1
|
Pozzi FE, Aprea V, Giovannelli G, Lattuada F, Crivellaro C, Bertola F, Castelnovo V, Canu E, Filippi M, Appollonio I, Ferrarese C, Agosta F, Tremolizzo L. Clinical and neuroimaging characterization of the first frontotemporal dementia family carrying the MAPT p.K298E mutation. Neurogenetics 2024; 25:215-223. [PMID: 38592608 PMCID: PMC11249401 DOI: 10.1007/s10048-024-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024]
Abstract
We present an in-depth clinical and neuroimaging analysis of a family carrying the MAPT K298E mutation associated with frontotemporal dementia (FTD). Initial identification of this mutation in a single clinical case led to a comprehensive investigation involving four affected siblings allowing to elucidate the mutation's phenotypic expression.A 60-year-old male presented with significant behavioral changes and progressed rapidly, exhibiting speech difficulties and cognitive decline. Neuroimaging via FDG-PET revealed asymmetrical frontotemporal hypometabolism. Three siblings subsequently showed varied but consistent clinical manifestations, including abnormal behavior, speech impairments, memory deficits, and motor symptoms correlating with asymmetric frontotemporal atrophy observed in MRI scans.Based on the genotype-phenotype correlation, we propose that the p.K298E mutation results in early-onset behavioral variant FTD, accompanied by a various constellation of speech and motor impairment.This detailed characterization expands the understanding of the p.K298E mutation's clinical and neuroimaging features, underlining its role in the pathogenesis of FTD. Further research is crucial to comprehensively delineate the clinical and epidemiological implications of the MAPT p.K298E mutation.
Collapse
Affiliation(s)
- Federico Emanuele Pozzi
- Neurology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy.
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.
| | - Vittoria Aprea
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | - Francesca Lattuada
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Nuclear Medicine Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Cinzia Crivellaro
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Nuclear Medicine Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Francesca Bertola
- Medical Genetics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ildebrando Appollonio
- Neurology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Carlo Ferrarese
- Neurology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Department, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
- Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Hartnell IJ, Woodhouse D, Jasper W, Mason L, Marwaha P, Graffeuil M, Lau LC, Norman JL, Chatelet DS, Buee L, Nicoll JAR, Blum D, Dorothee G, Boche D. Glial reactivity and T cell infiltration in frontotemporal lobar degeneration with tau pathology. Brain 2024; 147:590-606. [PMID: 37703311 PMCID: PMC10834257 DOI: 10.1093/brain/awad309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Frontotemporal lobar degeneration with tau (FTLD-tau) is a group of tauopathies that underlie ∼50% of FTLD cases. Identification of genetic risk variants related to innate/adaptive immunity have highlighted a role for neuroinflammation and neuroimmune interactions in FTLD. Studies have shown microglial and astrocyte activation together with T cell infiltration in the brain of THY-Tau22 tauopathy mice. However, this remains to be confirmed in FTLD-tau patients. We conducted a detailed post-mortem study of FTLD-tau cases including 45 progressive supranuclear palsy with clinical frontotemporal dementia, 33 Pick's disease, 12 FTLD-MAPT and 52 control brains to characterize the link between phosphorylated tau (pTau) epitopes and the innate and adaptive immunity. Tau pathology was assessed in the cerebral cortex using antibodies directed against: Tau-2 (phosphorylated and unphosphorylated tau), AT8 (pSer202/pThr205), AT100 (pThr212/pSer214), CP13 (pSer202), PHF1 (pSer396/pSer404), pThr181 and pSer356. The immunophenotypes of microglia and astrocytes were assessed with phenotypic markers (Iba1, CD68, HLA-DR, CD64, CD32a, CD16 for microglia and GFAP, EAAT2, glutamine synthetase and ALDH1L1 for astrocytes). The adaptive immune response was explored via CD4+ and CD8+ T cell quantification and the neuroinflammatory environment was investigated via the expression of 30 inflammatory-related proteins using V-Plex Meso Scale Discovery. As expected, all pTau markers were increased in FTLD-tau cases compared to controls. pSer356 