1
|
Demir S, Tunca Alparslan G. Targeting GPR52 for potential agonists for schizophrenia therapy: A computational drug discovery study. J Mol Graph Model 2025; 137:108994. [PMID: 40024174 DOI: 10.1016/j.jmgm.2025.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/05/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
G Protein-Coupled Receptors (GPCRs) are one of the most attractive therapeutic targets due to their active role in different systems and disease types. The increasing three-dimensional structure information of GPCRs has made them interesting for Structure-Based Drug Design (SBDD) studies. There are various orphan GPCRs whose endogenous molecules have not yet been identified, although their structural information is known. The recent discovery of the three-dimensional structure of GPR52, an orphan GPCR involved in central nervous system diseases, made it stand out as a drug target. In this study, it is aimed to find a lead drug molecule candidate for GPR52 by using structure-based drug design techniques. The study comprises a set of SBDD methods, including preparation of a small molecule library, pharmacophore modeling, molecular docking, consensus scoring, molecular dynamics simulations, calculation of binding free energy, and in silico pharmacokinetic studies for GPR52. It is expected that the molecules obtained as a result of the study may be strong candidates for in vitro and in vivo experiments or could be used as lead drug molecules in new drug discovery and development studies.
Collapse
Affiliation(s)
- Selinay Demir
- Department of Genetics and Bioengineering, Faculty of Engineering, Trakya University, 22030, Edirne, Turkey
| | - Güzin Tunca Alparslan
- Department of Genetics and Bioengineering, Faculty of Engineering, Trakya University, 22030, Edirne, Turkey.
| |
Collapse
|
2
|
Zhang B, Ge W, Ma M, Li S, Yu J, Yang G, Wang H, Li J, Li Q, Zeng R, Lu B, Shui W. Post-translational modifications orchestrate the intrinsic signaling bias of GPR52. Nat Chem Biol 2025:10.1038/s41589-025-01864-w. [PMID: 40087539 DOI: 10.1038/s41589-025-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
Despite recent advances in G-protein-coupled receptor (GPCR) biology, the regulation of GPCR activation, signaling and function by post-translational modifications (PTMs) remains largely unexplored. In this study of GPR52, an orphan GPCR with exceedingly high constitutive G-protein activity that is emerging as a neurotherapeutic target, we discovered its disproportionately low arrestin recruitment activity. After profiling the N-glycosylation and phosphorylation patterns, we found that these two types of PTMs differentially shape the intrinsic signaling bias of GPR52. While N-terminal N-glycosylation promotes constitutive Gs signaling possibly through favoring the self-activating conformation, phosphorylation in helix 8, to our great surprise, suppresses arrestin recruitment and attenuates receptor internalization. In addition, we uncovered the counteracting roles of N-glycosylation and phosphorylation in modulating GPR52-dependent accumulation of the huntingtin protein in brain striatal cells. Our study provides new insights into the regulation of intrinsic signaling bias and cellular function of an orphan GPCR through distinct PTMs in different motifs.
Collapse
Affiliation(s)
- Bingjie Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Wei Ge
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mengna Ma
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Shanshan Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Jie Yu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Guang Yang
- State Key Laboratory of Medical Neurobiology, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Huilan Wang
- State Key Laboratory of Medical Neurobiology, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Qingrun Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Rong Zeng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
3
|
Gupta H, Sahi S. High-throughput virtual screening of potential inhibitors of GPR52 using docking and biased sampling method for Huntington's disease therapy. Mol Divers 2024; 28:3331-3347. [PMID: 38038795 DOI: 10.1007/s11030-023-10763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Huntington's disease (HD) is a rare and progressive neurodegenerative disorder caused by polyglutamine (poly-Q) mutations of the huntingtin (HTT) gene resulting in chorea, cognitive, and psychiatric dysfunctions. Being a monogenic condition, reducing the levels of the mutated huntingtin protein (mHTT) holds promise as an effective therapeutic approach. GPR52, an orphan G-protein coupled receptor (GPCR), enriched in the striatum, is a novel target for slowing down the progression of HD by lowering the mHTT levels. Therefore, the study focuses on identifying potent small-molecule inhibitors for GPR52 using a combination of robust high-throughput virtual screening (HTVS) and pharmacokinetics profiling followed by fast pulling of ligand (FPL) and umbrella sampling (US) simulations. Initially, screening a library of 2,36,545 compounds was done against the binding pocket of GPR52. Based on binding affinity, stereochemical and non-bonded interactions, and pharmacokinetic profiling, 50 compounds were shortlisted. Selected hit compounds 1, 2, and 3 were subjected to FPL simulations with applied external bias potential to investigate their unique dissociation pathways and intermolecular interactions over time. Subsequently, the US simulations were performed on the selected hit compounds to estimate their binding free energy (ΔG). The analysis of the trajectories obtained from simulations revealed that the residues TYR34, TYR185, GLY187, ASP188, ILE189, SER299, PHE300, and THR303 within the active site of GPR52 were significant for efficient ligand binding through the formation of various hydrogen bond interactions and hydrophobic contacts. Out of the three hit compounds, compound 3 had the lowest ΔG of - 20.82 ± 0.44 kcal/mol. The study identified compounds 1, 2, and 3 as potential molecules that can be developed as GPR52 inhibitors holding promise for lowering mHTT levels.
