1
|
Leithner C, Endisch C. Evoked potentials in patients with disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:147-164. [PMID: 39986718 DOI: 10.1016/b978-0-443-13408-1.00002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Acute coma in the intensive care unit and persistent disorders of consciousness (DoC) in neuro-rehabilitation are frequent in patients with hypoxic-ischemic encephalopathy after cardiac arrest (CA), traumatic brain injury, intracranial hemorrhage, or ischemic stroke. Reliable prognostication of long-term neurologic outcomes cannot be made by clinical examination alone in the early phase for many patients, and thus, additional investigations are necessary. Evoked potentials provide inexpensive, real-time, high temporal resolution, bedside, quantifiable information on different sensory pathways into the brain including local and global cortical processing. Short-latency somatosensory evoked potentials can reliably predict poor neurologic long-term outcome in the early phase after CA and are recommended by guidelines as one investigation within an early multimodal assessment. Middle-latency and event-related or cognitive evoked potentials provide information on the integrity of more advanced cortical processing, some closely related to consciousness. This information can help to identify those comatose patients with a good prognosis in the acute phase and help to better understand their precise clinical state and the chances of further recovery in patients with persistent DoC in neuro-rehabilitation. Further studies are necessary to improve the applicability of research findings in the clinical sphere.
Collapse
Affiliation(s)
- Christoph Leithner
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| | - Christian Endisch
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
| |
Collapse
|
2
|
Pelentritou A, Cataldi J, Zubler F, Iten M, Haenggi M, Ben-Hamouda N, Rossetti AO, Tzovara A, De Lucia M. Complex auditory regularity processing across levels of consciousness in coma: Stage 1 Registered Report. Brain Commun 2024; 7:fcae466. [PMID: 39822953 PMCID: PMC11735756 DOI: 10.1093/braincomms/fcae466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025] Open
Abstract
A key question for the scientific study of consciousness is whether it is possible to identify specific features in brain activity that are uniquely linked to conscious experience. This question has important implications for the development of markers to detect covert consciousness in unresponsive patients. In this regard, many studies have focused on investigating the neural response to complex auditory regularities. One noteworthy example is the local global paradigm, which allows for the investigation of auditory regularity encoding at the 'global' level, based on the repetition of groups of sounds. The inference of global regularities is thought to depend on conscious access to such complex auditory stimuli as mostly shown in chronic stages of disorders of consciousness patients. However, whether global regularity encoding can identify covert consciousness along the consciousness spectrum including earlier stages of these disorders remains controversial. Here, we aim to fill this gap by investigating whether the inference of global auditory regularities can occur in acute coma, in the absence of consciousness, and how this may be modulated by the severity of the patients' clinical condition and consciousness level measured using the Full Outline of UnResponsiveness (FOUR) score. We will acquire 63-channel continuous electroencephalography to measure the neural response to global auditory regularity in comatose patients (N = 30) during the first day after cardiac arrest, when patients are unconscious, sedated and under normothermia, and during the second day (with reduced or absent sedation and body temperature control). We hypothesize that global regularity encoding will persist in the absence of consciousness independent of patient outcome, observed as above chance decoding of the neural response to global regularities using multivariate decoding analyses. We further hypothesize that decoding performance will positively correlate with the FOUR score, which indexes consciousness level, and typically improves between the first and second day after coma onset following cardiac arrest in patients with favourable outcome. In an exploratory analysis, we will also evaluate whether global regularity encoding may be influenced by the patients' clinical management, specifically sedation, also shown to affect global deviance detection. Our results will shed light on the neurophysiological correlates of complex auditory regularity processing in unconscious patients and on the link to residual levels of consciousness during the underexplored state of coma upon the first days after cardiac arrest.
