. METHODS The whole brain voxel-based morphometry studies comparing idiopathic dystonia and healthy controls were systematically searched in the PubMed, Web of Science and Embase. Meta-analysis of gray matter changes was performed using the anisotropic effect size-based signed differential mapping. RESULTS Twenty-eight studies comparing 701 idiopathic dystonia patients and 712 healthy controls were included in the meta-analysis. Compared to healthy controls, idiopathic dystonia patients showed increased gray matter in bilateral precentral and postcentral gyri, bilateral putamen and pallidum, right insula, and left supramarginal gyrus, while decreased gray matter in bilateral temporal poles, bilateral supplementary motor areas, right angular gyrus, inferior parietal gyrus and precuneus, left insula and inferior frontal gyrus. These findings remained robust in the jackknife sensitivity analysis, and no significant heterogeneity was detected. Subgroup analyses of different phenotypes of dystonia were performed to further confirm the above findings. CONCLUSION The meta-analysis showed that consistent widespread gray matter abnormalities were shared in different subtypes of idiopathic dystonia and were not restricted to the corticostriatal circuits.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Hwang YS, Lee SH, Jo S, Chung SJ. Syringomyelia Manifesting With Pseudodystonia: A Case Report. J Mov Disord 2021; 15:175-177. [PMID: 34724779 PMCID: PMC9171304 DOI: 10.14802/jmd.21121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yun Su Hwang
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Hyun Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Precise Modulation Strategies for Transcranial Magnetic Stimulation: Advances and Future Directions. Neurosci Bull 2021; 37:1718-1734. [PMID: 34609737 DOI: 10.1007/s12264-021-00781-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular modulatory technique for the noninvasive diagnosis and therapy of neurological and psychiatric diseases. Unfortunately, current modulation strategies are only modestly effective. The literature provides strong evidence that the modulatory effects of TMS vary depending on device components and stimulation protocols. These differential effects are important when designing precise modulatory strategies for clinical or research applications. Developments in TMS have been accompanied by advances in combining TMS with neuroimaging techniques, including electroencephalography, functional near-infrared spectroscopy, functional magnetic resonance imaging, and positron emission tomography. Such studies appear particularly promising as they may not only allow us to probe affected brain areas during TMS but also seem to predict underlying research directions that may enable us to precisely target and remodel impaired cortices or circuits. However, few precise modulation strategies are available, and the long-term safety and efficacy of these strategies need to be confirmed. Here, we review the literature on possible technologies for precise modulation to highlight progress along with limitations with the goal of suggesting future directions for this field.
Collapse
|
23
|
Scorr LM, Factor SA, Parra SP, Kaye R, Paniello RC, Norris SA, Perlmutter JS, Bäumer T, Usnich T, Berman BD, Mailly M, Roze E, Vidailhet M, Jankovic J, LeDoux MS, Barbano R, Chang FCF, Fung VSC, Pirio Richardson S, Blitzer A, Jinnah HA. Oromandibular Dystonia: A Clinical Examination of 2,020 Cases. Front Neurol 2021; 12:700714. [PMID: 34603182 PMCID: PMC8481678 DOI: 10.3389/fneur.2021.700714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022] Open
Abstract
Objective: The goal of this study is to better characterize the phenotypic heterogeneity of oromandibular dystonia (OMD) for the purpose of facilitating early diagnosis. Methods: First, we provide a comprehensive summary of the literature encompassing 1,121 cases. Next, we describe the clinical features of 727 OMD subjects enrolled by the Dystonia Coalition (DC), an international multicenter cohort. Finally, we summarize clinical features and treatment outcomes from cross-sectional analysis of 172 OMD subjects from two expert centers. Results: In all cohorts, typical age at onset was in the 50s and 70% of cases were female. The Dystonia Coalition cohort revealed perioral musculature was involved most commonly (85%), followed by jaw (61%) and tongue (17%). OMD more commonly appeared as part of a segmental dystonia (43%), and less commonly focal (39%) or generalized (10%). OMD was found to be associated with impaired quality of life, independent of disease severity. On average, social anxiety (LSA score: 33 ± 28) was more common than depression (BDI II score: 9.7 ± 7.8). In the expert center cohorts, botulinum toxin injections improved symptom severity by more than 50% in ~80% of subjects, regardless of etiology. Conclusions: This comprehensive description of OMD cases has revealed novel insights into the most common OMD phenotypes, pattern of dystonia distribution, associated psychiatric disturbances, and effect on QoL. We hope these findings will improve clinical recognition to aid in timely diagnosis and inform treatment strategies.