Collapse
Affiliation(s)
- Himanshi Gupta
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India.
| |
Collapse
|
4
|
Shihoya W, Iwama A, Sano FK, Nureki O. Cryo-EM advances in GPCR structure determination. J Biochem 2024; 176:1-10. [PMID: 38498911 DOI: 10.1093/jb/mvae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) constitute a prominent superfamily in humans and are categorized into six classes (A-F) that play indispensable roles in cellular communication and therapeutics. Nonetheless, their structural comprehension has been limited by challenges in high-resolution data acquisition. This review highlights the transformative impact of cryogenic electron microscopy (cryo-EM) on the structural determinations of GPCR-G-protein complexes. Specific technologies, such as nanobodies and mini-G-proteins, stabilize complexes and facilitate structural determination. We discuss the structural alterations upon receptor activation in different GPCR classes, revealing their diverse mechanisms. This review highlights the robust foundation for comprehending GPCR function and pave the way for future breakthroughs in drug discovery and therapeutic targeting.
Collapse
Affiliation(s)
- Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Aika Iwama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Murphy RE, Wang P, Ali S, Smith HR, Felsing DE, Chen H, Zhou J, Allen JA. Discovery of 3-((4-Benzylpyridin-2-yl)amino)benzamides as Potent GPR52 G Protein-Biased Agonists. J Med Chem 2024; 67:9709-9730. [PMID: 38788241 PMCID: PMC11441106 DOI: 10.1021/acs.jmedchem.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Orphan GPR52 is emerging as a promising neurotherapeutic target. Optimization of previously reported lead 4a employing an iterative drug design strategy led to the identification of a series of unique GPR52 agonists, such as 10a (PW0677), 15b (PW0729), and 24f (PW0866), with improved potency and efficacy. Intriguingly, compounds 10a and 24f showed greater bias for G protein/cAMP signaling and induced significantly less in vitro desensitization than parent compound 4a, indicating that reducing GPR52 β-arrestin activity with biased agonism results in sustained GPR52 activation. Further exploration of compounds 15b and 24f indicated improved potency and efficacy, and excellent target selectivity, but limited brain exposure warranting further optimization. These balanced and biased GPR52 agonists provide important pharmacological tools to study GPR52 activation, signaling bias, and therapeutic potential for neuropsychiatric and neurological diseases.
Collapse
Affiliation(s)
- Ryan E. Murphy
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Pingyuan Wang
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States; Present Address: Ocean University of China, Qingdao, Shangdong 266003, China
| | - Saghir Ali
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hudson R. Smith
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Daniel E. Felsing
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States; Present Address: Neurocrine Biosciences, San Diego, California 92130, United States
| | - Haiying Chen
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Center for Addiction Sciences and Therapeutics, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
6
|
Ali S, Wang P, Murphy RE, Allen JA, Zhou J. Orphan GPR52 as an emerging neurotherapeutic target. Drug Discov Today 2024; 29:103922. [PMID: 38387741 DOI: 10.1016/j.drudis.2024.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
GPR52 is a highly conserved, brain-enriched, Gs/olf-coupled orphan G protein-coupled receptor (GPCR) that controls various cyclic AMP (cAMP)-dependent physiological and pathological processes. Stimulation of GPR52 activity might be beneficial for the treatment of schizophrenia, psychiatric disorders and other human neurological diseases, whereas inhibition of its activity might provide a potential therapeutic approach for Huntington's disease. Excitingly, HTL0048149 (HTL'149), an orally available GPR52 agonist, has been advanced into phase I human clinical trials for the treatment of schizophrenia. In this concise review, we summarize the current understanding of GPR52 receptor distribution as well as its structure and functions, highlighting the recent advances in drug discovery efforts towards small-molecule GPR52 ligands. The opportunities and challenges presented by targeting GPR52 for novel therapeutics are also briefly discussed.
Collapse
Affiliation(s)
- Saghir Ali
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ryan E Murphy
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John A Allen
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, and Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
7
|
Power ME, Fernandez NR, Oni OP, Kalia A, Rourke JL. The non-nutritive sweetener sucralose increases β-arrestin signaling at the constitutively active orphan G protein-coupled receptor GPR52. Can J Physiol Pharmacol 2024; 102:116-127. [PMID: 37748201 DOI: 10.1139/cjpp-2023-0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Non-nutritive sweeteners are popular food additives owing to their low caloric density and powerful sweetness relative to natural sugars. Their lack of metabolism contributes to evidence proclaiming their safety, yet several studies contradict this, demonstrating that sweeteners activate sweet taste G protein-coupled receptors (GPCRs) and elicit deleterious metabolic functions through unknown mechanisms. We hypothesize that activation of GPCRs, particularly orphan receptors due to their abundance in metabolically active tissues, contributes to the biological activity of sweeteners. We quantified the response of 64 orphans to the sweeteners saccharin and sucralose using a high-throughput β-arrestin-2 recruitment assay (PRESTO-Tango). GPR52 was the sole receptor that significantly responded to a mixture of sucralose and saccharin. Subsequent experiments revealed sucralose as the activating sweetener. Activation of GPR52 was concentration-dependent, with an EC50 of 0.23 mmol/L and an Emax of 3.43 ± 0.24 fold change at 4 mmol/L. GPR52 constitutively activates CRE pathways; however, we show that sucralose-induced activation of GPR52 does not further activate this pathway. Identification of this novel sucralose-GPCR interaction supports the notion that sucralose elicits off-target signaling through the activation of GPR52, calling into question sucralose's assumed lack of bioactivity.
