1
|
Butler V, Shaaban H, Nasanovsky L, White JKV, Hebb O, Jones L, Whiting M, Mukherjee-Roy N, Montalbano AP, Machado Vides CE, Nitschke F, Tetlow IJ. Covalently linked phosphate monoesters on alpha-polyglucans reduce substrate affinity of branching enzymes. Carbohydr Polym 2025; 359:123561. [PMID: 40306772 DOI: 10.1016/j.carbpol.2025.123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025]
Abstract
Starch and glycogen are α-polyglucans which represent important sources of long- and short-term cellular carbohydrate storage synthesized in living cells. Both polyglucans contain variable, but significant, levels of covalently bound phosphate monoesters whose biological role is likely connected to the regulation of turnover of these storage polymers by promoting water solubility. The amount of α-glucan-bound phosphate found in plant starch appears to be closely related to the average chain length of α-1,4-glucans, and inversely related to the frequency of α-1,6-branch linkages. The enzymes responsible for adding branches to linear α-1,4-glucan chains in starch and glycogen are 1,4-α-glucan: 1,4-α-glucan 6-glucosyl transferases (branching enzymes). In this study, glucan bound phosphate was shown to reduce the affinity of branching enzymes for α-glucan substrates. Plant starch branching enzymes and glycogen branching enzymes from various prokaryotic and eukaryotic sources showed reduced substrate affinities in native gels as the α-glucan phosphate content was increased. The substrate affinities of all branching enzymes tested showed an inverse linear relationship with α-glucan phosphate content. The possible biological significance of this phenomenon is discussed in relation to known models of starch structure in plants and specific glycogen storage diseases in mammals.
Collapse
Affiliation(s)
- Victoria Butler
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Hanan Shaaban
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada; Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Lilya Nasanovsky
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Jessica K V White
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Owen Hebb
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Lynne Jones
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Megan Whiting
- Department of Biochemistry, University of Texas Southwestern Medical Centre, Dallas, TX 75390, USA
| | - Neije Mukherjee-Roy
- Department of Biochemistry, University of Texas Southwestern Medical Centre, Dallas, TX 75390, USA
| | - Alina P Montalbano
- Department of Biochemistry, University of Texas Southwestern Medical Centre, Dallas, TX 75390, USA
| | - Carmen Elena Machado Vides
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Felix Nitschke
- Department of Biochemistry, University of Texas Southwestern Medical Centre, Dallas, TX 75390, USA
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
2
|
Nitschke S, Montalbano AP, Whiting ME, Smith BH, Mukherjee-Roy N, Marchioni CR, Sullivan MA, Zhao X, Wang P, Mount H, Verma M, Minassian BA, Nitschke F. Glycogen synthase GYS1 overactivation contributes to glycogen insolubility and malto-oligoglucan-associated neurodegenerative disease. EMBO J 2025; 44:1379-1413. [PMID: 39806098 PMCID: PMC11876434 DOI: 10.1038/s44318-024-00339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD. By depleting PTG, an activator of the glycogen chain-elongating enzyme glycogen synthase (GYS1), in laforin- and malin-deficient LD mice, we show that abnormal glycogen chain lengths and not hyperphosphorylation underlie polyglucosan formation, and that polyglucosan bodies induce neuroinflammation. We provide evidence indicating that a small pool of overactive GYS1 contributes to glycogen insolubility in LD and APBD. In contrast to previous findings, metabolomics experiments using in situ-fixed brains reveal only modest metabolic changes in laforin-deficient mice. These changes are not replicated in malin-deficient or APBD mice, and are not normalized in rescued LD mice. Finally, we identify a pool of metabolically volatile malto-oligoglucans as a polyglucosan body- and neuroinflammation-associated brain energy source, and promising candidate biomarkers for LD and APBD, including malto-oligoglucans and the neurodegeneration marker CHI3L1/YKL40.
Collapse
Affiliation(s)
- Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alina P Montalbano
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Megan E Whiting
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brandon H Smith
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Neije Mukherjee-Roy
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charlotte R Marchioni
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Biochemistry and Molecular Genetics Department, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Howard Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Psychiatry and Physiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Neoh GKS, Tan X, Chen S, Roura E, Dong X, Gilbert RG. Glycogen metabolism and structure: A review. Carbohydr Polym 2024; 346:122631. [PMID: 39245499 DOI: 10.1016/j.carbpol.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Glycogen is a glucose polymer that plays a crucial role in glucose homeostasis by functioning as a short-term energy storage reservoir in animals and bacteria. Abnormalities in its metabolism and structure can cause several problems, including diabetes, glycogen storage diseases (GSDs) and muscular disorders. Defects in the enzymes involved in glycogen synthesis or breakdown, resulting in either excessive accumulation or insufficient availability of glycogen in cells seem to account for the most common pathogenesis. This review discusses glycogen metabolism and structure, including molecular architecture, branching dynamics, and the role of associated components within the granules. The review also discusses GSD type XV and Lafora disease, illustrating the broader implications of aberrant glycogen metabolism and structure. These conditions also impart information on important regulatory mechanisms of glycogen, which hint at potential therapeutic targets. Knowledge gaps and potential future research directions are identified.