Collapse
Affiliation(s)
- Laura M. Scorr
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Stewart A. Factor
- Department of Neurology, Emory University, Atlanta, GA, United States
| | | | - Rachel Kaye
- Department of Otolaryngology, Rutgers University, Newark, NJ, United States
| | - Randal C. Paniello
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Scott A. Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tobias Bäumer
- Department of Neurology, Institute of Systems Motor Science, Universität of Lübeck, Lübeck, Germany
| | - Tatiana Usnich
- Department of Neurology, Institute of Systems Motor Science, Universität of Lübeck, Lübeck, Germany
| | - Brian D. Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Marie Mailly
- Department of ENT and Head and Neck Surgery, Fondation Adolphe de Rothschild, Paris, France
| | - Emmanuel Roze
- Department of Neurology, Hôpital de la Pitié Salpétrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Vidailhet
- Department of Neurology, Hôpital de la Pitié Salpétrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Joseph Jankovic
- Baylor St. Luke's Medical Center, Houston, TX, United States
| | - Mark S. LeDoux
- Veracity Neuroscience LLC, Memphis, TN, United States
- Department of Neurology, University of Memphis, Memphis, TN, United States
| | - Richard Barbano
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Florence C. F. Chang
- Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Victor S. C. Fung
- Department of Neurology, Westmead Hospital and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Andrew Blitzer
- Head and Neck Surgical Group, New York, NY, United States
| | - H. A. Jinnah
- Department of Neurology, Emory University, Atlanta, GA, United States
| |
Collapse
|
24
|
Szejko N, Burger F, Sidoroff V, Wenning GK. Case Report: Secondary bilateral parkinsonism and dystonia treated with dronabinol. F1000Res 2021; 9:1162. [PMID: 34484695 PMCID: PMC8381340 DOI: 10.12688/f1000research.26476.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
Drug abuse may damage basal ganglia that are essential for planning and execution of movements. We report about the case of a 38-year old patient with ischemic lesions of the basal ganglia presenting with bilateral painful dystonia and parkinsonism caused by polyintoxication. Dronabinol resulted in improvement of pain and gait disturbance, suggesting a novel therapeutic strategy in these challenging patients.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Medical University of Warsaw, Warsaw, 02091, Poland
- Department of Bioethics, Medical University of Warsaw, Warsaw, 02091, Poland
- Division of Neurocritical Care, Department of Neurology, Yale University, New Haven, Connecticut, 06519, USA
| | | | - Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K. Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
McClelland VM, Lin JP. Sensorimotor Integration in Childhood Dystonia and Dystonic Cerebral Palsy-A Developmental Perspective. Front Neurol 2021; 12:668081. [PMID: 34367047 PMCID: PMC8343097 DOI: 10.3389/fneur.2021.668081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
Dystonia is a disorder of sensorimotor integration, involving dysfunction within the basal ganglia, cortex, cerebellum, or their inter-connections as part of the sensorimotor network. Some forms of dystonia are also characterized by maladaptive or exaggerated plasticity. Development of the neuronal processes underlying sensorimotor integration is incompletely understood but involves activity-dependent modeling and refining of sensorimotor circuits through processes that are already taking place in utero and which continue through infancy, childhood, and into adolescence. Several genetic dystonias have clinical onset in early childhood, but there is evidence that sensorimotor circuit development may already be disrupted prenatally in these conditions. Dystonic cerebral palsy (DCP) is a form of acquired dystonia with perinatal onset during a period of rapid neurodevelopment and activity-dependent refinement of sensorimotor networks. However, physiological studies of children with dystonia are sparse. This discussion paper addresses the role of neuroplasticity in the development of sensorimotor integration with particular focus on the relevance of these mechanisms for understanding childhood dystonia, DCP, and implications for therapy selection, including neuromodulation and timing of intervention.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
26
|
Smit M, Albanese A, Benson M, Edwards MJ, Graessner H, Hutchinson M, Jech R, Krauss JK, Morgante F, Pérez Dueñas B, Reilly RB, Tinazzi M, Contarino MF, Tijssen MAJ, The Collaborative Working Group. Dystonia Management: What to Expect From the Future? The Perspectives of Patients and Clinicians Within DystoniaNet Europe. Front Neurol 2021; 12:646841. [PMID: 34149592 PMCID: PMC8211212 DOI: 10.3389/fneur.2021.646841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023] Open
Abstract
Improved care for people with dystonia presents a number of challenges. Major gaps in knowledge exist with regard to how to optimize the diagnostic process, how to leverage discoveries in pathophysiology into biomarkers, and how to develop an evidence base for current and novel treatments. These challenges are made greater by the realization of the wide spectrum of symptoms and difficulties faced by people with dystonia, which go well-beyond motor symptoms. A network of clinicians, scientists, and patients could provide resources to facilitate information exchange at different levels, share mutual experiences, and support each other's innovative projects. In the past, collaborative initiatives have been launched, including the American Dystonia Coalition, the European Cooperation in Science and Technology (COST-which however only existed for a limited time), and the Dutch DystonieNet project. The European Reference Network on Rare Neurological Diseases includes dystonia among other rare conditions affecting the central nervous system in a dedicated stream. Currently, we aim to broaden the scope of these initiatives to a comprehensive European level by further expanding the DystoniaNet network, in close collaboration with the ERN-RND. In line with the ERN-RND, the mission of DystoniaNet Europe is to improve care and quality of life for people with dystonia by, among other endeavors, facilitating access to specialized care, overcoming the disparity in education of medical professionals, and serving as a solid platform to foster international clinical and research collaborations. In this review, both professionals within the dystonia field and patients and caregivers representing Dystonia Europe highlight important unsolved issues and promising new strategies and the role that a European network can play in activating them.
Collapse
Affiliation(s)
- Marenka Smit
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | - Alberto Albanese
- Department of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital, Milan, Italy
| | | | - Mark J. Edwards
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics and Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital, Dublin, Ireland
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Joachim K. Krauss
- Department of Neurosurgery, Medizinische Hochschule Hannover, Hanover, Germany
| | - Francesca Morgante
- Neuroscience Research Centre, Institute of Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Belen Pérez Dueñas
- Pediatric Neurology Research Group, Hospital Vall d'Hebron–Institut de Recerca (VHIR), Barcelona, Spain
| | - Richard B. Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
- Department of Neurology, Haga Teaching Hospital, The Hague, Netherlands
| | - Marina A. J. Tijssen
- Expertise Centre Movement Disorders Groningen, Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | | |
Collapse
|
27
|
Motor learning deficits in cervical dystonia point to defective basal ganglia circuitry. Sci Rep 2021; 11:7332. [PMID: 33795752 PMCID: PMC8016965 DOI: 10.1038/s41598-021-86513-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Dystonia is conceptualized as a network disorder involving basal ganglia, thalamus, sensorimotor cortex and the cerebellum. The cerebellum has been implicated in dystonia pathophysiology, but studies testing cerebellar function in dystonia patients have provided equivocal results. This study aimed to further elucidate motor network deficits in cervical dystonia with special interest in the role of the cerebellum. To this end we investigated motor learning tasks, that differ in their dependence on cerebellar and basal ganglia functioning. In 18 cervical dystonia patients and 18 age matched healthy controls we measured implicit motor sequence learning using a 12-item serial reaction time task mostly targeting basal ganglia circuitry and motor adaptation and eyeblink conditioning as markers of cerebellar functioning. ANOVA showed that motor sequence learning was overall impaired in cervical dystonia (p = 0.01). Moreover, unlike healthy controls, patients did not show a learning effect in the first part of the experiment. Visuomotor adaptation and eyeblink conditioning were normal. In conclusion, these data lend support to the notion that motor learning deficits in cervical dystonia relate to basal ganglia-thalamo-cortical loops rather than being a result of defective cerebellar circuitry.