Collapse
Affiliation(s)
- Madeline E Power
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Nicholas R Fernandez
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Olaiya Peter Oni
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Aditaya Kalia
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| | - Jillian L Rourke
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada
| |
Collapse
|
8
|
Wu Z, Han Z, Tao L, Sun X, Su J, Hu J, Li C. Dynamic Insights into the Self-Activation Pathway and Allosteric Regulation of the Orphan G-Protein-Coupled Receptor GPR52. J Chem Inf Model 2023; 63:5847-5862. [PMID: 37651308 DOI: 10.1021/acs.jcim.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Within over 800 members of G-protein-coupled receptors, there are numerous orphan receptors whose endogenous ligands are largely unknown, providing many opportunities for novel drug discovery. However, the lack of an in-depth understanding of the intrinsic working mechanism for orphan receptors severely limits the related rational drug design. The G-protein-coupled receptor 52 (GPR52) is a unique orphan receptor that constitutively increases cellular 5'-cyclic adenosine monophosphate (cAMP) levels without binding any exogenous agonists and has been identified as a promising therapeutic target for central nervous system disorders. Although recent structural biology studies have provided snapshots of both active and inactive states of GPR52, the mechanism of the conformational transition between these states remains unclear. Here, an acceptable self-activation pathway for GPR52 was proposed through 6 μs Gaussian accelerated molecular dynamics (GaMD) simulations, in which the receptor spontaneously transitions from the active state to that matching the inactive crystal structure. According to the three intermediate states of the receptor obtained by constructing a reweighted potential of mean force, how the allosteric regulation occurs between the extracellular orthosteric binding pocket and the intracellular G-protein-binding site is revealed. Combined with the independent gradient model, several important microswitch residues and the allosteric communication pathway that directly links the two regions are both identified. Transfer entropy calculations not only reveal the complex allosteric signaling within GPR52 but also confirm the unique role of ECL2 in allosteric regulation, which is mutually validated with the results of GaMD simulations. Overall, this work elucidates the allosteric mechanism of GPR52 at the atomic level, providing the most detailed information to date on the self-activation of the orphan receptor.
Collapse
Affiliation(s)
- Zhixiang Wu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lianci Tao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xiaohan Sun
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jingjie Su
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Lu J, Li Z, Gitler AD, Lu B. Drugging "undruggable" neurodegenerative disease targets with small molecules. Sci Bull (Beijing) 2023; 68:1715-1718. [PMID: 37468412 DOI: 10.1016/j.scib.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Affiliation(s)
- Junmei Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhaoyang Li
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Aaron D Gitler
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Li X, Liu Q, Xie X, Peng C, Pang Q, Liu B, Han B. Application of Novel Degraders Employing Autophagy for Expediting Medicinal Research. J Med Chem 2023; 66:1700-1711. [PMID: 36716420 DOI: 10.1021/acs.jmedchem.2c01712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Targeted protein degradation (TPD) technology is based on a unique pharmacological mechanism that has profoundly revolutionized medicinal research by overcoming limitations associated with traditional small-molecule drugs. Autophagy, a mechanism for intracellular waste disposal and recovery, is an important biological process in medicinal research. Recently, studies have demonstrated that several emerging autophagic degraders can treat human diseases. Herein we summarize the progress in medicinal research on autophagic degraders, including autophagosome-tethering compounds (ATTEC), autophagy-targeting chimeras (AUTAC), and AUTOphagy-TArgeting chimeras (AUTOTAC), for treating human diseases. These autophagic degraders exhibit excellent potential for treating neurodegenerative diseases. Our research on autophagic degraders provides a new avenue for medicinal research on TPD via autophagy.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
11
|
Krieg PF, Sonner JK, Kurelic R, Engler JB, Scharenberg MF, Bauer S, Nikolaev VO, Friese MA. GPR52 regulates cAMP in T cells but is dispensable for encephalitogenic responses. Front Immunol 2023; 13:1113348. [PMID: 36761164 PMCID: PMC9902724 DOI: 10.3389/fimmu.2022.1113348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/31/2022] [Indexed: 01/25/2023] Open
Abstract
G-protein coupled receptors (GPCR) regulate 3',5'-cyclic adenosine monophosphate (cAMP) levels in T cells. cAMP as ubiquitous second messenger is crucial for adequate physiology of T cells by mediating effector T cell (Teff) function as well as regulatory T cell (Treg)-mediated immunosuppression. Several GPCRs have been identified to be crucial for Teff and Treg function. However, the role of the orphan, constitutively active Gs-coupled GPCR GPR52 is unknown. Here we show that GPR52 regulates cAMP levels in T cells but does not affect T cell function. We found that stimulation of transfected HEK cells or primary T cells with a GPR52 agonist results in a rise of intracellular cAMP. However, neither Gpr52 deficiency nor pharmacological modulation of GPR52 by antagonists or agonists affected T cell activation, differentiation, and proliferation or Treg-mediated immunosuppression. Moreover, Gpr52 deletion did not modify the clinical disease course of experimental autoimmune encephalomyelitis (EAE). Our results demonstrate that a modulation of cAMP levels in T cells does not inevitably result in altered T cell function. While we could not identify an obvious role of GPR52 in in vitro T cell assays and in vivo CNS autoimmunity, it might regulate T cell function in a different context or affect the function of other GPR52-expressing cells.