Collapse
Affiliation(s)
- Galex K S Neoh
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Eugeni Roura
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Skurat AV, Segvich DM, Contreras CJ, Hu YC, Hurley TD, DePaoli-Roach AA, Roach PJ. Impaired malin expression and interaction with partner proteins in Lafora disease. J Biol Chem 2024; 300:107271. [PMID: 38588813 PMCID: PMC11063907 DOI: 10.1016/j.jbc.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Christopher J Contreras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Duran J. Role of Astrocytes in the Pathophysiology of Lafora Disease and Other Glycogen Storage Disorders. Cells 2023; 12:cells12050722. [PMID: 36899857 PMCID: PMC10000527 DOI: 10.3390/cells12050722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Lafora disease is a rare disorder caused by loss of function mutations in either the EPM2A or NHLRC1 gene. The initial symptoms of this condition are most commonly epileptic seizures, but the disease progresses rapidly with dementia, neuropsychiatric symptoms, and cognitive deterioration and has a fatal outcome within 5-10 years after onset. The hallmark of the disease is the accumulation of poorly branched glycogen in the form of aggregates known as Lafora bodies in the brain and other tissues. Several reports have demonstrated that the accumulation of this abnormal glycogen underlies all the pathologic traits of the disease. For decades, Lafora bodies were thought to accumulate exclusively in neurons. However, it was recently identified that most of these glycogen aggregates are present in astrocytes. Importantly, astrocytic Lafora bodies have been shown to contribute to pathology in Lafora disease. These results identify a primary role of astrocytes in the pathophysiology of Lafora disease and have important implications for other conditions in which glycogen abnormally accumulates in astrocytes, such as Adult Polyglucosan Body disease and the buildup of Corpora amylacea in aged brains.
Collapse
Affiliation(s)
- Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), 08017 Barcelona, Spain;
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Mitra S, Chen B, Wang P, Chown EE, Dear M, Guisso DR, Mariam U, Wu J, Gumusgoz E, Minassian BA. Laforin targets malin to glycogen in Lafora progressive myoclonus epilepsy. Dis Model Mech 2023; 16:dmm049802. [PMID: 36511140 PMCID: PMC9844227 DOI: 10.1242/dmm.049802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen is the largest cytosolic macromolecule and is kept in solution through a regular system of short branches allowing hydration. This structure was thought to solely require balanced glycogen synthase and branching enzyme activities. Deposition of overlong branched glycogen in the fatal epilepsy Lafora disease (LD) indicated involvement of the LD gene products laforin and the E3 ubiquitin ligase malin in regulating glycogen structure. Laforin binds glycogen, and LD-causing mutations disrupt this binding, laforin-malin interactions and malin's ligase activity, all indicating a critical role for malin. Neither malin's endogenous function nor location had previously been studied due to lack of suitable antibodies. Here, we generated a mouse in which the native malin gene is tagged with the FLAG sequence. We show that the tagged gene expresses physiologically, malin localizes to glycogen, laforin and malin indeed interact, at glycogen, and malin's presence at glycogen depends on laforin. These results, and mice, open the way to understanding unknown mechanisms of glycogen synthesis critical to LD and potentially other much more common diseases due to incompletely understood defects in glycogen metabolism.
Collapse
Affiliation(s)
- Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baozhi Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Erin E. Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Mathew Dear
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dikran R. Guisso
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ummay Mariam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emrah Gumusgoz
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Berge A. Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Nitschke S, Sullivan MA, Mitra S, Marchioni C, Lee JP Y, Smith BH, Ahonen S, Wu J, Chown E, Wang P, Petković S, Zhao X, DiGiovanni LF, Perri AM, Israelian L, Grossman TR, Kordasiewicz H, Vilaplana F, Iwai K, Nitschke F, Minassian BA. Glycogen synthase downregulation rescues the amylopectinosis of murine RBCK1 deficiency. Brain 2022; 145:2361-2377. [PMID: 35084461 PMCID: PMC9612801 DOI: 10.1093/brain/awac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 01/09/2022] [Indexed: 12/06/2023] Open
Abstract
Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.