Collapse
|
28
|
EEG measures of sensorimotor processing and their development are abnormal in children with isolated dystonia and dystonic cerebral palsy. NEUROIMAGE-CLINICAL 2021; 30:102569. [PMID: 33583764 PMCID: PMC8044718 DOI: 10.1016/j.nicl.2021.102569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/12/2023]
Abstract
Dystonia is a disorder of sensorimotor integration associated with abnormal oscillatory activity within the basal ganglia-thalamo-cortical networks. Event-related changes in spectral EEG activity reflect cortical processing but are sparsely investigated in relation to sensorimotor processing in dystonia. This study investigates modulation of sensorimotor cortex EEG activity in response to a proprioceptive stimulus in children with dystonia and dystonic cerebral palsy (CP). Proprioceptive stimuli, comprising brief stretches of the wrist flexors, were delivered via a robotic wrist interface to 30 young people with dystonia (20 isolated genetic/idiopathic and 10 dystonic CP) and 22 controls (mean age 12.7 years). Scalp EEG was recorded using the 10-20 international system and the relative change in post-stimulus power with respect to baseline was calculated for the alpha (8-12 Hz) and beta (14-30 Hz) frequency bands. A clear developmental profile in event-related spectral changes was seen in controls. Controls showed a prominent early alpha/mu band event-related desynchronisation (ERD) followed by an event-related synchronisation (ERS) over the contralateral sensorimotor cortex following movement of either hand. The alpha ERD was significantly smaller in the dystonia groups for both dominant and non-dominant hand movement (ANCOVA across the 3 groups with age as covariate: dominant hand F(2,47) = 4.45 p = 0.017; non-dominant hand F(2,42) = 9.397 p < 0.001. Alpha ERS was significantly smaller in dystonia for the dominant hand (ANCOVA F(2,47) = 7.786 p = 0.001). There was no significant difference in ERD or ERS between genetic/idiopathic dystonia and dystonic CP. CONCLUSION: Modulation of alpha/mu activity by a proprioceptive stimulus is reduced in dystonia, demonstrating a developmental abnormality of sensorimotor processing which is common to isolated genetic/idiopathic and acquired dystonia/dystonic CP.
Collapse
|
29
|
Latorre A, Cocco A, Bhatia KP, Erro R, Antelmi E, Conte A, Rothwell JC, Rocchi L. Defective Somatosensory Inhibition and Plasticity Are Not Required to Develop Dystonia. Mov Disord 2020; 36:1015-1021. [PMID: 33332649 DOI: 10.1002/mds.28427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dystonia may have different neuroanatomical substrates and pathophysiology. This is supported by studies on the motor system showing, for instance, that plasticity is abnormal in idiopathic dystonia, but not in dystonia secondary to basal ganglia lesions. OBJECTIVE The aim of this study was to test whether somatosensory inhibition and plasticity abnormalities reported in patients with idiopathic dystonia also occur in patients with dystonia caused by basal ganglia damage. METHODS Ten patients with acquired dystonia as a result of basal ganglia lesions and 12 healthy control subjects were recruited. They underwent electrophysiological testing at baseline and after a single 45-minute session of high-frequency repetitive somatosensory stimulation. Electrophysiological testing consisted of somatosensory temporal discrimination, somatosensory-evoked potentials (including measurement of early and late high-frequency oscillations and the spatial inhibition ratio of N20/25 and P14 components), the recovery cycle of paired-pulse somatosensory-evoked potentials, and primary motor cortex short-interval intracortical inhibition. RESULTS Unlike previous reports of patients with idiopathic dystonia, patients with acquired dystonia did not differ from healthy control subjects in any of the electrophysiological measures either before or after high-frequency repetitive somatosensory stimulation, except for short-interval intracortical inhibition, which was reduced at baseline in patients compared to control subjects. CONCLUSIONS The data show that reduced somatosensory inhibition and enhanced cortical plasticity are not required for the clinical expression of dystonia, and that the abnormalities reported in idiopathic dystonia are not necessarily linked to basal ganglia damage. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Antoniangela Cocco
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Neuroscience, Catholic University, Milan, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Elena Antelmi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
30
|
Sakellariou DF, Dall'Orso S, Burdet E, Lin JP, Richardson MP, McClelland VM. Abnormal microscale neuronal connectivity triggered by a proprioceptive stimulus in dystonia. Sci Rep 2020; 10:20758. [PMID: 33247213 PMCID: PMC7695825 DOI: 10.1038/s41598-020-77533-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
We investigated modulation of functional neuronal connectivity by a proprioceptive stimulus in sixteen young people with dystonia and eight controls. A robotic wrist interface delivered controlled passive wrist extension movements, the onset of which was synchronised with scalp EEG recordings. Data were segmented into epochs around the stimulus and up to 160 epochs per subject were averaged to produce a Stretch Evoked Potential (StretchEP). Event-related network dynamics were estimated using a methodology that features Wavelet Transform Coherency (WTC). Global Microscale Nodal Strength (GMNS) was introduced to estimate overall engagement of areas into short-lived networks related to the StretchEP, and Global Connectedness (GC) estimated the spatial extent of the StretchEP networks. Dynamic Connectivity Maps showed a striking difference between dystonia and controls, with particularly strong theta band event-related connectivity in dystonia. GC also showed a trend towards higher values in dystonia than controls. In summary, we demonstrate the feasibility of this method to investigate event-related neuronal connectivity in relation to a proprioceptive stimulus in a paediatric patient population. Young people with dystonia show an exaggerated network response to a proprioceptive stimulus, displaying both excessive theta-band synchronisation across the sensorimotor network and widespread engagement of cortical regions in the activated network.