Collapse
Affiliation(s)
- Andria Pelentritou
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | - Jacinthe Cataldi
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | - Frederic Zubler
- Department of Neurology, Spitalzentrum Biel, University of Bern, 2502 Biel, Switzerland
| | - Manuela Iten
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Matthias Haenggi
- Institute of Intensive Care Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Nawfel Ben-Hamouda
- Department of Adult Intensive Care Medicine, Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, 3012 Bern, Switzerland
- Department of Neurology, Center for Experimental Neurology, Bern University Hospital (Inselspital), 3010 Bern, Switzerland
| | - Marzia De Lucia
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland
- Centre for Biomedical Imaging (CIBM), 1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Sangare A, Rohaut B, Borden A, Zyss J, Velazquez A, Doyle K, Naccache L, Claassen J. A Novel Approach to Screen for Somatosensory Evoked Potentials in Critical Care. Neurocrit Care 2024; 40:237-250. [PMID: 36991177 DOI: 10.1007/s12028-023-01710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/27/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Somatosensory evoked potentials (SSEPs) help prognostication, particularly in patients with diffuse brain injury. However, use of SSEP is limited in critical care. We propose a novel, low-cost approach allowing acquisition of screening SSEP using widely available intensive care unit (ICU) equipment, specifically a peripheral "train-of-four" stimulator and standard electroencephalograph. METHODS The median nerve was stimulated using a train-of-four stimulator, and a standard 21-channel electroencephalograph was recorded to generate the screening SSEP. Generation of the SSEP was supported by visual inspection, univariate event-related potentials statistics, and a multivariate support vector machine (SVM) decoding algorithm. This approach was validated in 15 healthy volunteers and validated against standard SSEPs in 10 ICU patients. The ability of this approach to predict poor neurological outcome, defined as death, vegetative state, or severe disability at 6 months, was tested in an additional set of 39 ICU patients. RESULTS In each of the healthy volunteers, both the univariate and the SVM methods reliably detected SSEP responses. In patients, when compared against the standard SSEP method, the univariate event-related potentials method matched in nine of ten patients (sensitivity = 94%, specificity = 100%), and the SVM had 100% sensitivity and specificity when compared with the standard method. For the 49 ICU patients, we performed both the univariate and the SVM methods: a bilateral absence of short latency responses (n = 8) predicted poor neurological outcome with 0% FPR (sensitivity = 21%, specificity = 100%). CONCLUSIONS Somatosensory evoked potentials can reliably be recorded using the proposed approach. Given the very good but slightly lower sensitivity of absent SSEPs in the proposed screening approach, confirmation of absent SSEP responses using standard SSEP recordings is advised.
Collapse
Affiliation(s)
- Aude Sangare
- Brain Institute, ICM, CNRS, Sorbonne Université, Inserm U1127, UMR 7225, Paris, France.
- Department of Neurophysiology, Pitié-Salpêtrière, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, Paris, France.
- Sorbonne University, Paris, France.
| | - Benjamin Rohaut
- Brain Institute, ICM, CNRS, Sorbonne Université, Inserm U1127, UMR 7225, Paris, France
- Department of Neurophysiology, Pitié-Salpêtrière, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, Paris, France
- Neurological Intensive Care Unit, Department of Neurology, Pitié-Salpêtrière, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, Paris, France
- Department of Neurology, Columbia University, New York, NY, USA
- New York Presbyterian Hospital, New York, NY, USA
| | - Alaina Borden
- Department of Neurophysiology, Pitié-Salpêtrière, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, Paris, France
| | - Julie Zyss
- Department of Neurophysiology, Pitié-Salpêtrière, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, Paris, France
| | | | - Kevin Doyle
- Department of Neurology, Columbia University, New York, NY, USA
| | - Lionel Naccache
- Brain Institute, ICM, CNRS, Sorbonne Université, Inserm U1127, UMR 7225, Paris, France
- Department of Neurophysiology, Pitié-Salpêtrière, Groupe Hospitalier Universitaire Assistance Publique-Hôpitaux de Paris Sorbonne Université, Paris, France
- Sorbonne University, Paris, France
| | - Jan Claassen
- Department of Neurology, Columbia University, New York, NY, USA
- New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
4
|
Herrera-Diaz A, Boshra R, Tavakoli P, Lin CYA, Pajankar N, Bagheri E, Kolesar R, Fox-Robichaud A, Hamielec C, Reilly JP, Connolly JF. Tracking auditory mismatch negativity responses during full conscious state and coma. Front Neurol 2023; 14:1111691. [PMID: 36970526 PMCID: PMC10036371 DOI: 10.3389/fneur.2023.1111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
The mismatch negativity (MMN) is considered the electrophysiological change-detection response of the brain, and therefore a valuable clinical tool for monitoring functional changes associated with return to consciousness after severe brain injury. Using an auditory multi-deviant oddball paradigm, we tracked auditory MMN responses in seventeen healthy controls over a 12-h period, and in three comatose patients assessed over 24 h at two time points. We investigated whether the MMN responses show fluctuations in detectability over time in full conscious awareness, or whether such fluctuations are rather a feature of coma. Three methods of analysis were utilized to determine whether the MMN and subsequent event-related potential (ERP) components could be identified: traditional visual analysis, permutation t-test, and Bayesian analysis. The results showed that the MMN responses elicited to the duration deviant-stimuli are elicited and reliably detected over the course of several hours in healthy controls, at both group and single-subject levels. Preliminary findings in three comatose patients provide further evidence that the MMN is often present in coma, varying within a single patient from easily detectable to undetectable at different times. This highlights the fact that regular and repeated assessments are extremely important when using MMN as a neurophysiological predictor of coma emergence.