Collapse
Affiliation(s)
- Silvia Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mitchell A Sullivan
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Glycation and Diabetes Complications, Mater Research Institute–The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Sharmistha Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charlotte R Marchioni
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer P Y Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Brandon H Smith
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin E Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Sara Petković
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Laura F DiGiovanni
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Lori Israelian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Tamar R Grossman
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Holly Kordasiewicz
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm 10691, Sweden
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Berge A Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Trehalose Treatment in Zebrafish Model of Lafora Disease. Int J Mol Sci 2022; 23:ijms23126874. [PMID: 35743315 PMCID: PMC9224929 DOI: 10.3390/ijms23126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Mutations in the EPM2A gene encoding laforin cause Lafora disease (LD), a progressive myoclonic epilepsy characterized by drug-resistant seizures and progressive neurological impairment. To date, rodents are the only available models for studying LD; however, their use for drug screening is limited by regulatory restrictions and high breeding costs. To investigate the role of laforin loss of function in early neurodevelopment, and to screen for possible new compounds for treating the disorder, we developed a zebrafish model of LD. Our results showed the epm2a−/− zebrafish to be a faithful model of LD, exhibiting the main disease features, namely motor impairment and neuronal hyperexcitability with spontaneous seizures. The model also showed increased inflammatory response and apoptotic death, as well as an altered autophagy pathway that occurs early in development and likely contributes to the disease progression. Early administration of trehalose was found to be effective for rescuing motor impairment and neuronal hyperexcitability associated with seizures. Our study adds a new tool for investigating LD and might help to identify new treatment opportunities.
Collapse
|
9
|
Mitra S, Gumusgoz E, Minassian BA. Lafora disease: Current biology and therapeutic approaches. Rev Neurol (Paris) 2021; 178:315-325. [PMID: 34301405 DOI: 10.1016/j.neurol.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The ubiquitin system impacts most cellular processes and is altered in numerous neurodegenerative diseases. However, little is known about its role in neurodegenerative diseases due to disturbances of glycogen metabolism such as Lafora disease (LD). In LD, insufficiently branched and long-chained glycogen forms and precipitates into insoluble polyglucosan bodies (Lafora bodies), which drive neuroinflammation, neurodegeneration and epilepsy. LD is caused by mutations in the gene encoding the glycogen phosphatase laforin or the gene coding for the laforin interacting partner ubiquitin E3 ligase malin. The role of the malin-laforin complex in regulating glycogen structure remains with full of gaps. In this review we bring together the disparate body of data on these two proteins and propose a mechanistic hypothesis of the disease in which malin-laforin's role to monitor and prevent over-elongation of glycogen branch chains, which drive glycogen molecules to precipitate and accumulate into Lafora bodies. We also review proposed connections between Lafora bodies and the ensuing neuroinflammation, neurodegeneration and intractable epilepsy. Finally, we review the exciting activities in developing therapies for Lafora disease based on replacing the missing genes, slowing the enzyme - glycogen synthase - that over-elongates glycogen branches, and introducing enzymes that can digest Lafora bodies. Much more work is needed to fill the gaps in glycogen metabolism in which laforin and malin operate. However, knowledge appears already adequate to advance disease course altering therapies for this catastrophic fatal disease.
Collapse
Affiliation(s)
- S Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - E Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - B A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Simmons ZR, Sharma S, Wayne J, Li S, Vander Kooi CW, Gentry MS. Generation and characterization of a laforin nanobody inhibitor. Clin Biochem 2021; 93:80-89. [PMID: 33831386 PMCID: PMC8217207 DOI: 10.1016/j.clinbiochem.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Mutations in the gene encoding the glycogen phosphatase laforin result in the fatal childhood dementia Lafora disease (LD). A cellular hallmark of LD is cytoplasmic, hyper-phosphorylated, glycogen-like aggregates called Lafora bodies (LBs) that form in nearly all tissues and drive disease progression. Additional tools are needed to define the cellular function of laforin, understand the pathological role of laforin in LD, and determine the role of glycogen phosphate in glycogen metabolism. In this work, we present the generation and characterization of laforin nanobodies, with one being a laforin inhibitor. DESIGN AND METHODS We identify multiple classes of specific laforin-binding nanobodies and determine their binding epitopes using hydrogen deuterium exchange (HDX) mass spectrometry. Using para-nitrophenyl phosphate (pNPP) and a malachite gold-based assay specific for glucan phosphatase activity, we assess the inhibitory effect of one nanobody on laforin's catalytic activity. RESULTS Six families of laforin nanobodies are characterized and their epitopes mapped. One nanobody is identified and characterized that serves as an inhibitor of laforin's phosphatase activity. CONCLUSIONS The six generated and characterized laforin nanobodies, with one being a laforin inhibitor, are an important set of tools that open new avenues to define unresolved glycogen metabolism questions.