Collapse
Affiliation(s)
- Dimitris F Sakellariou
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK.,Machine Learning & Artificial Intelligence Solutions Global Unit, Real World Solutions, IQVIA, London, N1 9JY, UK
| | - Sofia Dall'Orso
- Department of Biomedical Engineering and Human Robotics, Imperial College London, London, SW7 2AZ, UK
| | - Etienne Burdet
- Department of Biomedical Engineering and Human Robotics, Imperial College London, London, SW7 2AZ, UK
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK. .,Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK.
| |
Collapse
|
31
|
Olfaction as a Marker for Dystonia: Background, Current State and Directions. Brain Sci 2020; 10:brainsci10100727. [PMID: 33066144 PMCID: PMC7601998 DOI: 10.3390/brainsci10100727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Dystonia is a heterogeneous group of hyperkinetic movement disorders. The unifying descriptor of dystonia is the motor manifestation, characterized by continuous or intermittent contractions of muscles that cause abnormal movements and postures. Additionally, there are psychiatric, cognitive, and sensory alterations that are possible or putative non-motor manifestations of dystonia. The pathophysiology of dystonia is incompletely understood. A better understanding of dystonia pathophysiology is highly relevant in the amelioration of significant disability associated with motor and non-motor manifestations of dystonia. Recently, diminished olfaction was found to be a potential non-motor manifestation that may worsen the situation of subjects with dystonia. Yet, this finding may also shed light into dystonia pathophysiology and yield novel treatment options. This article aims to provide background information on dystonia and the current understanding of its pathophysiology, including the key structures involved, namely, the basal ganglia, cerebellum, and sensorimotor cortex. Additionally, involvement of these structures in the chemical senses are reviewed to provide an overview on how olfactory (and gustatory) deficits may occur in dystonia. Finally, we describe the present findings on altered chemical senses in dystonia and discuss directions of research on olfactory dysfunction as a marker in dystonia.
Collapse
|
32
|
Latorre A, Rocchi L, Bhatia KP. Delineating the electrophysiological signature of dystonia. Exp Brain Res 2020; 238:1685-1692. [PMID: 32712678 DOI: 10.1007/s00221-020-05863-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Over the last 30 years, the concept of dystonia has dramatically changed, from being considered a motor neurosis, to a pure basal ganglia disorder, to finally reach the definition of a network disorder involving the basal ganglia, cerebellum, thalamus and sensorimotor cortex. This progress has been possible due to the collaboration between clinicians and scientists, and the development of increasingly sophisticated electrophysiological techniques able to non-invasively investigate pathophysiological mechanisms in humans. This review is a chronological excursus of the electrophysiological studies that laid the foundation for the understanding of the pathophysiology of dystonia and delineated its electrophysiological signatures. Evidence for neurophysiological abnormalities is grouped according to the neural system involved, and a unifying theory, bringing together all the hypothesis and evidence provided to date, is proposed at the end.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
33
|
Scheibe F, Neumann WJ, Lange C, Scheel M, Furth C, Köhnlein M, Mergenthaler P, Schultze-Amberger J, Triebkorn P, Ritter P, Kühn AA, Meisel A. Movement disorders after hypoxic brain injury following cardiac arrest in adults. Eur J Neurol 2020; 27:1937-1947. [PMID: 32416613 DOI: 10.1111/ene.14326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE Post-hypoxic movement disorders and chronic post-hypoxic myoclonus are rare complications after cardiac arrest in adults. Our study investigates the clinical spectrum, neuroimaging results, therapy and prognosis of these debilitating post-hypoxic sequelae. METHODS This retrospective study included 72 patients from the neurological intensive care unit at a university hospital, who were diagnosed with hypoxic-ischaemic encephalopathy after cardiac arrest between January 2007 and September 2018. Clinical records were screened for occurrence of post-hypoxic movement disorders and chronic post-hypoxic myoclonus. Affected patients were further analysed for applied neuroprognostic tests, administered therapy and treatment response, and the outcome of these movement disorders and neurological function. RESULTS Nineteen out of 72 screened patients exhibited post-hypoxic motor symptoms. Basal ganglia injury was the most likely neuroanatomical correlate of movement disorders as indicated by T1 hyperintensities and hypometabolism of this region in magnetic resonance imaging and positron emission tomography computed tomography. Levomepromazine and intrathecal baclofen showed first promising and mostly prompt responses to control these post-hypoxic movement disorders and even hyperkinetic storms. In contrast, chronic post-hypoxic myoclonus best responded to co-application of clonazepam, levetiracetam and primidone. Remission rates of post-hypoxic movement disorders and chronic post-hypoxic myoclonus were 58% and 50%, respectively. Affected patients seemed to present a rather good recovery of cognitive functions in contrast to the often more severe physical deficits. CONCLUSIONS Post-hypoxic movement disorders associated with pronounced basal ganglia dysfunction might be efficiently controlled by levomepromazine or intrathecal baclofen. Their occurrence might be an indicator for a more unfavourable, but often not devastating, neurological outcome.