Collapse
Affiliation(s)
- Adianes Herrera-Diaz
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- *Correspondence: Adianes Herrera-Diaz
| | - Rober Boshra
- Princenton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Paniz Tavakoli
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
| | - Chia-Yu A. Lin
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
| | - Netri Pajankar
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| | - Elham Bagheri
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Richard Kolesar
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Alison Fox-Robichaud
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Critical Care Medicine, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Cindy Hamielec
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Critical Care Medicine, Hamilton Health Sciences, Hamilton, ON, Canada
| | - James P. Reilly
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - John F. Connolly
- Centre for Advanced Research in Experimental and Applied Linguistics (ARiEAL), McMaster University, Hamilton, ON, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- VoxNeuro, Inc., Toronto, ON, Canada
| |
Collapse
|
5
|
Floyrac A, Doumergue A, Legriel S, Deye N, Megarbane B, Richard A, Meppiel E, Masmoudi S, Lozeron P, Vicaut E, Kubis N, Holcman D. Predicting neurological outcome after cardiac arrest by combining computational parameters extracted from standard and deviant responses from auditory evoked potentials. Front Neurosci 2023; 17:988394. [PMID: 36875664 PMCID: PMC9975713 DOI: 10.3389/fnins.2023.988394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Background Despite multimodal assessment (clinical examination, biology, brain MRI, electroencephalography, somatosensory evoked potentials, mismatch negativity at auditory evoked potentials), coma prognostic evaluation remains challenging. Methods We present here a method to predict the return to consciousness and good neurological outcome based on classification of auditory evoked potentials obtained during an oddball paradigm. Data from event-related potentials (ERPs) were recorded noninvasively using four surface electroencephalography (EEG) electrodes in a cohort of 29 post-cardiac arrest comatose patients (between day 3 and day 6 following admission). We extracted retrospectively several EEG features (standard deviation and similarity for standard auditory stimulations and number of extrema and oscillations for deviant auditory stimulations) from the time responses in a window of few hundreds of milliseconds. The responses to the standard and the deviant auditory stimulations were thus considered independently. By combining these features, based on machine learning, we built a two-dimensional map to evaluate possible group clustering. Results Analysis in two-dimensions of the present data revealed two separated clusters of patients with good versus bad neurological outcome. When favoring the highest specificity of our mathematical algorithms (0.91), we found a sensitivity of 0.83 and an accuracy of 0.90, maintained when calculation was performed using data from only one central electrode. Using Gaussian, K-neighborhood and SVM classifiers, we could predict the neurological outcome of post-anoxic comatose patients, the validity of the method being tested by a cross-validation procedure. Moreover, the same results were obtained with one single electrode (Cz). Conclusion statistics of standard and deviant responses considered separately provide complementary and confirmatory predictions of the outcome of anoxic comatose patients, better assessed when combining these features on a two-dimensional statistical map. The benefit of this method compared to classical EEG and ERP predictors should be tested in a large prospective cohort. If validated, this method could provide an alternative tool to intensivists, to better evaluate neurological outcome and improve patient management, without neurophysiologist assistance.
Collapse
Affiliation(s)
- Aymeric Floyrac
- Applied Mathematics and Computational Biology, Ecole Normale Supérieure-PSL, Paris, France
| | - Adrien Doumergue
- Applied Mathematics and Computational Biology, Ecole Normale Supérieure-PSL, Paris, France
| | - Stéphane Legriel
- Medical-Surgical Intensive Care Department, Centre Hospitalier de Versailles, Le Chesnay, France.,CESP, PsyDev Team, INSERM, UVSQ, University of Paris-Saclay, Villejuif, France
| | - Nicolas Deye
- Department of Medical and Toxicological Critical Care, APHP, Lariboisière Hospital, Paris, France.,INSERM U942, Paris, France
| | - Bruno Megarbane
- Department of Medical and Toxicological Critical Care, APHP, Lariboisière Hospital, Paris, France.,INSERM UMRS 1144, Université Paris Cité, Paris, France
| | - Alexandra Richard
- Service de Physiologie Clinique-Explorations Fonctionnelles, APHP, Hôpital Lariboisière, Paris, France
| | - Elodie Meppiel
- Service de Physiologie Clinique-Explorations Fonctionnelles, APHP, Hôpital Lariboisière, Paris, France
| | - Sana Masmoudi
- Service de Physiologie Clinique-Explorations Fonctionnelles, APHP, Hôpital Lariboisière, Paris, France
| | - Pierre Lozeron
- Service de Physiologie Clinique-Explorations Fonctionnelles, APHP, Hôpital Lariboisière, Paris, France.,LVTS UMRS 1148, Hemostasis, Thrombo-Inflammation and Neuro-Vascular Repair, CHU Xavier Bichat Secteur Claude Bernard, Université Paris Cité, Paris, France
| | - Eric Vicaut
- Unité de Recherche Clinique Saint-Louis- Lariboisière, APHP, Hôpital Saint Louis, Paris, France