expression was greatest in FTLD-MAPT cases versus controls (P < 0.0001), whereas the expression of other markers was highest in Pick's disease. Progressive supranuclear palsy with frontotemporal dementia consistently had a lower pTau protein load compared to Pick's disease across tau epitopes. The only microglial marker increased in FTLD-tau was CD16 (P = 0.0292) and specifically in FTLD-MAPT cases (P = 0.0150). However, several associations were detected between pTau epitopes and microglia, supporting an interplay between them. GFAP expression was increased in FTLD-tau (P = 0.0345) with the highest expression in Pick's disease (P = 0.0019), while ALDH1L1 was unchanged. Markers of astrocyte glutamate cycling function were reduced in FTLD-tau (P = 0.0075; Pick's disease: P < 0.0400) implying astrocyte reactivity associated with a decreased glutamate cycling activity, which was further associated with pTau expression. Of the inflammatory proteins assessed in the brain, five chemokines were upregulated in Pick's disease cases (P < 0.0400), consistent with the recruitment of CD4+ (P = 0.0109) and CD8+ (P = 0.0014) T cells. Of note, the CD8+ T cell infiltration was associated with pTau epitopes and microglial and astrocytic markers. Our results highlight that FTLD-tau is associated with astrocyte reactivity, remarkably little activation of microglia, but involvement of adaptive immunity in the form of chemokine-driven recruitment of T lymphocytes.
Collapse
Affiliation(s)
- Iain J Hartnell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Declan Woodhouse
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - William Jasper
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Luke Mason
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Pavan Marwaha
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Manon Graffeuil
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Laurie C Lau
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, University of Southampton, Southampton O16 6YD, UK
| | - Jeanette L Norman
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine University of Southampton, Southampton SO16 6YD, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - Luc Buee
- University of Lille, Inserm, CHU Lille, UMR-S1172—Lille Neurosciences and Cognition, Lille 59045, France
- Alzheimer and Tauopathies, LabEX DISTALZ, Lille 59000, France
| | - James A R Nicoll
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S1172—Lille Neurosciences and Cognition, Lille 59045, France
- Alzheimer and Tauopathies, LabEX DISTALZ, Lille 59000, France
| | - Guillaume Dorothee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris 75012, France
| | - Delphine Boche
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
3
|
Magrin C, Bellafante M, Sola M, Piovesana E, Bolis M, Cascione L, Napoli S, Rinaldi A, Papin S, Paganetti P. Tau protein modulates an epigenetic mechanism of cellular senescence in human SH-SY5Y neuroblastoma cells. Front Cell Dev Biol 2023; 11:1232963. [PMID: 37842084 PMCID: PMC10569482 DOI: 10.3389/fcell.2023.1232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Progressive Tau deposition in neurofibrillary tangles and neuropil threads is the hallmark of tauopathies, a disorder group that includes Alzheimer's disease. Since Tau is a microtubule-associated protein, a prevalent concept to explain the pathogenesis of tauopathies is that abnormal Tau modification contributes to dissociation from microtubules, assembly into multimeric β-sheets, proteotoxicity, neuronal dysfunction and cell loss. Tau also localizes in the cell nucleus and evidence supports an emerging function of Tau in DNA stability and epigenetic modulation. Methods: To better characterize the possible role of Tau in regulation of chromatin compaction and subsequent gene expression, we performed a bioinformatics analysis of transcriptome data obtained from Tau-depleted human neuroblastoma cells. Results: Among the transcripts deregulated in a Tau-dependent manner, we found an enrichment of target genes for the polycomb repressive complex 2. We further describe decreased cellular amounts of the core components of the polycomb repressive complex 2 and lower histone 3 trimethylation in Tau deficient cells. Among the de-repressed polycomb repressive complex 2 target gene products, IGFBP3 protein was found to be linked to increased senescence induction in Tau-deficient cells. Discussion: Our findings propose a mechanism for Tau-dependent epigenetic modulation of cell senescence, a key event in pathologic aging.