Collapse
Affiliation(s)
- F Scheibe
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - W J Neumann
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - C Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - M Scheel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - C Furth
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - M Köhnlein
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - P Mergenthaler
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - P Triebkorn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - P Ritter
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - A A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - A Meisel
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Nguyen P, Kelly D, Glickman A, Argaw S, Shelton E, Peterson DA, Berman BD. Abnormal Neural Responses During Reflexive Blinking in Blepharospasm: An Event-Related Functional MRI Study. Mov Disord 2020; 35:1173-1180. [PMID: 32250472 DOI: 10.1002/mds.28042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The neurophysiological disruptions underlying blepharospasm, a disabling movement disorder characterized by increased blinking and involuntary muscle spasms of the eyelid, remain poorly understood. OBJECTIVE To investigate the neural substrates underlying reflexive blinking in blepharospasm patients compared to healthy controls using simultaneous functional MRI and surface electromyography. METHODS Fifteen blepharospasm patients and 15 healthy controls were recruited. Randomly timed air puffs to the left eye were used to induce reflexive eye blinks during two 8-minute functional MRI scans. Continuous surface electromyography and video recordings were used to monitor blink responses. Imaging data were analyzed using an event-related design. RESULTS Fourteen blepharospasm patients (10 female; 61.6 ± 8.0 years) and 15 controls (11 female; 60.9 ± 5.5 years) were included in the final analysis. Reflexive eye blinks in controls were associated with activation of the right hippocampus and in patients with activation of the left caudate nucleus. Reflexive blinks in blepharospasm patients showed increased activation in the right postcentral gyrus and precuneus, left precentral gyrus, and left occipital cortex compared to controls. Dystonia severity negatively correlated with activity in the left occipital cortex, and disease duration negatively correlated with reflexive-blink activity in the cerebellum. CONCLUSIONS Reflexive blinking in blepharospasm is associated with increased activation in the caudate nucleus and sensorimotor cortices, suggesting a loss of inhibition within the sensorimotor corticobasal ganglia network. The association between decreasing neural response during reflexive blinking in the cerebellum with disease duration suggests an adaptive role. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Phuong Nguyen
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diane Kelly
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Glickman
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Salem Argaw
- School of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Erika Shelton
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A Peterson
- Institute of Neural Computation, University of California San Diego, San Diego, California, USA.,Computational Neurobiology Laboratory, Salk Institute of Biological Studies, La Jolla, California, USA
| | - Brian D Berman
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
35
|
McClelland VM, Cvetkovic Z, Lin JP, Mills KR, Brown P. Abnormal patterns of corticomuscular and intermuscular coherence in childhood dystonia. Clin Neurophysiol 2020; 131:967-977. [PMID: 32067914 PMCID: PMC7083222 DOI: 10.1016/j.clinph.2020.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/11/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Sensorimotor processing is abnormal in Idiopathic/Genetic dystonias, but poorly studied in Acquired dystonias. Beta-Corticomuscular coherence (CMC) quantifies coupling between oscillatory electroencephalogram (EEG) and electromyogram (EMG) activity and is modulated by sensory stimuli. We test the hypothesis that sensory modulation of CMC and intermuscular coherence (IMC) is abnormal in Idiopathic/Genetic and Acquired dystonias. METHODS Participants: 11 children with Acquired dystonia, 5 with Idiopathic/Genetic dystonia, 13 controls (12-18 years). CMC and IMC were recorded during a grasp task, with mechanical perturbations provided by an electromechanical tapper. Coherence patterns pre- and post-stimulus were compared across groups. RESULTS Beta-CMC increased post-stimulus in Controls and Acquired dystonia (p = 0.001 and p = 0.010, respectively), but not in Idiopathic/Genetic dystonia (p = 0.799). The modulation differed between groups, being larger in both Controls and Acquired dystonia compared with Idiopathic/Genetic dystonia (p = 0.003 and p = 0.022). Beta-IMC increased significantly post-stimulus in Controls (p = 0.004), but not in dystonia. Prominent 4-12 Hz IMC was seen in all dystonia patients and correlated with severity (rho = 0.618). CONCLUSION Idiopathic/Genetic and Acquired dystonia share an abnormal low-frequency IMC. In contrast, sensory modulation of beta-CMC differed between the two groups. SIGNIFICANCE The findings suggest that sensorimotor processing is abnormal in Acquired as well as Idiopathic/Genetic dystonia, but that the nature of the abnormality differs.
Collapse
Affiliation(s)
- Verity M McClelland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas NHS Foundation Trust, London, United Kingdom.
| | - Zoran Cvetkovic
- Department of Informatics, King's College London, United Kingdom.
| | - Jean-Pierre Lin
- Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas NHS Foundation Trust, London, United Kingdom.
| | - Kerry R Mills
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit and Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
| |
Collapse
|
36
|
Sarasso E, Agosta F, Piramide N, Bianchi F, Butera C, Gatti R, Amadio S, Del Carro U, Filippi M. Sensory trick phenomenon in cervical dystonia: a functional MRI study. J Neurol 2020; 267:1103-1115. [DOI: 10.1007/s00415-019-09683-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
|
37
|
Gövert F, Becktepe J, Balint B, Rocchi L, Brugger F, Garrido A, Walter T, Hannah R, Rothwell J, Elble R, Deuschl G, Bhatia K. Temporal discrimination is altered in patients with isolated asymmetric and jerky upper limb tremor. Mov Disord 2019; 35:306-315. [PMID: 31724777 DOI: 10.1002/mds.27880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Unilateral or very asymmetric upper limb tremors with a jerky appearance are poorly investigated. Their clinical classification is an unsolved problem because their classification as essential tremor versus dystonic tremor is uncertain. To avoid misclassification as essential tremor or premature classification as dystonic tremor, the term indeterminate tremor was suggested. OBJECTIVES The aim of this study was to characterize this tremor subgroup electrophysiologically and evaluate whether diagnostically meaningful electrophysiological differences exist compared to patients with essential tremor and dystonic tremor. METHODS We enrolled 29 healthy subjects and 64 patients with tremor: 26 with dystonic tremor, 23 with essential tremor, and 15 patients with upper limb tremor resembling essential tremor but was unusually asymmetric and jerky (indeterminate tremor). We investigated the somatosensory temporal discrimination threshold, the short-interval intracortical inhibition, and the cortical plasticity by paired associative stimulation. RESULTS Somatosensory temporal discrimination threshold was significantly increased in patients with dystonic tremor and indeterminate tremor, but it was normal in the essential tremor patients and healthy controls. Significant differences in short-interval intracortical inhibition and paired associative stimulation were not found among the three patient groups and controls. CONCLUSION These results indicate that indeterminate tremor, as defined in this study, shares electrophysiological similarities with dystonic tremor rather than essential tremor. Therefore, we propose that indeterminate tremor should be considered as a separate clinical entity from essential tremor and that it might be dystonic in nature. Somatosensory temporal discrimination appears to be a useful tool in tremor classification. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Felix Gövert