| | - Nathalie Kubis
- Service de Physiologie Clinique-Explorations Fonctionnelles, APHP, Hôpital Lariboisière, Paris, France.,LVTS UMRS 1148, Hemostasis, Thrombo-Inflammation and Neuro-Vascular Repair, CHU Xavier Bichat Secteur Claude Bernard, Université Paris Cité, Paris, France
| | - David Holcman
- Applied Mathematics and Computational Biology, Ecole Normale Supérieure-PSL, Paris, France
| |
Collapse
|
6
|
Benghanem S, Pruvost-Robieux E, Bouchereau E, Gavaret M, Cariou A. Prognostication after cardiac arrest: how EEG and evoked potentials may improve the challenge. Ann Intensive Care 2022; 12:111. [PMID: 36480063 PMCID: PMC9732180 DOI: 10.1186/s13613-022-01083-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
About 80% of patients resuscitated from CA are comatose at ICU admission and nearly 50% of survivors are still unawake at 72 h. Predicting neurological outcome of these patients is important to provide correct information to patient's relatives, avoid disproportionate care in patients with irreversible hypoxic-ischemic brain injury (HIBI) and inappropriate withdrawal of care in patients with a possible favorable neurological recovery. ERC/ESICM 2021 algorithm allows a classification as "poor outcome likely" in 32%, the outcome remaining "indeterminate" in 68%. The crucial question is to know how we could improve the assessment of both unfavorable but also favorable outcome prediction. Neurophysiological tests, i.e., electroencephalography (EEG) and evoked-potentials (EPs) are a non-invasive bedside investigations. The EEG is the record of brain electrical fields, characterized by a high temporal resolution but a low spatial resolution. EEG is largely available, and represented the most widely tool use in recent survey examining current neuro-prognostication practices. The severity of HIBI is correlated with the predominant frequency and background continuity of EEG leading to "highly malignant" patterns as suppression or burst suppression in the most severe HIBI. EPs differ from EEG signals as they are stimulus induced and represent the summated activities of large populations of neurons firing in synchrony, requiring the average of numerous stimulations. Different EPs (i.e., somato sensory EPs (SSEPs), brainstem auditory EPs (BAEPs), middle latency auditory EPs (MLAEPs) and long latency event-related potentials (ERPs) with mismatch negativity (MMN) and P300 responses) can be assessed in ICU, with different brain generators and prognostic values. In the present review, we summarize EEG and EPs signal generators, recording modalities, interpretation and prognostic values of these different neurophysiological tools. Finally, we assess the perspective for futures neurophysiological investigations, aiming to reduce prognostic uncertainty in comatose and disorders of consciousness (DoC) patients after CA.
Collapse
Affiliation(s)
- Sarah Benghanem
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Estelle Pruvost-Robieux
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Eléonore Bouchereau
- Department of Neurocritical Care, G.H.U Paris Psychiatry and Neurosciences, 1, Rue Cabanis, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Martine Gavaret
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Alain Cariou
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.462416.30000 0004 0495 1460Paris-Cardiovascular-Research-Center (Sudden-Death-Expertise-Center), INSERM U970, Paris, France
| |
Collapse
|
7
|
Hermann B, Sangaré A, Munoz-Musat E, Salah AB, Perez P, Valente M, Faugeras F, Axelrod V, Demeret S, Marois C, Pyatigorskaya N, Habert MO, Kas A, Sitt JD, Rohaut B, Naccache L. Importance, limits and caveats of the use of “disorders of consciousness” to theorize consciousness. Neurosci Conscious 2022; 2021:niab048. [PMID: 35369675 PMCID: PMC8966966 DOI: 10.1093/nc/niab048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical and fundamental exploration of patients suffering from disorders of consciousness (DoC) is commonly used by researchers both to test some of their key theoretical predictions and to serve as a unique source of empirical knowledge about possible dissociations between consciousness and cognitive and/or neural processes. For instance, the existence of states of vigilance free of any self-reportable subjective experience [e.g. “vegetative state (VS)” and “complex partial epileptic seizure”] originated from DoC and acted as a cornerstone for all theories by dissociating two concepts that were commonly equated and confused: vigilance and conscious state. In the present article, we first expose briefly the major achievements in the exploration and understanding of DoC. We then propose a synthetic taxonomy of DoC, and we finally highlight some current limits, caveats and questions that have to be addressed when using DoC to theorize consciousness. In particular, we show (i) that a purely behavioral approach of DoC is insufficient to characterize the conscious state of patients; (ii) that the comparison between patients in a minimally conscious state (MCS) and patients in a VS [also coined as unresponsive wakefulness syndrome (UWS)] does not correspond to a pure and minimal contrast between unconscious and conscious states and (iii) we emphasize, in the light of original resting-state positron emission tomography data, that behavioral MCS captures an important but misnamed clinical condition that rather corresponds to a cortically mediated state and that MCS does not necessarily imply the preservation of a conscious state.