Collapse
Affiliation(s)
- Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Savita Sharma
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Jeremiah Wayne
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Sheng Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, United States
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
11
|
Sullivan MA, Nitschke S, Skwara EP, Wang P, Zhao X, Pan XS, Chown EE, Wang T, Perri AM, Lee JPY, Vilaplana F, Minassian BA, Nitschke F. Skeletal Muscle Glycogen Chain Length Correlates with Insolubility in Mouse Models of Polyglucosan-Associated Neurodegenerative Diseases. Cell Rep 2020; 27:1334-1344.e6. [PMID: 31042462 DOI: 10.1016/j.celrep.2019.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 01/31/2023] Open
Abstract
Lafora disease (LD) and adult polyglucosan body disease (APBD) are glycogen storage diseases characterized by a pathogenic buildup of insoluble glycogen. Mechanisms causing glycogen insolubility are poorly understood. Here, in two mouse models of LD (Epm2a-/- and Epm2b-/-) and one of APBD (Gbe1ys/ys), the separation of soluble and insoluble muscle glycogen is described, enabling separate analysis of each fraction. Total glycogen is increased in LD and APBD mice, which, together with abnormal chain length and molecule size distributions, is largely if not fully attributed to insoluble glycogen. Soluble glycogen consists of molecules with distinct chain length distributions and differential corresponding solubility, providing a mechanistic link between soluble and insoluble glycogen in vivo. Phosphorylation states differ across glycogen fractions and mouse models, demonstrating that hyperphosphorylation is not a basic feature of insoluble glycogen. Lastly, model-specific variances in protein and activity levels of key glycogen synthesis enzymes suggest uninvestigated regulatory mechanisms.
Collapse
Affiliation(s)
- Mitchell A Sullivan
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Glycation and Diabetes, Translational Research Institute, Mater Research Institute - University of Queensland, Brisbane, QLD 4102, Australia
| | - Silvia Nitschke
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Evan P Skwara
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiao S Pan
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Erin E Chown
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Travis Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jennifer P Y Lee
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm 10691, Sweden
| | - Berge A Minassian
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Felix Nitschke
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
12
|
Duran J, Gruart A, López-Ramos JC, Delgado-García JM, Guinovart JJ. Glycogen in Astrocytes and Neurons: Physiological and Pathological Aspects. ADVANCES IN NEUROBIOLOGY 2019; 23:311-329. [PMID: 31667813 DOI: 10.1007/978-3-030-27480-1_10] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brain glycogen is stored mainly in astrocytes, although neurons also have an active glycogen metabolism. Glycogen has gained relevance as a key player in brain function. In this regard, genetically modified animals have allowed researchers to unravel new roles of this polysaccharide in the brain. Remarkably, mice in which glycogen synthase is abolished in the brain, and thus devoid of brain glycogen, are viable, thereby indicating that the polysaccharide in this organ is not a requirement for survival. While there was growing evidence supporting a role of glycogen in learning and memory, these animals have now confirmed that glycogen participates in these two processes.The association of epilepsy with brain glycogen has also attracted attention. Analysis of genetically modified mice indicates that the relation between brain glycogen and epilepsy is complex. While the formation of glycogen aggregates clearly underlies epilepsy, as in Lafora Disease (LD), the absence of glycogen also favors the occurrence of seizures.LD is a rare genetic condition that affects children. It is characterized by epileptic seizures and neurodegeneration, and it develops rapidly until finally causing death. Research into this disease has unveiled new aspects of glycogen metabolism. Animal models of LD accumulate polyglucosan bodies formed by aberrant glycogen aggregates, called Lafora bodies (LBs). The abolition of glycogen synthase (GS) prevents the formation of LBs and the development of LD, thereby indicating that glycogen accumulation underlies this disease and the associated symptoms, and thus establishing a clear relation between the accumulation of glycogen aggregates and the incidence of seizures.Although it was initially accepted that LBs were essentially neuronal, it is now evident that astrocytes also accumulate polyglucosan aggregates in LD. However, the appearance and composition of these deposits differs from that observed in neurons. Of note, the astrocytic aggregates in LD models show remarkable similarities with corpora amylacea (CA), a type of polyglucosan aggregate observed in the brains of aged mice and humans. The abolition of GS in mice also impedes the formation of CA with age and at the same time prevents the formation of a number of protein aggregates associated with aging. Therefore CA may play a role in age-related neurological decline.
Collapse
Affiliation(s)
- Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain
| | | | | | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
From the seminal discovery of proteoglycogen and glycogenin to emerging knowledge and research on glycogen biology. Biochem J 2019; 476:3109-3124. [DOI: 10.1042/bcj20190441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022]
Abstract
AbstractAlthough the discovery of glycogen in the liver, attributed to Claude Bernard, happened more than 160 years ago, the mechanism involved in the initiation of glucose polymerization remained unknown. The discovery of glycogenin at the core of glycogen's structure and the initiation of its glucopolymerization is among one of the most exciting and relatively recent findings in Biochemistry. This review focuses on the initial steps leading to the seminal discoveries of proteoglycogen and glycogenin at the beginning of the 1980s, which paved the way for subsequent foundational breakthroughs that propelled forward this new research field. We also explore the current, as well as potential, impact this research field is having on human health and disease from the perspective of glycogen storage diseases. Important new questions arising from recent studies, their links to basic mechanisms involved in the de novo glycogen biogenesis, and the pervading presence of glycogenin across the evolutionary scale, fueled by high throughput -omics technologies, are also addressed.