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany.,Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jos Becktepe
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Florian Brugger
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Alicia Garrido
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Movement Disorders Unit, Neurology Service, Hospital Clínic, Institut d'investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Tim Walter
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Ricci Hannah
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rodger Elble
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
38
|
Conte A, Rocchi L, Latorre A, Belvisi D, Rothwell JC, Berardelli A. Ten‐Year Reflections on the Neurophysiological Abnormalities of Focal Dystonias in Humans. Mov Disord 2019; 34:1616-1628. [DOI: 10.1002/mds.27859] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Antonella Conte
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Anna Latorre
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | | | - John C. Rothwell
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London UK
| | - Alfredo Berardelli
- Department of Human Neurosciences Sapienza, University of Rome Rome Italy
- IRCCS Neuromed Pozzilli (IS) Italy
| |
Collapse
|
39
|
Chung SJ. Focal limb dystonia caused by a complication of the cerebellar developmental venous anomaly: a case report. BMC Neurol 2019; 19:218. [PMID: 31481008 PMCID: PMC6720932 DOI: 10.1186/s12883-019-1446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/25/2019] [Indexed: 11/13/2022] Open
Abstract
Background There are no established theories regarding the role of the cerebellum in dystonia. We report a case of focal limb dystonia secondary to a vasogenic edema of the dentate nucleus caused by a symptomatic developmental venous anomaly. Case presentation A 44-year-old woman presented with sudden onset dystonia in her left arm for 1 week. Brain imaging revealed vasogenic edema in the deep white matter of the left cerebellar hemisphere, including the left dentate nucleus, secondary to a developmental venous anomaly. 18F-fluorodeoxyglucose positron emission tomography images showed hypometabolism in the corresponding cerebellar deep nuclei without the involvement of other brain regions. She was treated with a steroid. At the one-month follow-up, computed tomography scan demonstrated remission of the cerebellar edema, which was thought to be the cause of dystonia. Conclusions This case demonstrates that the cerebellum has an important role in the development of dystonia. Further studies are needed to elucidate the relationship between dystonia and cerebellar dysfunction. Electronic supplementary material The online version of this article (10.1186/s12883-019-1446-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Su Jin Chung
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, 55, Hwasu-ro 14beon-gil, Deogyang-gu, Goyang, 10475, South Korea.
| |
Collapse
|
40
|
Marsili L, Bologna M, Kojovic M, Berardelli A, Espay AJ, Colosimo C. Dystonia in atypical parkinsonian disorders. Parkinsonism Relat Disord 2019; 66:25-33. [PMID: 31443953 DOI: 10.1016/j.parkreldis.2019.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Dystonia is common in the classic atypical parkinsonian disorders such as multiple system atrophy, progressive supranuclear palsy and corticobasal degeneration, and to a lesser extent in dementia with Lewy bodies. Its clinical phenomenology, including body distribution, timing of appearance, severity, and relationship to dopaminergic and other medications may vary considerably within and between atypical parkinsonian disorders. From a pathophysiological standpoint, the coexistence of dystonia with parkinsonism challenges the functional model of the basal ganglia. Clinical recognition of specific dystonic features may assist in the differential diagnosis of atypical parkinsonian disorders and in distinguishing them from Parkinson's disease. The presence of dystonia in atypical parkinsonian disorders informs management decisions. Reduction or withdrawal of levodopa should be considered if there is a close relationship between the onset of dystonia with periods of high dopaminergic tone. Botulinum neurotoxin may be considered in focal presentations. We here provide an updated overview of dystonia arising in the setting of atypical parkinsonian disorders, summarizing relevant clinical and clinicopathological studies, underlying pathophysiological mechanisms, diagnostic clues and potential pitfalls in the diagnosis. Finally, we suggest a tailored therapeutic approach for the management of these patients.
Collapse
Affiliation(s)
- Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Maja Kojovic
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alberto J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy.
| |
Collapse
|
41
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Mov Disord 2019; 34:936-949. [DOI: 10.1002/mds.27736] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli Isernia Italy
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - John C. Rothwell
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|
42
|
Corp DT, Joutsa J, Darby RR, Delnooz CCS, van de Warrenburg BPC, Cooke D, Prudente CN, Ren J, Reich MM, Batla A, Bhatia KP, Jinnah HA, Liu H, Fox MD. Network localization of cervical dystonia based on causal brain lesions. Brain 2019; 142:1660-1674. [PMID: 31099831 PMCID: PMC6536848 DOI: 10.1093/brain/awz112] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/27/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cervical dystonia is a neurological disorder characterized by sustained, involuntary movements of the head and neck. Most cases of cervical dystonia are idiopathic, with no obvious cause, yet some cases are acquired, secondary to focal brain lesions. These latter cases are valuable as they establish a causal link between neuroanatomy and resultant symptoms, lending insight into the brain regions causing cervical dystonia and possible treatment targets. However, lesions causing cervical dystonia can occur in multiple different brain locations, leaving localization unclear. Here, we use a technique termed 'lesion network mapping', which uses connectome data from a large cohort of healthy subjects (resting state functional MRI, n = 1000) to test whether lesion locations causing cervical dystonia map to a common brain network. We then test whether this network, derived from brain lesions, is abnormal in patients with idiopathic cervical dystonia (n = 39) versus matched controls (n = 37). A systematic literature search identified 25 cases of lesion-induced cervical dystonia. Lesion locations were heterogeneous, with lesions scattered throughout the cerebellum, brainstem, and basal ganglia. However, these heterogeneous lesion locations were all part of a single functionally connected brain network. Positive connectivity to the cerebellum and negative connectivity to the somatosensory cortex were specific markers for cervical dystonia compared to lesions causing other neurological symptoms. Connectivity with these two regions defined a single brain network that encompassed the heterogeneous lesion locations causing cervical dystonia. These cerebellar and somatosensory regions also showed abnormal connectivity in patients with idiopathic cervical dystonia. Finally, the most effective deep brain stimulation sites for treating dystonia were connected to these same cerebellar and somatosensory regions identified using lesion network mapping. These results lend insight into the causal neuroanatomical substrate of cervical dystonia, demonstrate convergence across idiopathic and acquired dystonia, and identify a network target for dystonia treatment.