Collapse
Affiliation(s)
| | - Aude Sangaré
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neurophysiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Esteban Munoz-Musat
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Amina Ben Salah
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Pauline Perez
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Mélanie Valente
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neurophysiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Frédéric Faugeras
- Department of Neurology, AP-HP, Hôpital Henri-Mondor-Albert Chenevier, Université Paris Est Creteil, Créteil 94 000, France
- Département d’Etudes Cognitives, École normale supérieure, PSL University, Paris 75005, France
- Inserm U955, Institut Mondor de Recherche Biomédicale, Equipe E01 NeuroPsychologie Interventionnelle, Créteil 94000, France
| | - Vadim Axelrod
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Sophie Demeret
- Department of Neurology, Neuro-ICU, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Clémence Marois
- Department of Neurology, Neuro-ICU, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Nadya Pyatigorskaya
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neuroradiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Marie-Odile Habert
- Department of Nuclear Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Laboratoire d’Imagerie Biomédicale, LIB, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Aurélie Kas
- Department of Nuclear Medicine, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Laboratoire d’Imagerie Biomédicale, LIB, INSERM, CNRS, Sorbonne Université, Paris, France
| | - Jacobo D Sitt
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
| | - Benjamin Rohaut
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neurology, Neuro-ICU, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
| | - Lionel Naccache
- Brain institute-ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris 75013, France
- Department of Neurophysiology, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris 75006, France
- Medical Intensive Care Unit, AP-HP, Hôpital Européen Georges Pompidou, Paris 75015, France
| |
Collapse
|
8
|
Single-subject analysis of N400 event-related potential component with five different methods. Int J Psychophysiol 2019; 144:14-24. [DOI: 10.1016/j.ijpsycho.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023]
|
9
|
Armanfard N, Komeili M, Reilly JP, Connolly JF. A Machine Learning Framework for Automatic and Continuous MMN Detection With Preliminary Results for Coma Outcome Prediction. IEEE J Biomed Health Inform 2018; 23:1794-1804. [PMID: 30369457 DOI: 10.1109/jbhi.2018.2877738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mismatch negativity (MMN) is a component of the event-related potential (ERP) that is elicited through an odd-ball paradigm. The existence of the MMN in a coma patient has a good correlation with coma emergence; however, this component can be difficult to detect. Previously, MMN detection was based on visual inspection of the averaged ERPs by a skilled clinician, a process that is expensive and not always feasible in practice. In this paper, we propose a practical machine learning (ML) based approach for detection of MMN component, thus, improving the accuracy of prediction of emergence from coma. Furthermore, the method can operate on an automatic and continuous basis thus alleviating the need for clinician involvement. The proposed method is capable of the MMN detection over intervals as short as two minutes. This finer time resolution enables identification of waxing and waning cycles of a conscious state. An auditory odd-ball paradigm was applied to 22 healthy subjects and 2 coma patients. A coma patient is tested by measuring the similarity of the patient's ERP responses with the aggregate healthy responses. Because the training process for measuring similarity requires only healthy subjects, the complexity and practicality of training procedure of the proposed method are greatly improved relative to training on coma patients directly. Since there are only two coma patients involved with this study, the results are reported on a very preliminary basis. Preliminary results indicate we can detect the MMN component with an accuracy of 92.7% on healthy subjects. The method successfully predicted emergence in both coma patients when conventional methods failed. The proposed method for collecting training data using exclusively healthy subjects is a novel approach that may prove useful in future, unrelated studies where ML methods are used.
Collapse
|
10
|
Azabou E, Rohaut B, Porcher R, Heming N, Kandelman S, Allary J, Moneger G, Faugeras F, Sitt JD, Annane D, Lofaso F, Chrétien F, Mantz J, Naccache L, Sharshar T. Mismatch negativity to predict subsequent awakening in deeply sedated critically ill patients. Br J Anaesth 2018; 121:1290-1297. [PMID: 30442256 DOI: 10.1016/j.bja.2018.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mismatch negativity (MMN) is the neurophysiological correlate of cognitive integration of novel stimuli. Although MMN is a well-established predictor of awakening in non-sedated comatose patients, its prognostic value in deeply sedated critically ill patients remains unknown. The aim of this prospective, observational pilot study was to investigate the prognostic value of MMN for subsequent awakening in deeply sedated critically ill patients. METHODS MMN was recorded in 43 deeply sedated critically ill patients on Day 3 of ICU admission using a classical 'odd-ball' paradigm that delivers rare deviant sounds in a train of frequent standard sounds. Individual visual analyses and a group level analysis of recordings were performed. MMN amplitudes were then analysed according to the neurological status (awake vs not awake) at Day 28. RESULTS Median (inter-quartile range) Richmond Assessment Sedation Scale (RASS) at the time of recording was -5 (range, from -5 to -4.5). Visual detection of MMN revealed a poor inter-rater agreement [kappa=0.17, 95% confidence interval (0.07-0.26)]. On Day 28, 30 (70%) patients had regained consciousness while 13 (30%) had not. Quantitative group level analysis revealed a significantly greater MMN amplitude for patients who awakened compared with those who had not [mean (standard deviation) = -0.65 (1.4) vs 0.08 (0.17) μV, respectively; P=0.003). CONCLUSIONS MMN can be observed in deeply sedated critically ill patients and could help predict subsequent awakening. However, visual analysis alone is unreliable and should be systematically completed with individual level statistics.