Collapse
|
14
|
Palhegyi AM, Seranova E, Dimova S, Hoque S, Sarkar S. Biomedical Implications of Autophagy in Macromolecule Storage Disorders. Front Cell Dev Biol 2019; 7:179. [PMID: 31555645 PMCID: PMC6742707 DOI: 10.3389/fcell.2019.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
An imbalance between the production and clearance of macromolecules such as proteins, lipids and carbohydrates can lead to a category of diseases broadly known as macromolecule storage disorders. These include, but not limited to, neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease associated with accumulation of aggregation-prone proteins, Lafora and Pompe disease associated with glycogen accumulation, whilst lipid accumulation is characteristic to Niemann-Pick disease and Gaucher disease. One of the underlying factors contributing to the build-up of macromolecules in these storage disorders is the intracellular degradation pathway called autophagy. This process is the primary clearance route for unwanted macromolecules, either via bulk non-selective degradation, or selectively via aggrephagy, glycophagy and lipophagy. Since autophagy plays a vital role in maintaining cellular homeostasis, cell viability and human health, malfunction of this process could be detrimental. Indeed, defective autophagy has been reported in a number of macromolecule storage disorders where autophagy is impaired at distinct stages, such as at the level of autophagosome formation, autophagosome maturation or improper lysosomal degradation of the autophagic cargo. Of biomedical relevance, autophagy is regulated by multiple signaling pathways that are amenable to chemical perturbations by small molecules. Induction of autophagy has been shown to improve cell viability and exert beneficial effects in experimental models of various macromolecule storage disorders where the lysosomal functionality is not overtly compromised. In this review, we will discuss the role of autophagy in certain macromolecule storage disorders and highlight the potential therapeutic benefits of autophagy enhancers in these pathological conditions.
Collapse
Affiliation(s)
- Adina Maria Palhegyi
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Elena Seranova
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Simona Dimova
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Sheabul Hoque
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Sovan Sarkar
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Abstract
Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin-malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.
Collapse
|
16
|
Pederson BA. Structure and Regulation of Glycogen Synthase in the Brain. ADVANCES IN NEUROBIOLOGY 2019; 23:83-123. [PMID: 31667806 DOI: 10.1007/978-3-030-27480-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Brain glycogen synthesis is a regulated, multi-step process that begins with glucose transport across the blood brain barrier and culminates with the actions of glycogen synthase and the glycogen branching enzyme to elongate glucose chains and introduce branch points in a growing glycogen molecule. This review focuses on the synthesis of glycogen in the brain, with an emphasis on glycogen synthase, but draws on salient studies in mammalian muscle and liver as well as baker's yeast, with the goal of providing a more comprehensive view of glycogen synthesis and highlighting potential areas for further study in the brain. In addition, deficiencies in the glycogen biosynthetic enzymes which lead to glycogen storage diseases in humans are discussed, highlighting effects on the brain and discussing findings in genetically modified animal models that recapitulate these diseases. Finally, implications of glycogen synthesis in neurodegenerative and other diseases that impact the brain are presented.
Collapse
|
17
|
Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. ADVANCES IN NEUROBIOLOGY 2019; 23:17-81. [PMID: 31667805 PMCID: PMC7239500 DOI: 10.1007/978-3-030-27480-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
18
|
Abstract
Lafora's disease is a neurodegenerative disorder caused by recessive loss-of-function mutations in the EPM2A (laforin glycogen phosphatase) or EPM2B (malin E3 ubiquitin ligase) genes. Neuropathology is characterized by malformed precipitated glycogen aggregates termed Lafora bodies. Asymptomatic until adolescence, patients undergo first insidious then rapid progressive myoclonus epilepsy toward a vegetative state and death within a decade. Laforin and malin interact to regulate glycogen phosphorylation and chain length pattern, the latter critical to glycogen's solubility. Significant gaps remain in precise mechanistic understanding. However, demonstration that partial reduction in brain glycogen synthesis near-completely prevents the disease in its genetic animal models opens a direct present path to therapy.