Collapse
Affiliation(s)
- Daniel T Corp
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, Burwood, VIC, Australia
| | - Juho Joutsa
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - R Ryan Darby
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Division of Cognitive and Behavioral Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Danielle Cooke
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jianxun Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Martin M Reich
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Deparment of Neurology, University Hospital and Julius-Maximilians-University, Wuerzburg, Germany
| | - Amit Batla
- UCL Institute of Neurology, Queen Square, London, UK
| | - Kailash P Bhatia
- Sobell Department of Movement Neuroscience, Institute of Neurology, UCL, National Hospital for Neurology, Queen Square, London, UK
| | - Hyder A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michael D Fox
- Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Barcala L, Politti F, Artilheiro MC, Speciali DS, Garbelotti SA, Correa JCF, Lucareli PRG. Adult dyskinetic cerebral palsy: Upper limb movement and muscle function. Acta Neurol Scand 2019; 139:505-511. [PMID: 30810219 DOI: 10.1111/ane.13083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 02/01/2023]
Abstract
AIM The aim of this study was to characterize upper limb motor function during a comparative analysis of electromyographic and upper limb movement analysis during drinking between healthy adults and individuals with DCP. METHOD Fifteen healthy individuals (CG) and fifteen individuals with DCP (DG) participated in the study. Upper limb function was analyzed during drinking and consisted of a task divided into three phases: the going, the adjustment, and the return. RESULTS Electromyographic analysis revealed a lower activity of the anterior deltoid, posterior deltoid, and biceps brachii muscles in the DG. When comparing the interactions between groups and phases, only biceps brachii shower lower muscle activity during going and adjustment phases. The DG presented a smaller range of motion (ROM) for the shoulder, elbow, forearm and wrist movements. An interaction between groups and phases showed smaller ROM for the flexion and internal rotation of the shoulder, elbow flexion, forearm pronation, and ulnar deviation in the return phase compared to CG. INTERPRETATION The results may contribute positively to the quantification of the level of motor impairment and may be used as a reference for the development of therapeutic interventions for patients with DCP.
Collapse
Affiliation(s)
- Luciana Barcala
- Human Motion Analysis Laboratory, Department of Rehabilitation Science Universidade Nove de Julho São Paulo Brazil
| | - Fabiano Politti
- Human Motion Analysis Laboratory, Department of Rehabilitation Science Universidade Nove de Julho São Paulo Brazil
| | - Mariana C. Artilheiro
- Human Motion Analysis Laboratory, Department of Rehabilitation Science Universidade Nove de Julho São Paulo Brazil
| | - Danielli S. Speciali
- Human Motion Analysis Laboratory, Department of Rehabilitation Science Universidade Nove de Julho São Paulo Brazil
- Human Movement Analysis Laboratory Albert Einstein Hospital São Paulo Brazil
| | - Silvio A. Garbelotti
- Department of Physical Therapy Universidade Cidade de São Paulo São Paulo Brazil
| | - João C. F. Correa
- Human Motion Analysis Laboratory, Department of Rehabilitation Science Universidade Nove de Julho São Paulo Brazil
| | - Paulo R. G. Lucareli
- Human Motion Analysis Laboratory, Department of Rehabilitation Science Universidade Nove de Julho São Paulo Brazil
| |
Collapse
|
44
|
Mainka T, Erro R, Rothwell J, Kühn AA, Bhatia KP, Ganos C. Remission in dystonia - Systematic review of the literature and meta-analysis. Parkinsonism Relat Disord 2019; 66:9-15. [PMID: 30898428 DOI: 10.1016/j.parkreldis.2019.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/20/2019] [Accepted: 02/14/2019] [Indexed: 11/27/2022]
Abstract
In isolated, sporadic dystonia, it has been occasionally reported that some patients might undergo symptom remission. However, the exact clinical characteristics of patients with remission remain understudied. Given the important prognostic and pathophysiological implications of dystonic remission, we here provide a systematic review of the literature and a meta-analysis to assess demographic and clinical features associated with this phenomenon. We also provide a list of operational criteria to better define dystonic remission. Using PubMed and Embase, we conducted a systematic literature search in March 2018. 626 records were screened, 31 studies comprising data of 2551 cases with reports predominantly from patients with cervical dystonia (n = 1319) or blepharospasm/Meige syndrome (n = 704) were included in qualitative analysis. Five studies reporting remission in cervical dystonia were eligible for meta-analysis. Complete remission was reported in 11.8% and partial remission for 4.4% of cases. Remission rates were higher in cervical dystonia than in blepharospasm/Meige (e.g. complete remission 15.4% vs. 5.8% respectively). Remission occurred on average 4.5 years after onset of dystonic symptoms. However, the majority of patients (63.8%) relapsed. Meta-analysis for cervical dystonia showed that patients with remission were significantly younger at symptom onset than patients without remission (mean difference -7.13 years [95% CI: 10.58, -3.68], p < 0.0001). Based on our findings, we propose that the degree, the conditions associated with the onset, and the duration of remission are key factors to be considered in a unifying definition of dystonic remission.