Collapse
Affiliation(s)
- Paula F. Krieg
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K. Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roberta Kurelic
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlena F. Scharenberg
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Manuel A. Friese,
| |
Collapse
|
12
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
13
|
Ding Y, Xing D, Fei Y, Lu B. Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev 2022; 51:8832-8876. [PMID: 36218065 PMCID: PMC9620493 DOI: 10.1039/d2cs00624c] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) provides unprecedented opportunities for drug discovery. While the proteolysis-targeting chimera (PROTAC) technology has already entered clinical trials and changed the landscape of small-molecule drugs, new degrader technologies harnessing alternative degradation machineries, especially lysosomal pathways, have emerged and broadened the spectrum of degradable targets. We have recently proposed the concept of autophagy-tethering compounds (ATTECs) that hijack the autophagy protein microtubule-associated protein 1A/1B light chain 3 (LC3) for targeted degradation. Other groups also reported degrader technologies engaging lysosomal pathways through different mechanisms including AUTACs, AUTOTACs, LYTACs and MoDE-As. In this review, we analyse and discuss ATTECs along with other lysosomal-relevant degrader technologies. Finally, we will briefly summarize the current status of these degrader technologies and envision possible future studies.
Collapse
Affiliation(s)
- Yu Ding
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Long J, Luo X, Fang D, Song H, Fang W, Shan H, Liu P, Lu B, Yin XM, Hong L, Li M. Discovery of an autophagy inducer J3 to lower mutant huntingtin and alleviate Huntington's disease-related phenotype. Cell Biosci 2022; 12:167. [PMID: 36209136 PMCID: PMC9548129 DOI: 10.1186/s13578-022-00906-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by aggregation of the mutant huntingtin (mHTT) protein encoded from extra tracts of CAG repeats in exon 1 of the HTT gene. mHTT proteins are neurotoxic to render the death of neurons and a series of disease-associated phenotypes. The mHTT is degraded through autophagy pathway and ubiquitin–proteasome system (UPS). This study identified a small molecule, J3, as an autophagy inducer by high-content screening. The results revealed that J3 could inhibit mTOR, thus promoting autophagic flux and long-lived protein degradation. Further, J3 selectively lowered the soluble and insoluble mHTT but not wild type HTT levels in cell models. The HdhQ140 mice showed reduced HD-associated activity and loss of motor functions. However, administration of J3 showed increased activity and a slight improvement in the motor function in the open-field test, balance beam test, and rotarod tests. Furthermore, in vivo studies revealed that J3 decreased T-HTT and misfolded protein levels in the striatum and increased the levels of the medium spiny neuron marker DARPP-32. In addition, J3 showed good permeability across the brain-blood barrier efficiently, suggesting that J3 was a promising candidate for the treatment of HD.
Collapse
Affiliation(s)
- Jiahui Long
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Xia Luo
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Dongmei Fang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Haikun Song
- grid.8547.e0000 0001 0125 2443Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458 Guangdong China
| | - Weibin Fang
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Hao Shan
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Peiqing Liu
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Boxun Lu
- grid.8547.e0000 0001 0125 2443School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xiao-Ming Yin
- grid.265219.b0000 0001 2217 8588Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Liang Hong
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| | - Min Li
- grid.12981.330000 0001 2360 039XSchool of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006 Guangdong China
| |
Collapse
|
15
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
16
|
Komatsu H. Innovative Therapeutic Approaches for Huntington's Disease: From Nucleic Acids to GPCR-Targeting Small Molecules. Front Cell Neurosci 2021; 15:785703. [PMID: 34899193 PMCID: PMC8662694 DOI: 10.3389/fncel.2021.785703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disorder due to an extraordinarily expanded CAG repeat in the huntingtin gene that confers a gain-of-toxic function in the mutant protein. There is currently no effective cure that attenuates progression and severity of the disease. Since HD is an inherited monogenic disorder, lowering the mutant huntingtin (mHTT) represents a promising therapeutic strategy. Huntingtin lowering strategies mostly focus on nucleic acid approaches, such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). While these approaches seem to be effective, the drug delivery to the brain poses a great challenge and requires direct injection into the central nervous system (CNS) that results in substantial burden for patients. This review discusses the topics on Huntingtin lowering strategies with clinical trials in patients already underway and introduce an innovative approach that has the potential to deter the disease progression through the inhibition of GPR52, a striatal-enriched class A orphan G protein-coupled receptor (GPCR) that represents a promising therapeutic target for psychiatric disorders. Chemically simple, potent, and selective GPR52 antagonists have been discovered through high-throughput screening and subsequent structure-activity relationship studies. These small molecule antagonists not only diminish both soluble and aggregated mHTT in the striatum, but also ameliorate HD-like defects in HD mice. This therapeutic approach offers great promise as a novel strategy for HD therapy, while nucleic acid delivery still faces considerable challenges.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Business Strategy, Kyowa Pharmaceutical Industry Co., Ltd., Osaka, Japan.,Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Lange J, Wood-Kaczmar A, Ali A, Farag S, Ghosh R, Parker J, Casey C, Uno Y, Kunugi A, Ferretti P, Andre R, Tabrizi SJ. Mislocalization of Nucleocytoplasmic Transport Proteins in Human Huntington's Disease PSC-Derived Striatal Neurons. Front Cell Neurosci 2021; 15:742763. [PMID: 34658796 PMCID: PMC8519404 DOI: 10.3389/fncel.2021.742763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). Disease progression is characterized by the loss of vulnerable neuronal populations within the striatum. A consistent phenotype across HD models is disruption of nucleocytoplasmic transport and nuclear pore complex (NPC) function. Here we demonstrate that high content imaging is a suitable method for detecting mislocalization of lamin-B1, RAN and RANGAP1 in striatal neuronal cultures thus allowing a robust, unbiased, highly powered approach to assay nuclear pore deficits. Furthermore, nuclear pore deficits extended to the selectively vulnerable DARPP32 + subpopulation neurons, but not to astrocytes. Striatal neuron cultures are further affected by changes in gene and protein expression of RAN, RANGAP1 and lamin-B1. Lowering total HTT using HTT-targeted anti-sense oligonucleotides partially restored gene expression, as well as subtly reducing mislocalization of proteins involved in nucleocytoplasmic transport. This suggests that mislocalization of RAN, RANGAP1 and lamin-B1 cannot be normalized by simply reducing expression of CAG-expanded HTT in the absence of healthy HTT protein.