Collapse
Affiliation(s)
- Brandy Verhalen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Susan Arnold
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Berge A. Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
19
|
Augé E, Pelegrí C, Manich G, Cabezón I, Guinovart JJ, Duran J, Vilaplana J. Astrocytes and neurons produce distinct types of polyglucosan bodies in Lafora disease. Glia 2018; 66:2094-2107. [PMID: 30152044 DOI: 10.1002/glia.23463] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/07/2023]
Abstract
Lafora disease (LD), the most devastating adolescence-onset epilepsy, is caused by mutations in the EPM2A or EPM2B genes, which encode the proteins laforin and malin, respectively. Loss of function of one of these proteins, which are involved in the regulation of glycogen synthesis, induces the accumulation of polyglucosan bodies (PGBs)-known as Lafora bodies (LBs) and associated with neurons-in the brain. Ageing and some neurodegenerative conditions lead to the appearance of another type of PGB called corpora amylacea, which are associated with astrocytes and contain neo-epitopes that can be recognized by natural antibodies. Here we studied the PGBs in the cerebral cortex and hippocampus of malin knockout mice, a mouse model of LD. These animals presented not only LBs associated with neurons but also a significant number of PGBs associated with astrocytes. These astrocytic PGBs were also increased in mice from senescence-accelerated mouse-prone 8 (SAMP8) strain and mice with overexpression of Protein Targeting to Glycogen (PTGOE ), indicating that they are not exclusive of LD. The astrocytic PGBs, but not neuronal LBs, contained neo-epitopes that are recognized by natural antibodies. The astrocytic PGBs appeared predominantly in the hippocampus but were also present in some cortical brain regions, while neuronal LBs were found mainly in the brain cortex and the pyramidal layer of hippocampal regions CA2 and CA3. Our results indicate that astrocytes, contrary to current belief, are involved in the etiopathogenesis of LD.
Collapse
Affiliation(s)
- Elisabet Augé
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Gemma Manich
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain
| | - Itsaso Cabezón
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
20
|
Bhat S, Ganesh S. New discoveries in progressive myoclonus epilepsies: a clinical outlook. Expert Rev Neurother 2018; 18:649-667. [DOI: 10.1080/14737175.2018.1503949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shweta Bhat
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| |
Collapse
|
21
|
|
22
|
Nitschke F, Sullivan MA, Wang P, Zhao X, Chown EE, Perri AM, Israelian L, Juana-López L, Bovolenta P, Rodríguez de Córdoba S, Steup M, Minassian BA. Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease. EMBO Mol Med 2018; 9:906-917. [PMID: 28536304 PMCID: PMC5494504 DOI: 10.15252/emmm.201707608] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs). The leading LD hypothesis that hyperphosphorylation causes the insolubility was recently challenged by the observation that phosphatase-inactive laforin rescues the laforin-deficient LD mouse model, apparently through correction of a general autophagy impairment. We were for the first time able to quantify brain glycogen phosphate. We also measured glycogen content and chain lengths, LBs, and autophagy markers in several laforin- or malin-deficient mouse lines expressing phosphatase-inactive laforin. We find that: (i) in laforin-deficient mice, phosphatase-inactive laforin corrects glycogen chain lengths, and not hyperphosphorylation, which leads to correction of glycogen amounts and prevention of LBs; (ii) in malin-deficient mice, phosphatase-inactive laforin confers no correction; (iii) general impairment of autophagy is not necessary in LD We conclude that laforin's principle function is to control glycogen chain lengths, in a malin-dependent fashion, and that loss of this control underlies LD.
Collapse
Affiliation(s)
- Felix Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Mitchell A Sullivan
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Glycation and Diabetes, Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Erin E Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Lori Israelian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Lucia Juana-López
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas and Ciber de Enfermedades Raras, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM and Ciber de Enfermedades Raras, Universidad Autónoma de Madrid, Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas and Ciber de Enfermedades Raras, Madrid, Spain
| | - Martin Steup
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Berge A Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
23
|
Pathogenesis of Lafora Disease: Transition of Soluble Glycogen to Insoluble Polyglucosan. Int J Mol Sci 2017; 18:ijms18081743. [PMID: 28800070 PMCID: PMC5578133 DOI: 10.3390/ijms18081743] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Lafora disease (LD, OMIM #254780) is a rare, recessively inherited neurodegenerative disease with adolescent onset, resulting in progressive myoclonus epilepsy which is fatal usually within ten years of symptom onset. The disease is caused by loss-of-function mutations in either of the two genes EPM2A (laforin) or EPM2B (malin). It characteristically involves the accumulation of insoluble glycogen-derived particles, named Lafora bodies (LBs), which are considered neurotoxic and causative of the disease. The pathogenesis of LD is therefore centred on the question of how insoluble LBs emerge from soluble glycogen. Recent data clearly show that an abnormal glycogen chain length distribution, but neither hyperphosphorylation nor impairment of general autophagy, strictly correlates with glycogen accumulation and the presence of LBs. This review summarizes results obtained with patients, mouse models, and cell lines and consolidates apparent paradoxes in the LD literature. Based on the growing body of evidence, it proposes that LD is predominantly caused by an impairment in chain-length regulation affecting only a small proportion of the cellular glycogen. A better grasp of LD pathogenesis will further develop our understanding of glycogen metabolism and structure. It will also facilitate the development of clinical interventions that appropriately target the underlying cause of LD.