Collapse
Affiliation(s)
- Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Martina Bellafante
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Marco Bolis
- Functional Cancer Genomics Laboratory, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Luciano Cascione
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
4
|
Callari M, Sola M, Magrin C, Rinaldi A, Bolis M, Paganetti P, Colnaghi L, Papin S. Cancer-specific association between Tau (MAPT) and cellular pathways, clinical outcome, and drug response. Sci Data 2023; 10:637. [PMID: 37730697 PMCID: PMC10511431 DOI: 10.1038/s41597-023-02543-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Tau (MAPT) is a microtubule-associated protein causing common neurodegenerative diseases or rare inherited frontotemporal lobar degenerations. Emerging evidence for non-canonical functions of Tau in DNA repair and P53 regulation suggests its involvement in cancer. To bring new evidence for a relevant role of Tau in cancer, we carried out an in-silico pan-cancer analysis of MAPT transcriptomic profile in over 10000 clinical samples from 32 cancer types and over 1300 pre-clinical samples from 28 cancer types provided by the TCGA and the DEPMAP datasets respectively. MAPT expression associated with key cancer hallmarks including inflammation, proliferation, and epithelial to mesenchymal transition, showing cancer-specific patterns. In some cancer types, MAPT functional networks were affected by P53 mutational status. We identified new associations of MAPT with clinical outcomes and drug response in a context-specific manner. Overall, our findings indicate that the MAPT gene is a potential major player in multiple types of cancer. Importantly, the impact of Tau on cancer seems to be heavily influenced by the specific cellular environment.
Collapse
Affiliation(s)
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
- Computational Oncology Unit, Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche 'Mario Negri', Milano, Italy
- Swiss Institute of Bioinformatics, Bioinformatics Core Unit, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| |
Collapse
|
5
|
Cullinane PW, Fumi R, Theilmann Jensen M, Jabbari E, Warner TT, Revesz T, Morris HR, Rohrer JD, Jaunmuktane Z. MAPT-Associated Familial Progressive Supranuclear Palsy with Typical Corticobasal Degeneration Neuropathology: A Clinicopathological Report. Mov Disord Clin Pract 2023; 10:691-694. [PMID: 37070039 PMCID: PMC10105101 DOI: 10.1002/mdc3.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Affiliation(s)
- Patrick W. Cullinane
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of NeurologyLondonUK
| | - Riona Fumi
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Marte Theilmann Jensen
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Edwin Jabbari
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Thomas T. Warner
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of NeurologyLondonUK
- Queen Square Movement Disorders CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of NeurologyLondonUK
| | - Huw R. Morris
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Movement Disorders CentreUCL Queen Square Institute of NeurologyLondonUK
| | - Jonathan D. Rohrer
- Dementia Research CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Zane Jaunmuktane
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of NeurologyLondonUK
- Division of Neuropathology, National Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation TrustLondonUK
| |
Collapse
|
6
|
Buciuc M, Koga S, Pham NTT, Duffy JR, Knopman DS, Ali F, Boeve BF, Graff-Radford J, Botha H, Lowe VJ, Nguyen A, Reichard RR, Dickson DW, Petersen RC, Whitwell JL, Josephs KA. The many faces of globular glial tauopathy: A clinical and imaging study. Eur J Neurol 2023; 30:321-333. [PMID: 36256511 PMCID: PMC10141553 DOI: 10.1111/ene.15603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Globular glial tauopathy (GGT) has been associated with frontotemporal dementia syndromes; little is known about the clinical and imaging characteristics of GGT and how they differ from other non-globular glial 4-repeat tauopathies (N4GT) such as progressive supranuclear palsy (PSP) or corticobasal degeneration (CBD). METHODS For this case-control study the Mayo Clinic brain banks were queried for all cases with an autopsy-confirmed diagnosis of GGT between 1 January 2011 and 31 October 2021. Fifty patients with N4GT (30 PSP, 20 CBD) were prospectively recruited and followed by the Neurodegenerative Research Group at Mayo Clinic, Minnesota. Magnetic resonance imaging was used to characterize patterns of gray/white matter atrophy, MR-parkinsonism