Collapse
Affiliation(s)
- Jenny Lange
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Alison Wood-Kaczmar
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Aneesa Ali
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sahar Farag
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rhia Ghosh
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jennifer Parker
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caroline Casey
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yumiko Uno
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Akiyoshi Kunugi
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Ralph Andre
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah J. Tabrizi
- Huntington’s Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
| |
Collapse
|
18
|
Evolutionary Changes in Pathways and Networks of Genes Expressed in the Brains of Humans and Macaques. J Mol Neurosci 2021; 71:1825-1837. [PMID: 34191269 DOI: 10.1007/s12031-021-01874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
As the key organ that separates humans from nonhuman primates, the brain has continuously evolved to adapt to environmental and climatic changes. Although humans share most genetic, molecular, and cellular features with other primates such as macaques, there are significant differences in the structure and function of the brain between humans and these species. Thus, exploring the differences between the brains of human and nonhuman primates in the context of evolution will provide insights into the development, functionality, and diseases of the human central nervous system (CNS). Since the genes involved in many aspects of the human brain are under common pressures of natural selection, their evolutionary features can be analyzed collectively at the pathway level. In this study, the molecular mechanisms underlying human brain capabilities were explored by comparing the evolution features of pathways enriched in genes expressed in the human brain and the macaque brain. We identified 31 pathways with differential evolutionary properties, including those related to neurological diseases, signal transduction, immunological response, and metabolic processes. By analyzing genes differentially expressed in brain regions or development stages between humans and macaques, 9 and 4 pathways with differential evolutionary properties were detected, respectively. We further performed crosstalk analysis on the pathways to obtain an intuitive correlation between the pathways, which is helpful in understanding the mechanisms of interaction between pathways. Our results provide on a comprehensive view of the evolutionary pathways of the human CNS and can serve as a reference for the study of human brain development.
Collapse
|
19
|
Stott LA, Brighton CA, Brown J, Mould R, Bennett KA, Newman R, Currinn H, Autore F, Higueruelo AP, Tehan BG, MacSweeney C, O'Brien MA, Watson SP. Characterisation of inverse agonism of the orphan-G protein-coupled receptor GPR52 by cannabinoid ligands Cannabidiol and O-1918. Heliyon 2021; 7:e07201. [PMID: 34189291 PMCID: PMC8219759 DOI: 10.1016/j.heliyon.2021.e07201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
The identification of cannabinoid ligands Cannabidiol and O-1918 as inverse agonists of the orphan receptor GPR52 is reported. Detailed characterisation of GPR52 pharmacology and modelling of the proposed receptor interaction is described. The identification of a novel and further CNS pharmacology for the polypharmacological agent and marketed drug Cannabidiol is noteworthy.
Collapse
Affiliation(s)
- Lisa A Stott
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Cheryl A Brighton
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Jason Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Richard Mould
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Kirstie A Bennett
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Robert Newman
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Heather Currinn
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Flavia Autore
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Alicia P Higueruelo
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Benjamin G Tehan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Cliona MacSweeney
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Michael A O'Brien
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Steve P Watson
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| |
Collapse
|
20
|
Wie J, Liu Z, Song H, Tropea TF, Yang L, Wang H, Liang Y, Cang C, Aranda K, Lohmann J, Yang J, Lu B, Chen-Plotkin AS, Luk KC, Ren D. A growth-factor-activated lysosomal K + channel regulates Parkinson's pathology. Nature 2021; 591:431-437. [PMID: 33505021 DOI: 10.1038/s41586-021-03185-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenjiang Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Haikun Song
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lu Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Huanhuan Wang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yuling Liang
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chunlei Cang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey Lohmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Komatsu H. Discovery of the First Druggable GPR52 Antagonist to Treat Huntington's Disease. J Med Chem 2021; 64:938-940. [PMID: 33443413 DOI: 10.1021/acs.jmedchem.0c02235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GPR52 is an orphan G protein-coupled receptor (GPCR) highly expressed in the brain, especially in the striatum, and represents an emerging therapeutic target for Huntington's disease (HD), an incurable monogenic neurodegenerative disorder caused by the mutation of the huntingtin (mHTT) gene. This Viewpoint discusses the discovery, published in this journal, that a highly potent and specific GPR52 antagonist was identified through high-throughput screening and structure-activity relationship study, which diminishes not only mHTT protein levels, but also ameliorates HD-like phenotypes in the animal disease models. This strategy offers intriguing promise as a surprising approach for HD therapy, where nucleic acid medicine approaches such as small interference RNAs have been the main focus and encounter obstacles such as delivery efficiency.
