1
|
Cao J, Qin X, Yang H, Liu C, Cheng T. Dimm targets GDAP2 to regulate larval development in the silkworm, Bombyx mori. INSECT SCIENCE 2025. [PMID: 40205793 DOI: 10.1111/1744-7917.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/16/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
The basic helix-loop-helix (bHLH) domain transcription factors precisely regulate various developmental processes in insects. Dimm, a specific bHLH transcription factor, integrates the insulin/insulin-like growth factor signaling (IIS) and juvenile hormone signaling (JHS) pathways to modulate larval development in silkworms. However, the molecular mechanisms underlying this regulation are not yet fully understood. This study aimed to determine the targets of Dimm through which it regulates larval development. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed ganglioside-induced differentiation-associated protein 2 (GDAP2) as a direct downstream target gene of Dimm. Further study showed that Dimm directly binds to an enhancer element located in the second intron of the GDAP2 gene to promote its transcription. GDAP2 exhibited widespread expression across different stages and tissues of silkworms, regulated by both the IIS and the JHS pathways. The systemic knockout of GDAP2 leads to delayed larval development with a significant reduction in body weight; moreover, larval development was arrested at the 4th-instar stage. Further investigation unveiled that the inhibition of the ecdysone and innate immune signaling pathways in the mutant line led to abnormal larval development. A systematic investigation of the biological functions of GDAP2 offers valuable insights into the mechanism by which Dimm integrates IIS and JHS pathways to regulate the larval development of silkworms.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Eidhof I, Ulfenborg B, Kele M, Shahsavani M, Winn D, Uhlén P, Falk A. Defined culture conditions robustly maintain human stem cell pluripotency, highlighting a role for Ca 2+ signaling. Commun Biol 2025; 8:255. [PMID: 39966571 PMCID: PMC11836331 DOI: 10.1038/s42003-025-07658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Induced pluripotent stem cells (iPSCs) have significant potential for disease modeling and cell therapies. However, their wide-spread application has faced challenges, including batch-to-batch variabilities, and notable distinctions when compared to embryonic stem cells (ESCs). Some of these disparities can stem from using undefined culture conditions and the reprogramming procedure, however, the precise mechanisms remain understudied. Here, we compared gene expression data from over 100 iPSC and ESC lines cultivated under undefined and defined conditions. Defined conditions significantly reduced inter-PSC line variability, irrespective of PSC cell type, highlighting the importance of standardization to minimize PSC biases. This variability is concurrent with decreased somatic cell marker and germ layer differentiation gene expression and increased Ca2+-binding protein expression. Moreover, SERCA pump inhibition highlighted an important role for intracellular Ca2+ activity in maintaining pluripotency gene expression under defined conditions. Further understanding of these processes can help standardize and improve defined hPSC culture conditions.
Collapse
Affiliation(s)
- Ilse Eidhof
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | | | - Malin Kele
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- BioLamina AB, Sundbyberg, Sweden
| | - Mansoureh Shahsavani
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dania Winn
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Rocha JJ, Jayaram SA, Stevens TJ, Muschalik N, Shah RD, Emran S, Robles C, Freeman M, Munro S. Functional unknomics: Systematic screening of conserved genes of unknown function. PLoS Biol 2023; 21:e3002222. [PMID: 37552676 PMCID: PMC10409296 DOI: 10.1371/journal.pbio.3002222] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/27/2023] [Indexed: 08/10/2023] Open
Abstract
The human genome encodes approximately 20,000 proteins, many still uncharacterised. It has become clear that scientific research tends to focus on well-studied proteins, leading to a concern that poorly understood genes are unjustifiably neglected. To address this, we have developed a publicly available and customisable "Unknome database" that ranks proteins based on how little is known about them. We applied RNA interference (RNAi) in Drosophila to 260 unknown genes that are conserved between flies and humans. Knockdown of some genes resulted in loss of viability, and functional screening of the rest revealed hits for fertility, development, locomotion, protein quality control, and resilience to stress. CRISPR/Cas9 gene disruption validated a component of Notch signalling and 2 genes contributing to male fertility. Our work illustrates the importance of poorly understood genes, provides a resource to accelerate future research, and highlights a need to support database curation to ensure that misannotation does not erode our awareness of our own ignorance.
