1
|
Padawer-Curry JA, Bowen RM, Jarang A, Wang X, Lee JM, Bauer AQ. Wide-Field Optical Imaging in Mouse Models of Ischemic Stroke. Methods Mol Biol 2023; 2616:113-151. [PMID: 36715932 DOI: 10.1007/978-1-0716-2926-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional neuroimaging is a powerful tool for evaluating how local and global brain circuits evolve after focal ischemia and how these changes relate to functional recovery. For example, acutely after stroke, changes in functional brain organization relate to initial deficit and are predictive of recovery potential. During recovery, the reemergence and restoration of connections lost due to stroke correlate with recovery of function. Thus, information gleaned from functional neuroimaging can be used as a proxy for behavior and inform on the efficacy of interventional strategies designed to affect plasticity mechanisms after injury. And because these findings are consistently observed across species, bridge measurements can be made in animal models to enrich findings in human stroke populations. In mice, genetic engineering techniques have provided several new opportunities for extending optical neuroimaging methods to more direct measures of neuronal activity. These developments are especially useful in the context of stroke where neurovascular coupling can be altered, potentially limiting imaging measures based on hemodynamic activity alone. This chapter is designed to give an overview of functional wide-field optical imaging (WFOI) for applications in rodent models of stroke, primarily in the mouse. The goal is to provide a protocol for laboratories that want to incorporate an affordable functional neuroimaging assay into their current research thrusts, but perhaps lack the background knowledge or equipment for developing a new arm of research in their lab. Within, we offer a comprehensive guide developing and applying WFOI technology with the hope of facilitating accessibility of neuroimaging technology to other researchers in the stroke field.
Collapse
Affiliation(s)
- Jonah A Padawer-Curry
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA
| | - Ryan M Bowen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Anmol Jarang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiaodan Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jin-Moo Lee
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.
- Imaging Science PhD Program, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Wiersma AM, Fouad K, Winship IR. Enhancing Spinal Plasticity Amplifies the Benefits of Rehabilitative Training and Improves Recovery from Stroke. J Neurosci 2017; 37:10983-10997. [PMID: 29025926 PMCID: PMC6596489 DOI: 10.1523/jneurosci.0770-17.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/15/2017] [Accepted: 10/01/2017] [Indexed: 12/15/2022] Open
Abstract
The limited recovery that occurs following stroke happens almost entirely in the first weeks postinjury. Moreover, the efficacy of rehabilitative training is limited beyond this narrow time frame. Sprouting of spared corticospinal tract axons in the contralesional spinal cord makes a significant contribution to sensorimotor recovery, but this structural plasticity is also limited to the first few weeks after stroke. Here, we tested the hypothesis that inducing plasticity in the spinal cord during chronic stroke could improve recovery from persistent sensorimotor impairment. We potentiated spinal plasticity during chronic stroke, weeks after the initial ischemic injury, in male Sprague-Dawley rats via intraspinal injections of chondroitinase ABC. Our data show that chondroitinase injections into the contralesional gray matter of the cervical spinal cord administered 28 d after stroke induced significant sprouting of corticospinal axons originating in the peri-infarct cortex. Chondroitinase ABC injection during chronic stroke without additional training resulted in moderate improvements of sensorimotor deficits. Importantly, this therapy dramatically potentiated the efficacy of rehabilitative training delivered during chronic stroke in a skilled forelimb reaching task. These novel data suggest that spinal therapy during chronic stroke can amplify the benefits of delayed rehabilitative training with the potential to reduce permanent disability in stroke survivors.SIGNIFICANCE STATEMENT The brain and spinal cord undergo adaptive rewiring ("plasticity") following stroke. This plasticity allows for partial functional recovery from stroke induced sensorimotor impairments. However, the plasticity that underlies recovery occurs predominantly in the first weeks following stroke, and most stroke survivors are left with permanent disability even after rehabilitation. Using animal models, our data show that removal of plasticity-inhibiting signals in the spinal cord (via intraspinal injections of the enzyme chondroitinase ABC) augments rewiring of circuits connecting the brain to the spinal cord, even weeks after stroke. Moreover, this plasticity can be harnessed by rehabilitative training to significantly promote sensorimotor recovery. Thus, intraspinal therapy may augment rehabilitative training and improve recovery even in individuals living with chronic disability due to stroke.
Collapse
Affiliation(s)
| | - Karim Fouad
- Neuroscience and Mental Health Institute
- Faculty of Rehabilitation Medicine, and
| | - Ian R Winship
- Neuroscience and Mental Health Institute,
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|