Collapse
Affiliation(s)
- Hidetoshi Komatsu
- Medical Affairs, Kyowa Pharmaceutical Industry Co., Ltd., Osaka 530-0005, Japan.,Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya City 464-8602, Japan
| |
Collapse
|
22
|
Ma M, Guo S, Lin X, Li S, Wu Y, Zeng Y, Hu Y, Zhao S, Xu F, Xie X, Shui W. Targeted Proteomics Combined with Affinity Mass Spectrometry Analysis Reveals Antagonist E7 Acts As an Intracellular Covalent Ligand of Orphan Receptor GPR52. ACS Chem Biol 2020; 15:3275-3284. [PMID: 33258587 DOI: 10.1021/acschembio.0c00867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The GPR52, a class A orphan G protein-coupled receptor (GPCR), is regarded as a promising therapeutic target for the treatment of Huntington's disease and multiple psychiatric disorders. Although the recently solved structure of GPR52 has revealed a binding mechanism likely shared by all reported agonists, the small molecule antagonist E7 cannot fit into this agonist-binding pocket, and its interaction mode with the receptor remains unknown. Here, we employed targeted proteomics and affinity mass spectrometry approaches to uncover a unique binding mode of E7 which acts as a covalent and allosteric ligand of GPR52. Among three Cys residues identified in this study to form covalent conjugates with E7, the intracellular C1564.40 makes the most significant contribution to the antagonism activity of E7. Discovery of this novel intracellular site for covalent attachment of an antagonist would facilitate the design of GPR52-selective negative allosteric modulators which could serve as potential therapeutics for treating Huntington's disease.
Collapse
Affiliation(s)
- Mengna Ma
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shimeng Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xi Lin
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Shanshan Li
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yiran Wu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yanping Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Suwen Zhao
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Fei Xu
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xin Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- CAS Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, 201203, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
23
|
Wang C, Zhang YF, Guo S, Zhao Q, Zeng Y, Xie Z, Xie X, Lu B, Hu Y. GPR52 Antagonist Reduces Huntingtin Levels and Ameliorates Huntington's Disease-Related Phenotypes. J Med Chem 2020; 64:941-957. [PMID: 33185430 DOI: 10.1021/acs.jmedchem.0c01133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
GPR52 is an orphan G protein-coupled receptor (GPCR) that has been recently implicated as a potential drug target of Huntington's disease (HD), an incurable monogenic neurodegenerative disorder. In this research, we found that striatal knockdown of GPR52 reduces mHTT levels in adult HdhQ140 mice, validating GPR52 as an HD target. In addition, we discovered a highly potent and specific GPR52 antagonist Comp-43 with an IC50 value of 0.63 μM by a structure-activity relationship (SAR) study. Further studies showed that Comp-43 reduces mHTT levels by targeting GPR52 and promotes survival of mouse primary striatal neurons. Moreover, in vivo study showed that Comp-43 not only reduces mHTT levels but also rescues HD-related phenotypes in HdhQ140 mice. Taken together, our study confirms that inhibition of GPR52 is a promising strategy for HD therapy, and the GPR52 antagonist Comp-43 might serve as a lead compound for further investigation.
Collapse
Affiliation(s)
- Congcong Wang
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yu-Fang Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Shimeng Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.,CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Quan Zhao
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yanping Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhicheng Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xin Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.,CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
24
|
Wang ZY, Liu J, Zhu Z, Su CF, Sreenivasmurthy SG, Iyaswamy A, Lu JH, Chen G, Song JX, Li M. Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review. Biomed Pharmacother 2020; 133:110968. [PMID: 33189067 DOI: 10.1016/j.biopha.2020.110968] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/19/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic diseases related to progressive damage of the nervous system. Globally, the number of people with an ND is dramatically increasing consistent with the fast aging of society and one of the common features of NDs is the abnormal aggregation of diverse proteins. Autophagy is the main process by which misfolded proteins and damaged organelles are removed from cells. It has been found that the impairment of autophagy is associated with many NDs, suggesting that autophagy has a vital role in the neurodegeneration process. Recently, more and more studies have reported that autophagy inducers display a protective role in different ND experimental models, suggesting that enhancement of autophagy could be a potential therapy for NDs. In this review, the evidence for beneficial effects of traditional Chinese medicine (TCM) regulate autophagy in the models of Alzheimer's disease (AD), Parkinson's disease (PD), and other NDs are presented and common autophagy-related mechanisms are identified. The results demonstrate that TCM which regulate autophagy are potential therapeutic candidates for ND treatment.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Jia Liu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhou Zhu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Cheng-Fu Su