Collapse
|
24
|
Swain L, Key G, Tauro A, Ahonen S, Wang P, Ackerley C, Minassian BA, Rusbridge C. Lafora disease in miniature Wirehaired Dachshunds. PLoS One 2017; 12:e0182024. [PMID: 28767715 PMCID: PMC5540395 DOI: 10.1371/journal.pone.0182024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Lafora disease (LD) is an autosomal recessive late onset, progressive myoclonic epilepsy with a high prevalence in the miniature Wirehaired Dachshund. The disease is due to a mutation in the Epm2b gene which results in intracellular accumulation of abnormal glycogen (Lafora bodies). Recent breed-wide testing suggests that the carrier plus affected rate may be as high as 20%. A characteristic feature of the disease is spontaneous and reflex myoclonus; however clinical signs and disease progression are not well described. A survey was submitted to owners of MWHD which were homozygous for Epm2b mutation (breed club testing program) or had late onset reflex myoclonus and clinical diagnosis of LD. There were 27 dogs (11 male; 16 female) for analysis after young mutation-positive dogs that had yet to develop disease were excluded. Average age of onset of clinical signs was 6.94 years (3.5–12). The most common initial presenting sign was reflex and spontaneous myoclonus (77.8%). Other presenting signs included hypnic myoclonus (51.9%) and generalized seizures (40.7%). Less common presenting signs include focal seizures, “jaw smacking”, “fly catching”, “panic attacks”, impaired vision, aggression and urinary incontinence. All these clinical signs may appear, and then increase in frequency and intensity over time. The myoclonus in particular becomes more severe and more refractory to treatment. Signs that developed later in the disease include dementia (51.9%), blindness (48.1%), aggression to people (25.9%) and dogs (33.3%), deafness (29.6%) and fecal (29.6%) and urinary (37.0%) incontinence as a result of loss of house training (disinhibited type behavior). Further prospective study is needed to further characterize the canine disease and to allow more specific therapeutic strategies and to tailor therapy as the disease progresses.
Collapse
Affiliation(s)
- Lindsay Swain
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey, United Kingdom
| | - Gill Key
- Dachshund Breed Council, Wrington, North Somerset, United Kingdom
| | - Anna Tauro
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey, United Kingdom
| | - Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Cameron Ackerley
- Department of Pathology and Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Berge A. Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics (Neurology), The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Clare Rusbridge
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey, United Kingdom
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Abstract
Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy due to mutations in the EPM2A (laforin) and EPM2B (malin) genes, with no substantial genotype-phenotype differences between the two. Founder effects and recurrent mutations are common, and mostly isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen. Polyglucosans, or Lafora bodies (LB) are typically found in the brain, periportal hepatocytes of the liver, skeletal and cardiac myocytes, and in the eccrine duct and apocrine myoepithelial cells of sweat glands. Mouse models of the disease and other naturally occurring animal models have similar pathology and phenotype. Hypotheses of LB formation remain controversial, with compelling evidence and caveats for each hypothesis. However, it is clear that the laforin and malin functions regulating glycogen structure are key. With the exception of a few missense mutations LD is clinically homogeneous, with onset in adolescence. Symptoms begin with seizures, and neurological decline follows soon after. The disease course is progressive and fatal, with death occurring within 10 years of onset. Antiepileptic drugs are mostly non-effective, with none having a major influence on the progression of cognitive and behavioral symptoms. Diagnosis and genetic counseling are important aspects of LD, and social support is essential in disease management. Future therapeutics for LD will revolve around the pathogenesics of the disease. Currently, efforts at identifying compounds or approaches to reduce brain glycogen synthesis appear to be highly promising.
Collapse
|
26
|
Biophysical characterization of laforin–carbohydrate interaction. Biochem J 2016; 473:335-45. [DOI: 10.1042/bj20141555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 11/17/2015] [Indexed: 11/17/2022]
Abstract
Laforin, a key regulator of glycogen metabolism, is a low-affinity glycan binder. In the present work, we thoroughly biophysically characterized its glycan interaction.