Collapse
Affiliation(s)
- Tina Mainka
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Roberto Erro
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Andrea A Kühn
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Christos Ganos
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
45
|
|
46
|
Porcacchia P, Álvarez de Toledo P, Rodríguez-Baena A, Martín-Rodríguez JF, Palomar FJ, Vargas-González L, Jesús S, Koch G, Mir P. Abnormal cerebellar connectivity and plasticity in isolated cervical dystonia. PLoS One 2019; 14:e0211367. [PMID: 30682155 PMCID: PMC6347195 DOI: 10.1371/journal.pone.0211367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/12/2019] [Indexed: 11/29/2022] Open
Abstract
There is increasing evidence that supports the role of the cerebellum in the pathophysiology of dystonia. We used transcranial magnetic stimulation to test the hypothesis that patients with cervical dystonia may have a disrupted cerebellar cortical connectivity at rest, and that cerebellar plasticity is altered too. We enrolled 12 patients with isolated cervical dystonia and 13 controls. A paired-pulse transcranial magnetic stimulation protocol was applied over the right cerebellum and the left primary motor area. Changes in the amplitude of motor evoked potentials were analysed. Continuous and intermittent Theta Burst Stimulation over the cerebellum was also applied. The effects of these repetitive protocols on cortical excitability, on intra-cortical circuits and on cerebellar cortical inhibition were analysed. In healthy subjects, but not in dystonic patients, a conditioning stimulus over the cerebellum was able to inhibit the amplitude of the motor evoked potentials from primary motor cortex. In healthy subjects continuous and intermittent cerebellar Theta Burst Stimulation were able to decrease and increase respectively motor cortex excitability. Continuous Theta Burst Stimulation was able to abolish the cerebellar cortical inhibition observed in basal condition. These effects were not observed in patients with cervical dystonia. Cerebellar cortical connectivity and cerebellar plasticity is altered at rest in patients with cervical dystonia.
Collapse
Affiliation(s)
- Paolo Porcacchia
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Unidad de Neurofisiología Clínica, Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Paloma Álvarez de Toledo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Rodríguez-Baena
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Francisco J. Palomar
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Unidad de Neurofisiología Clínica, Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Laura Vargas-González
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Giacomo Koch
- Clinica Neurologica, Dipartimento di Neuroscienze, Università di Roma Tor Vergata, Rome, Italy
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
- * E-mail:
| |
Collapse
|
47
|
Siokas V, Aloizou AM, Tsouris Z, Michalopoulou A, Mentis AFA, Dardiotis E. Risk Factor Genes in Patients with Dystonia: A Comprehensive Review. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 8:559. [PMID: 30643666 PMCID: PMC6329780 DOI: 10.7916/d8h438gs] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Background Dystonia is a movement disorder with high heterogeneity regarding phenotypic appearance and etiology that occurs in both sporadic and familial forms. The etiology of the disease remains unknown. However, there is increasing evidence suggesting that a small number of gene alterations may lead to dystonia. Although pathogenic variants to the familial type of dystonia have been extensively reviewed and discussed, relatively little is known about the contribution of single-nucleotide polymorphisms (SNPs) to dystonia. This review focuses on the potential role of SNPs and other variants in dystonia susceptibility. Methods We searched the PubMed database for peer-reviewed articles published in English, from its inception through January 2018, that concerned human studies of dystonia and genetic variants. The following search terms were included: “dystonia” in combination with the following terms: 1) “polymorphisms” and 2) “SNPs” as free words. Results A total of 43 published studies regarding TOR1A, BDNF, DRD5, APOE, ARSG, NALC, OR4X2, COL4A1, TH, DDC, DBH, MAO, COMT, DAT, GCH1, PRKRA, MR-1, SGCE, ATP1A3, TAF1, THAP1, GNAL, DRD2, HLA-DRB, CBS, MTHFR, and MS genes, were included in the current review. Discussion To date, a few variants, which are possibly involved in several molecular pathways, have been related to dystonia. Large cohort studies are needed to determine robust associations between variants and dystonia with adjustment for other potential cofounders, in order to elucidate the pathogenic mechanisms of dystonia and the net effect of the genes.
Collapse
Affiliation(s)
- Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Alexios-Fotios A Mentis
- Department of Microbiology, University of Thessaly, University Hospital of Larissa, Larissa, GR.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, GR
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| |
Collapse
|
48
|
Abstract
Dystonias are characterized by involuntary muscle contractions, twisting movements, abnormal postures, and often tremor in various body regions. However, in the last decade several studies have demonstrated that dystonias are also characterized by sensory abnormalities. While botulinum toxin is the gold standard therapy for focal dystonia, exactly how it improves this disorder is not entirely understood. Neurophysiological studies in animals and humans have clearly demonstrated that botulinum toxin improves dystonic motor manifestations by inducing chemodenervation, therefore weakening the injected muscles. In addition, neurophysiological and neuroimaging evidence also suggests that botulinum toxin modulates the activity of various neural structures in the CNS distant from the injected site, particularly cortical motor and sensory areas. Concordantly, recent studies have shown that in patients with focal dystonias botulinum toxin ameliorates sensory disturbances, including reduced spatial discrimination acuity and pain. Overall, these observations suggest that in these patients botulinum toxin-induced effects encompass complex mechanisms beyond chemodenervation of the injected muscles.
Collapse
Affiliation(s)
- Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| |
Collapse
|
49
|
Siokas V, Kardaras D, Aloizou AM, Asproudis I, Boboridis KG, Papageorgiou E, Hadjigeorgiou GM, Tsironi EE, Dardiotis E. BDNF rs6265 (Val66Met) Polymorphism as a Risk Factor for Blepharospasm. Neuromolecular Med 2018; 21:68-74. [DOI: 10.1007/s12017-018-8519-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
50
|
Elkaim LM, De Vloo P, Kalia SK, Lozano AM, Ibrahim GM. Deep brain stimulation for childhood dystonia: current evidence and emerging practice. Expert Rev Neurother 2018; 18:773-784. [DOI: 10.1080/14737175.2018.1523721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lior M. Elkaim
- Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Phillippe De Vloo
- Department of Neurosurgery, Great Ormond Street Hospital for Children, London, UK
| | - Suneil K. Kalia
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, Toronto, Canada
| | - George M. Ibrahim
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, Toronto, Canada
| |
Collapse
|