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | | | - Ashok Iyaswamy
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Gang Chen
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, China
| | - Ju-Xian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
25
|
Tang BL. RAB39B's role in membrane traffic, autophagy, and associated neuropathology. J Cell Physiol 2020; 236:1579-1592. [PMID: 32761840 DOI: 10.1002/jcp.29962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Neuropathological disorders are increasingly associated with dysfunctions in neuronal membrane traffic and autophagy, with defects among members of the Rab family of small GTPases implicated. Mutations in the human Xq28 localized gene RAB39B have been associated with X-linked neurodevelopmental defects including macrocephaly, intellectual disability, autism spectrum disorder (ASD), as well as rare cases of early-onset Parkinson's disease (PD). Despite the finding that RAB39B regulates GluA2 trafficking and could thus influence synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit composition, reasons for the wide-ranging neuropathological consequences associated with RAB39B defects have been unclear. Recent studies have now unraveled possible mechanisms underlying the neuropathological roles of this brain-enriched small GTPase. Studies in RAB39B knockout mice showed that RAB39B interacts with components of Class I phosphatidylinositol-3-kinase (PI3K) signaling. In its absence, the PI3K-AKT-mechanistic target of rapamycin signaling pathway in neural progenitor cells (NPCs) is hyperactivated, which promotes NPC proliferation, leading to macrocephaly and ASD. Pertaining to early-onset PD, a complex of C9orf72, Smith-Magenis syndrome chromosome region candidate 8 and WD repeat domain 41 that functions in autophagy has been identified as a guanine nucleotide exchange factor of RAB39B. Here, recent findings that have shed light on our mechanistic understanding of RAB39B's role in neurodevelopmental and neurodegenerative pathologies are reviewed. Caveats and unanswered questions are also discussed, and future perspectives outlined.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
26
|
Petruccelli E, Lark A, Mrkvicka JA, Kitamoto T. Significance of DopEcR, a G-protein coupled dopamine/ecdysteroid receptor, in physiological and behavioral response to stressors. J Neurogenet 2020; 34:55-68. [PMID: 31955616 PMCID: PMC7717672 DOI: 10.1080/01677063.2019.1710144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022]
Abstract
Organisms respond to various environmental stressors by modulating physiology and behavior to maintain homeostasis. Steroids and catecholamines are involved in the highly conserved signaling pathways crucial for mounting molecular and cellular events that ensure immediate or long-term survival under stress conditions. The insect dopamine/ecdysteroid receptor (DopEcR) is a dual G-protein coupled receptor for the catecholamine dopamine and the steroid hormone ecdysone. DopEcR acts in a ligand-dependent manner, mediating dopaminergic signaling and unconventional "nongenomic" ecdysteroid actions through various intracellular signaling pathways. This unique feature of DopEcR raises the interesting possibility that DopEcR may serve as an integrative hub for complex molecular cascades activated under stress conditions. Here, we review previously published studies of Drosophila DopEcR in the context of stress response and also present newly discovered DopEcR loss-of-function phenotypes under different stress conditions. These findings provide corroborating evidence that DopEcR plays vital roles in responses to various stressors, including heat, starvation, alcohol, courtship rejection, and repeated neuronal stimulation in Drosophila. We further discuss what is known about DopEcR in other insects and DopEcR orthologs in mammals, implicating their roles in stress responses. Overall, this review highlights the importance of dual GPCRs for catecholamines and steroids in modulating physiology and behavior under stress conditions. Further multidisciplinary studies of Drosophila DopEcR will contribute to our basic understanding of the functional roles and underlying mechanisms of this class of GPCRs.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Arianna Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - James A Mrkvicka
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
27
|
Structural basis of ligand recognition and self-activation of orphan GPR52. Nature 2020; 579:152-157. [PMID: 32076264 DOI: 10.1038/s41586-020-2019-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
GPR52 is a class-A orphan G-protein-coupled receptor that is highly expressed in the brain and represents a promising therapeutic target for the treatment of Huntington's disease and several psychiatric disorders1,2. Pathological malfunction of GPR52 signalling occurs primarily through the heterotrimeric Gs protein2, but it is unclear how GPR52 and Gs couple for signal transduction and whether a native ligand or other activating input is required. Here we present the high-resolution structures of human GPR52 in three states: a ligand-free state, a Gs-coupled self-activation state and a potential allosteric ligand-bound state. Together, our structures reveal that extracellular loop 2 occupies the orthosteric binding pocket and operates as a built-in agonist, conferring an intrinsically high level of basal activity to GPR523. A fully active state is achieved when Gs is coupled to GPR52 in the absence of an external agonist. The receptor also features a side pocket for ligand binding. These insights into the structure and function of GPR52 could improve our understanding of other self-activated GPCRs, enable the identification of endogenous and tool ligands, and guide drug discovery efforts that target GPR52.