Collapse
Affiliation(s)
- E Azabou
- Department of Physiology, Assistance Publique-Hôpitaux de Paris, Raymond-Poincaré Hospital, INSERM U 1179, University of Versailles Saint-Quentin en Yvelines, Garches, Paris, France; General Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Raymond-Poincaré Hospital, INSERM U1173, University of Versailles Saint-Quentin en Yvelines, Garches, France
| | - B Rohaut
- Department of Neurology, Neuro-ICU, Columbia University, New York, NY, USA
| | - R Porcher
- Center for Clinical Epidemiology, Assistance Publique-Hôpitaux de Paris, Hotel Dieu Hospital, University Paris Descartes, INSERM U1153, Paris, France
| | - N Heming
- General Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Raymond-Poincaré Hospital, INSERM U1173, University of Versailles Saint-Quentin en Yvelines, Garches, France
| | - S Kandelman
- Department of Anesthesiology and Intensive Care Medicine, Beaujon Hospital, University of Denis Diderot, Clichy, France
| | - J Allary
- Department of Anesthesiology and Intensive Care Medicine, Beaujon Hospital, University of Denis Diderot, Clichy, France
| | - G Moneger
- General Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Raymond-Poincaré Hospital, INSERM U1173, University of Versailles Saint-Quentin en Yvelines, Garches, France
| | - F Faugeras
- Institut du Cerveau et de la Moelle épinière, Paris, France
| | - J D Sitt
- Institut du Cerveau et de la Moelle épinière, Paris, France
| | - D Annane
- General Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Raymond-Poincaré Hospital, INSERM U1173, University of Versailles Saint-Quentin en Yvelines, Garches, France
| | - F Lofaso
- Department of Physiology, Assistance Publique-Hôpitaux de Paris, Raymond-Poincaré Hospital, INSERM U 1179, University of Versailles Saint-Quentin en Yvelines, Garches, Paris, France
| | - F Chrétien
- Laboratory of Experimental Neuropathology, Institut Pasteur, Paris, France
| | - J Mantz
- Laboratory of Experimental Neuropathology, Institut Pasteur, Paris, France; Department of Anesthesiology and Intensive Care Medicine, European Hospital Georges Pompidou, Paris Descartes University, Paris, France
| | - L Naccache
- Institut du Cerveau et de la Moelle épinière, Paris, France
| | - T Sharshar
- Laboratory of Experimental Neuropathology, Institut Pasteur, Paris, France; Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France; Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, Paris, France.
| |
Collapse
|
11
|
A framework for the extended monitoring of levels of cognitive function in unresponsive patients. PLoS One 2018; 13:e0200793. [PMID: 30024945 PMCID: PMC6053194 DOI: 10.1371/journal.pone.0200793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022] Open
Abstract
Generally, prognostication of coma outcome currently combines behavioral, reflex, and possibly neuroimaging tests that are interpreted by an attending physician. Electroencephalography, particularly, event-related brain potentials (ERP) have received attention due to evidence demonstrating the positive predictive value of certain ERP including the mismatch negativity (MMN) and the P3a, for coma emergence. We describe a set of ERP paradigms designed to require and reflect increasing levels of cognitive processing with the added objective of determining the influence of each paradigm's context strength on its ability to elicit ERPs. These paradigms were then used without explicit instructions to participants to attend to the stimuli to determine which paradigms possessed sufficient context "strength" to elicit ERPs in the absence of active participation on the part of the subject; a circumstance often encountered in brain injury patients. These paradigms were then validated on two groups of adults-younger and older, and the difference due to active participation was validated on another group of younger adults. Results show that paradigms with stronger stimulus context features performed better than those with weaker contexts, and that older adults generally had significantly attenuated and delayed responses compared to younger adults. Based on these findings, it is recommended the use of the auditory oddball paradigm that includes novel stimuli to elicit the mismatch negativity and P300, and semantic violation sentences to elicit the N400. These findings also reinforce the procedure of instructing participants about the requirements of a protocol-regardless of the patient's diagnosis or apparent state-in order to help those who are able to attend to show the most robust responses possible.