Collapse
|
27
|
Romá-Mateo C, Aguado C, García-Giménez JL, Knecht E, Sanz P, Pallardó FV. Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy. Free Radic Biol Med 2015; 88:30-41. [PMID: 25680286 DOI: 10.1016/j.freeradbiomed.2015.01.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/16/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
Lafora disease (LD; OMIM 254780, ORPHA501) is a devastating neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in most cases, by mutations in either the EPM2A or the EPM2B gene, encoding respectively laforin, a phosphatase with dual specificity that is involved in the dephosphorylation of glycogen, and malin, an E3-ubiquitin ligase involved in the polyubiquitination of proteins related to glycogen metabolism. Thus, it has been reported that laforin and malin form a functional complex that acts as a key regulator of glycogen metabolism and that also plays a crucial role in protein homeostasis (proteostasis). Regarding this last function, it has been shown that cells are more sensitive to ER stress and show defects in proteasome and autophagy activities in the absence of a functional laforin-malin complex. More recently, we have demonstrated that oxidative stress accompanies these proteostasis defects and that various LD models show an increase in reactive oxygen species and oxidative stress products together with a dysregulated antioxidant enzyme expression and activity. In this review we discuss possible connections between the multiple defects in protein homeostasis present in LD and oxidative stress.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Fundación Investigación Clinico de Valencia, Instituto de Investigación Sanitaria, Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, E46010 Valencia, Spain
| | - Carmen Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - José Luis García-Giménez
- Fundación Investigación Clinico de Valencia, Instituto de Investigación Sanitaria, Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, E46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain
| | - Erwin Knecht
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Pascual Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Federico V Pallardó
- Fundación Investigación Clinico de Valencia, Instituto de Investigación Sanitaria, Valencia, Spain; Department of Physiology, School of Medicine and Dentistry, University of Valencia, E46010 Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain.
| |
Collapse
|
28
|
Sankhala RS, Koksal AC, Ho L, Nitschke F, Minassian BA, Cingolani G. Dimeric quaternary structure of human laforin. J Biol Chem 2015; 290:4552-4559. [PMID: 25538239 PMCID: PMC4335197 DOI: 10.1074/jbc.m114.627406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/17/2014] [Indexed: 01/01/2023] Open
Abstract
The phosphatase laforin removes phosphate groups from glycogen during biosynthetic activity. Loss-of-function mutations in the gene encoding laforin is the predominant cause of Lafora disease, a fatal form of progressive myoclonic epilepsy. Here, we used hybrid structural methods to determine the molecular architecture of human laforin. We found that laforin adopts a dimeric quaternary structure, topologically similar to the prototypical dual specificity phosphatase VH1. The interface between the laforin carbohydrate-binding module and the dual specificity phosphatase domain generates an intimate substrate-binding crevice that allows for recognition and dephosphorylation of phosphomonoesters of glucose. We identify novel molecular determinants in the laforin active site that help decipher the mechanism of glucan phosphatase activity.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Adem C Koksal
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Lan Ho
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Felix Nitschke
- the Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, and
| | - Berge A Minassian
- the Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada, and; the Institute of Medical Sciences, Department of Pediatrics, University of Toronto, Ontario M5S 1A8, Canada
| | - Gino Cingolani
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,.
| |
Collapse
|
29
|
Singh PK, Singh S. Changing shapes of glycogen-autophagy nexus in neurons: perspective from a rare epilepsy. Front Neurol 2015; 6:14. [PMID: 25699013 PMCID: PMC4316721 DOI: 10.3389/fneur.2015.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/20/2015] [Indexed: 01/19/2023] Open
Abstract
In brain, glycogen metabolism is predominantly restricted to astrocytes but it also indirectly supports neuronal functions. Increased accumulation of glycogen in neurons is mysteriously pathogenic triggering neurodegeneration as seen in “Lafora disease” (LD) and in other transgenic animal models of neuronal glycogen accumulation. LD is a fatal neurodegenerative disorder with excessive glycogen inclusions in neurons. Autophagy, a pathway for bulk degradation of obsolete cellular constituents also degrades metabolites like lipid and glycogen. Recently, defects in this pathway emerged as a plausible reason for glycogen accumulation in neurons in LD, although some contradictions prevail. Albeit surprising, a reciprocal regulation of autophagy by glycogen in neurons has also just been proposed. Notably, increasing evidences of interaction between proteins of autophagy and glycogen metabolism from diverse model systems indicate a conserved, dynamic, and regulatory cross-talk between these two pathways. Concerning these findings, we herein provide certain models for the molecular basis of this cross-talk and discuss its potential implication in the pathophysiology of LD.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulare (IGBMC) , Illkirch , France
| | - Sweta Singh
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulare (IGBMC) , Illkirch , France
| |
Collapse
|
30
|
Minassian BA. Lafora's odyssey reaches a mysterious port of call. Brain 2014; 137:646-8. [PMID: 24549808 DOI: 10.1093/brain/awu018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Berge A Minassian
- Division of Neurology, Department of Paediatrics, and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto Canada, Institute of Medical Sciences, University of Toronto, University of Toronto Michael Bahen Chair in Epilepsy Research
| |
Collapse
|