Collapse
|
28
|
Walter NAR, Zheng CL, Searles RP, McWeeney SK, Grant KA, Hitzemann R. Chronic Voluntary Ethanol Drinking in Cynomolgus Macaques Elicits Gene Expression Changes in Prefrontal Cortical Area 46. Alcohol Clin Exp Res 2020; 44:470-478. [PMID: 31840818 PMCID: PMC7018568 DOI: 10.1111/acer.14259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genome-wide profiling to examine brain transcriptional features associated with excessive ethanol (EtOH) consumption has been applied to a variety of species including rodents, nonhuman primates (NHPs), and humans. However, these data were obtained from cross-sectional samples which are particularly vulnerable to individual variation when obtained from small outbred populations typical of human and NHP studies. In the current study, a novel within-subject design was used to examine the effects of voluntary EtOH consumption on prefrontal cortex (PFC) gene expression in a NHP model. METHODS Two cohorts of cynomolgus macaques (n = 23) underwent a schedule-induced polydipsia procedure to establish EtOH self-administration followed by 6 months of daily open access to EtOH (4% w/v) and water. Individual daily EtOH intakes ranged from an average of 0.7 to 3.7 g/kg/d. Dorsal lateral PFC area 46 (A46) brain biopsies were collected in EtOH-naïve and control monkeys; contralateral A46 biopsies were collected from the same monkeys following the 6 months of fluid consumption. Gene expression changes were assessed using RNA-Seq paired analysis, which allowed for correction of individual baseline differences in gene expression. RESULTS A total of 675 genes were significantly down-regulated following EtOH consumption; these were functionally enriched for immune response, cell adhesion, plasma membrane, and extracellular matrix. A total of 567 genes that were up-regulated following EtOH consumption were enriched in microRNA target sites and included target sites associated with Toll-like receptor pathways. The differentially expressed genes were also significantly enriched in transcription factor binding sites. CONCLUSIONS The data presented here are the first to use a longitudinal biopsy strategy to examine how chronic EtOH consumption affects gene expression in the primate PFC. Prominent effects were seen in both cell adhesion and neuroimmune pathways; the latter contained both pro- and antiinflammatory genes. The data also indicate that changes in miRNAs and transcription factors may be important epigenetic regulators of EtOH consumption.
Collapse
Affiliation(s)
- Nicole A R Walter
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Christina L Zheng
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Robert P Searles
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.,Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
29
|
Valionyte E, Yang Y, Roberts SL, Kelly J, Lu B, Luo S. Lowering Mutant Huntingtin Levels and Toxicity: Autophagy-Endolysosome Pathways in Huntington's Disease. J Mol Biol 2019; 432:2673-2691. [PMID: 31786267 DOI: 10.1016/j.jmb.2019.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Huntington's disease (HD) is a monogenetic neurodegenerative disease, which serves as a model of neurodegeneration with protein aggregation. Autophagy has been suggested to possess a great value to tackle protein aggregation toxicity and neurodegenerative diseases. Current studies suggest that autophagy-endolysosomal pathways are critical for HD pathology. Here we review recent advancement in the studies of autophagy and selective autophagy relating HD. Restoration of autophagy flux and enhancement of selective removal of mutant huntingtin/disease-causing protein would be effective approaches towards tackling HD as well as other similar neurodegenerative disorders.
Collapse
Affiliation(s)
- Evelina Valionyte
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK
| | - Yi Yang
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK
| | - Sheridan L Roberts
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK
| | - Jack Kelly
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth PL6 8BU, UK.
| |
Collapse
|
30
|
Federspiel JD, Greco TM, Lum KK, Cristea IM. Hdac4 Interactions in Huntington's Disease Viewed Through the Prism of Multiomics. Mol Cell Proteomics 2019; 18:S92-S113. [PMID: 31040226 PMCID: PMC6692770 DOI: 10.1074/mcp.ra118.001253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Huntington's disease (HD) is a monogenic disorder, driven by the expansion of a trinucleotide (CAG) repeat within the huntingtin (Htt) gene and culminating in neuronal degeneration in the brain, predominantly in the striatum and cortex. Histone deacetylase 4 (Hdac4) was previously found to contribute to the disease progression, providing a potential therapeutic target. Hdac4 knockdown reduced accumulation of misfolded Htt protein and improved HD phenotypes. However, the underlying mechanism remains unclear, given its independence on deacetylase activity and the predominant cytoplasmic Hdac4 localization in the brain. Here, we undertook a multiomics approach to uncover the function of Hdac4 in the context of HD pathogenesis. We characterized the interactome of endogenous Hdac4 in brains of HD mouse models. Alterations in interactions were investigated in response to Htt polyQ length, comparing mice with normal (Q20) and disease (Q140) Htt, at both pre- and post-symptomatic ages (2 and 10 months, respectively). Parallel analyses for Hdac5, a related class IIa Hdac, highlighted the unique interaction network established by Hdac4. To validate and distinguish interactions specifically enhanced in an HD-vulnerable brain region, we next characterized endogenous Hdac4 interactions in dissected striata from this HD mouse series. Hdac4 associations were polyQ-dependent in the striatum, but not in the whole brain, particularly in symptomatic mice. Hdac5 interactions did not exhibit polyQ dependence. To identify which Hdac4 interactions and functions could participate in HD pathogenesis, we integrated our interactome with proteome and transcriptome data sets generated from the striata. We discovered an overlap in enriched functional classes with the Hdac4 interactome, particularly in vesicular trafficking and synaptic functions, and we further validated the Hdac4 interaction with the Wiskott-Aldrich Syndrome Protein and SCAR Homolog (WASH) complex. This study expands the knowledge of Hdac4 regulation and functions in HD, adding to the understanding of the molecular underpinning of HD phenotypes.
Collapse
Affiliation(s)
- Joel D Federspiel
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544.
| |
Collapse
|
31
|
Ratna N. A promising orphan target to treat HD. Mov Disord 2018; 33:1674. [DOI: 10.1002/mds.27512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nikhil Ratna
- Department of Clinical Neurosciences (Molecular Genetics Laboratory); National Institute of Mental Health and Neuro Sciences (NIMHANS); Bengaluru India
| |
Collapse
|