Collapse
|
12
|
André-Obadia N, Zyss J, Gavaret M, Lefaucheur JP, Azabou E, Boulogne S, Guérit JM, McGonigal A, Merle P, Mutschler V, Naccache L, Sabourdy C, Trébuchon A, Tyvaert L, Vercueil L, Rohaut B, Delval A. Recommendations for the use of electroencephalography and evoked potentials in comatose patients. Neurophysiol Clin 2018; 48:143-169. [DOI: 10.1016/j.neucli.2018.05.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
|
13
|
Naccache L. Minimally conscious state or cortically mediated state? Brain 2018; 141:949-960. [PMID: 29206895 PMCID: PMC5888986 DOI: 10.1093/brain/awx324] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023] Open
Abstract
Durable impairments of consciousness are currently classified in three main neurological categories: comatose state, vegetative state (also recently coined unresponsive wakefulness syndrome) and minimally conscious state. While the introduction of minimally conscious state, in 2002, was a major progress to help clinicians recognize complex non-reflexive behaviours in the absence of functional communication, it raises several problems. The most important issue related to minimally conscious state lies in its criteria: while behavioural definition of minimally conscious state lacks any direct evidence of patient's conscious content or conscious state, it includes the adjective 'conscious'. I discuss this major problem in this review and propose a novel interpretation of minimally conscious state: its criteria do not inform us about the potential residual consciousness of patients, but they do inform us with certainty about the presence of a cortically mediated state. Based on this constructive criticism review, I suggest three proposals aiming at improving the way we describe the subjective and cognitive state of non-communicating patients. In particular, I present a tentative new classification of impairments of consciousness that combines behavioural evidence with functional brain imaging data, in order to probe directly and univocally residual conscious processes.
Collapse
Affiliation(s)
- Lionel Naccache
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, 75013, Paris, France
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, 75013, Paris, France
- INSERM, U 1127, F-75013, Paris, France
- Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013, Paris, France
| |
Collapse
|
14
|
Rohaut B, Naccache L. Disentangling conscious from unconscious cognitive processing with event-related EEG potentials. Rev Neurol (Paris) 2017; 173:521-528. [DOI: 10.1016/j.neurol.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 01/23/2023]
|
15
|
Naro A, Leo A, Manuli A, Cannavò A, Bramanti A, Bramanti P, Calabrò RS. How far can we go in chronic disorders of consciousness differential diagnosis? The use of neuromodulation in detecting internal and external awareness. Neuroscience 2017; 349:165-173. [PMID: 28285941 DOI: 10.1016/j.neuroscience.2017.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022]
Abstract
Awareness generation and modulation may depend on a balanced information integration and differentiation across default mode network (DMN) and external awareness networks (EAN). Neuromodulation approaches, capable of shaping information processing, may highlight residual network activities supporting awareness, which are not detectable through active paradigms, thus allowing to differentiate chronic disorders of consciousness (DoC). We studied aftereffects of repetitive transcranial magnetic stimulation (rTMS) by applying graph theory within canonical frequency bands to compare the markers of these networks in the electroencephalographic data from 20 patients with DoC. We found that patients' high-frequency networks suffered from a large-scale connectivity breakdown, paralleled by a local hyperconnectivity, whereas low-frequency networks showed a preserved but dysfunctional large-scale connectivity. There was a correlation between metrics and the behavioral awareness. Interestingly, two persons with UWS showed a residual rTMS-induced modulation of the functional correlations between the DMN and the EAN, as observed in patients with MCS. Hence, we may hypothesize that the patients with UWS who demonstrate evidence of residual DMN-EAN functional correlation may be misdiagnosed, given that such residual network correlations could support covert consciousness.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Antonino Leo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | | | - Alessia Bramanti
- Institute of Applied Sciences and Intelligent Systems "Edoardo Caianello", National Research Council of Italy, Messina, Italy
| | | | | |
Collapse
|
16
|
Sergent C, Faugeras F, Rohaut B, Perrin F, Valente M, Tallon-Baudry C, Cohen L, Naccache L. Multidimensional cognitive evaluation of patients with disorders of consciousness using EEG: A proof of concept study. NEUROIMAGE-CLINICAL 2016; 13:455-469. [PMID: 28116238 PMCID: PMC5233797 DOI: 10.1016/j.nicl.2016.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
The use of cognitive evoked potentials in EEG is now part of the routine evaluation of non-communicating patients with disorders of consciousness in several specialized medical centers around the world. They typically focus on one or two cognitive markers, such as the mismatch negativity or the P3 to global auditory regularity. However it has become clear that none of these markers in isolation is at the same time sufficiently specific and sufficiently sensitive to be taken as the unique gold standard for diagnosing consciousness. A good way forward would be to combine several cognitive markers within the same test to improve evaluation. Furthermore, given the diversity of lesions leading to disorders of consciousness, it is important not only to probe whether a patient is conscious or not, but also to establish a more general and nuanced profile of the residual cognitive capacities of each patient using a combination of markers. In the present study we built a unique EEG protocol that probed 8 dimensions of cognitive processing in a single 1.5 h session. This protocol probed variants of classical markers together with new markers of spatial attention, which has not yet been studied in these patients. The eight dimensions were: (1) own name recognition, (2) temporal attention, (3) spatial attention, (4) detection of spatial incongruence (5) motor planning, and (6,7,8) modulations of these effects by the global context, reflecting higher-level functions. This protocol was tested in 15 healthy control subjects and in 17 patients with various etiologies, among which 13 could be included in the analysis. The results in the control group allowed a validation and a specific description of the cognitive levels probed by each marker. At the single-subject level, this combined protocol allowed assessing the presence of both classical and newly introduced markers for each patient and control, and revealed that the combination of several markers increased diagnostic sensitivity. The presence of a high-level effect in any of the three tested domains distinguished between minimally conscious and vegetative patients, while the presence of low-level effects was similar in both groups. In summary, this study constitutes a validated proof of concept in favor of probing multiple cognitive dimensions to improve the evaluation of non-communicating patients. At a more conceptual level, this EEG tool can help achieve a better understanding of disorders of consciousness by exploring consciousness in its multiple cognitive facets. This new EEG protocol probes 8 cognitive functions within a single 1.5 h session. It allows a complete neuropsychological evaluation only based on brain activity. It increases sensitivity in detecting both low-level and high-level functions in patients. Only the high-level functions distinguish minimally conscious from vegetative states. Multidimensional EEG testing is feasible in patients and can improve evaluation.