index, midbrain volume, and white matter hyperintensities.18 F-Fluorodeoxyglucose-, 11 C Pittsburg compound-, and 18 F-flortaucipir-positron emission tomography scans were reviewed. RESULTS Twelve patients with GGT were identified: 83% were women compared to 42% in NG4T (p = 0.02) with median age at death 76.5 years (range: 55-87). The most frequent clinical features were eye movement abnormalities, parkinsonism, behavioral changes followed by pyramidal tract signs and motor speech abnormalities. Lower motor neuron involvement was present in 17% and distinguished GGT from NG4T (p = 0.035). Primary progressive apraxia of speech was the most frequent initial diagnosis (25%); 50% had a Parkinson-plus syndrome before death. Most GGT patients had asymmetric frontotemporal atrophy with matching hypometabolism. GGT patients had more gray matter atrophy in temporal lobes, normal MR-parkinsonism index, and larger midbrain volumes. CONCLUSIONS Female sex, lower motor neuron involvement in the context of a frontotemporal dementia syndrome, and asymmetric brain atrophy with preserved midbrain might be suggestive of underlying GGT.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shunsuke Koga
- Department of Neurosciences, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neurosciences, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Lleó A, Illán-Gala I. Early Motor Changes in Genetic Frontotemporal Dementia. Neurology 2022; 99:409-410. [PMID: 36219793 DOI: 10.1212/wnl.0000000000200967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alberto Lleó
- From the Memory Unit (A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) (I.I.-G.), Spain.
| | - Ignacio Illán-Gala
- From the Memory Unit (A.L.), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) (I.I.-G.), Spain
| |
Collapse
|
8
|
Bevan-Jones WR, Cope TE, Jones PS, Passamonti L, Hong YT, Fryer T, Arnold R, Coles JP, Aigbirhio FI, O'Brien JT, Rowe JB. In vivo evidence for pre-symptomatic neuroinflammation in a MAPT mutation carrier. Ann Clin Transl Neurol 2019; 6:373-378. [PMID: 30847369 PMCID: PMC6389753 DOI: 10.1002/acn3.683] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 11/10/2022] Open
Abstract
Neuroinflammation occurs in frontotemporal dementia, however its timing relative to protein aggregation and neuronal loss is unknown. Using positron emission tomography and magnetic resonance imaging to quantify these processes in a pre‐symptomatic carrier of the 10 + 16 MAPT mutation, we show microglial activation in frontotemporal regions, despite a lack of protein aggregation or atrophy in these areas. The distribution of microglial activation better discriminated the carrier from controls than did protein aggregation at this pre‐symptomatic disease stage. Our findings suggest an early role for microglial activation in frontotemporal dementia. Longitudinal studies are needed to explore the causality of this pathophysiological association.
Collapse
Affiliation(s)
| | - Thomas E Cope
- Department of Clinical Neurosciences University of Cambridge Cambridge United Kingdom
| | - P Simon Jones
- Department of Clinical Neurosciences University of Cambridge Cambridge United Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences University of Cambridge Cambridge United Kingdom
| | - Young T Hong
- Wolfson Brain Imaging Centre University of Cambridge Cambridge United Kingdom
| | - Tim Fryer
- Wolfson Brain Imaging Centre University of Cambridge Cambridge United Kingdom
| | - Robert Arnold
- Department of Psychiatry University of Cambridge Cambridge United Kingdom
| | - Jonathan P Coles
- Division of Anaesthesia University of Cambridge Cambridge United Kingdom
| | | | - John T O'Brien
- Department of Psychiatry University of Cambridge Cambridge United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences University of Cambridge Cambridge United Kingdom.,Medical Research Council Cognition and Brain Sciences Unit Cambridge United Kingdom
| |
Collapse
|
9
|
Ygland E, Landqvist Waldö M, Englund E, Puschmann A, Nilsson C. Will FTLD-tau work for all when FTDP-17 retires? Brain 2018; 141:e62. [PMID: 29947741 DOI: 10.1093/brain/awy178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emil Ygland
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Sweden
| | - Maria Landqvist Waldö
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Memory Clinic, Sweden.,Ängelholm Hospital, Ängelholm, Sweden
| | - Elisabet Englund
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Oncology and Pathology, Sweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Sweden
| | - Christer Nilsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurology, Sweden
| |
Collapse
|