Collapse
Affiliation(s)
- Claire Sergent
- Laboratoire Psychologie de la Perception, Université Paris Descartes et Centre National de la Recherche Scientifique, UMR8242, 45 rue des Saints Pères, 75006 Paris, France
| | - Frédéric Faugeras
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Neurological Unit, Créteil, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris, France; INSERM, U 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Benjamin Rohaut
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Fabien Perrin
- Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center (UCBL, CNRS UMR5292, Inserm U1028), Lyon, France
| | - Mélanie Valente
- Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Catherine Tallon-Baudry
- Cognitive Neuroscience Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM)-École Normale Supérieure (ENS), Paris, France
| | - Laurent Cohen
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Lionel Naccache
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| |
Collapse
|
17
|
L’emploi de méthodes mathématiques pour détecter la présence de potentiels évoqués dans le coma : un aide ou un fardeau ? Neurophysiol Clin 2016. [DOI: 10.1016/j.neucli.2016.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Naccache L, Sitt J, King JR, Rohaut B, Faugeras F, Chennu S, Strauss M, Valente M, Engemann D, Raimondo F, Demertzi A, Bekinschtein T, Dehaene S. Reply: Replicability and impact of statistics in the detection of neural responses of consciousness. Brain 2016; 139:e31. [PMID: 27017190 DOI: 10.1093/brain/aww060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lionel Naccache
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris, France INSERM, U 1127, F-75013, Paris, France Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013, Paris, France Sorbonne Universités, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - Jacobo Sitt
- INSERM, U 1127, F-75013, Paris, France INSERM-CEA Cognitive Neuroimaging unit
- CEA/SAC/DSV/DRM/Neurospin Center, Gif/Yvette cedex, France
| | - Jean-Rémi King
- INSERM, U 1127, F-75013, Paris, France INSERM-CEA Cognitive Neuroimaging unit
- CEA/SAC/DSV/DRM/Neurospin Center, Gif/Yvette cedex, France
| | - Benjamin Rohaut
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France INSERM, U 1127, F-75013, Paris, France
| | | | - Srivas Chennu
- Department of Clinical Neurosciences, University of Cambridge, UK
| | - Mélanie Strauss
- INSERM-CEA Cognitive Neuroimaging unit
- CEA/SAC/DSV/DRM/Neurospin Center, Gif/Yvette cedex, France
| | - Mélanie Valente
- INSERM, U 1127, F-75013, Paris, France Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013, Paris, France
| | - Denis Engemann
- INSERM, U 1127, F-75013, Paris, France Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013, Paris, France
| | - Federico Raimondo
- INSERM, U 1127, F-75013, Paris, France Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013, Paris, France
| | - Athena Demertzi
- Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013, Paris, France
| | | | - Stanislas Dehaene
- INSERM-CEA Cognitive Neuroimaging unit
- CEA/SAC/DSV/DRM/Neurospin Center, Gif/Yvette cedex, France Collège de France, 75005 Paris, France
| |
Collapse
|
19
|
De Lucia M, Tzovara A. Reply: Replicability and impact of statistics in the detection of neural responses of consciousness. Brain 2016; 139:e32. [PMID: 27017191 DOI: 10.1093/brain/aww063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Marzia De Lucia
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neuroscience, Lausanne University and University Hospital, Lausanne, CH-1011, Switzerland
| | - Athina Tzovara
- Laboratoire de Recherche en Neuroimagerie (LREN), Department of Clinical Neuroscience, Lausanne University and University Hospital, Lausanne, CH-1011, Switzerland Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, CH-8032, Switzerland Neuroscience Centre Zurich University of Zurich, CH-8032, Switzerland
| |
Collapse
|