Collapse
Affiliation(s)
- João J. Rocha
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Tim J. Stevens
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Rajen D. Shah
- Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sahar Emran
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Cristina Robles
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Matthew Freeman
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
4
|
Eidhof I, Krebbers A, van de Warrenburg B, Schenck A. Ataxia-associated DNA repair genes protect the Drosophila mushroom body and locomotor function against glutamate signaling-associated damage. Front Neural Circuits 2023; 17:1148947. [PMID: 37476399 PMCID: PMC10354283 DOI: 10.3389/fncir.2023.1148947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
The precise control of motor movements is of fundamental importance to all behaviors in the animal kingdom. Efficient motor behavior depends on dedicated neuronal circuits - such as those in the cerebellum - that are controlled by extensive genetic programs. Autosomal recessive cerebellar ataxias (ARCAs) provide a valuable entry point into how interactions between genetic programs maintain cerebellar motor circuits. We previously identified a striking enrichment of DNA repair genes in ARCAs. How dysfunction of ARCA-associated DNA repair genes leads to preferential cerebellar dysfunction and impaired motor function is however unknown. The expression of ARCA DNA repair genes is not specific to the cerebellum. Only a limited number of animal models for DNA repair ARCAs exist, and, even for these, the interconnection between DNA repair defects, cerebellar circuit dysfunction, and motor behavior is barely established. We used Drosophila melanogaster to characterize the function of ARCA-associated DNA repair genes in the mushroom body (MB), a structure in the Drosophila central brain that shares structural features with the cerebellum. Here, we demonstrate that the MB is required for efficient startle-induced and spontaneous motor behaviors. Inhibition of synaptic transmission and loss-of-function of ARCA-associated DNA repair genes in the MB affected motor behavior in several assays. These motor deficits correlated with increased levels of MB DNA damage, MB Kenyon cell apoptosis and/or alterations in MB morphology. We further show that expression of genes involved in glutamate signaling pathways are highly, specifically, and persistently elevated in the postnatal human cerebellum. Manipulation of glutamate signaling in the MB induced motor defects, Kenyon cell DNA damage and apoptosis. Importantly, pharmacological reduction of glutamate signaling in the ARCA DNA repair models rescued the identified motor deficits, suggesting a role for aberrant glutamate signaling in ARCA-DNA repair disorders. In conclusion, our data highlight the importance of ARCA-associated DNA repair genes and glutamate signaling pathways to the cerebellum, the Drosophila MB and motor behavior. We propose that glutamate signaling may confer preferential cerebellar vulnerability in ARCA-associated DNA repair disorders. Targeting glutamate signaling could provide an exciting therapeutic entry point in this large group of so far untreatable disorders.
Collapse
Affiliation(s)
- Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alina Krebbers
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Zhu K, Chen Y, Chen L, Xiang H. Comparative Silk Transcriptomics Illuminates Distinctive Impact of Artificial Selection in Silkworm Modern Breeding. INSECTS 2022; 13:1163. [PMID: 36555072 PMCID: PMC9784016 DOI: 10.3390/insects13121163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Early domestication and the following improvement are two important processes in the cocoon silk evolution of silkworms. In contrast to early domestication, understanding of the improvement process is still fuzzy. By systematically comparing the larval silk gland transcriptomes of the wild, early domestic, and improved silkworms, we highlighted a novel landscape of transcriptome in the silk glands of improved ones. We first clarified that silk cocoon protein genes were up-regulated in modern breeding but not in early domestication. Furthermore, we found that differentially expressed genes (DEGs) between improved and early domestic silkworms (2711), as well as between improved and wild silkworms (2264), were obviously more than those between the early domestic and wild silkworms (158), with 1671 DEGs specific in the improved silkworm (IS-DEGs). Hierarchical clustering of all the DEGs consistently indicated that improved silkworms were significantly diverged from the early domestic and wild silkworms, suggesting that modern breeding might cause prompt and drastic dynamic changes of gene expression in the silk gland. We further paid attention to these 1671 IS-DEGs and were surprised to find that down-regulated genes were enriched in basic organonitrogen compound biosynthesis, RNA biosynthesis, and ribosome biogenesis processes, which are generally universally expressed, whereas those up-regulated genes were enriched in organonitrogen compound catabolic processes and functions involving in the dynamic regulation of protein post-translation of modification. We finally highlighted one candidate improvement gene among these up-regulated IS-DEGs, i.e., GDAP2, which may play roles in silk behavior and the overall robustness of the improved silkworm. The findings strongly suggest that modern breeding may facilitate effective control of the basic consumption of nitrogen and a stronger switch of nitrogen resources from other tissues to the silk glands, for an efficient supply for silk production, and implies the importance of brain behavior and robustness in silk yield improvement of modern breeding.
Collapse
Affiliation(s)
- Kesen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University , Guangzhou 510631, China
- Laboratory for Lingnan Modern Agriculture, Institute of Insect Science and Technology, Guangzhou 510642, China
| | - Yanfei Chen
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512000, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University , Guangzhou 510631, China
- Laboratory for Lingnan Modern Agriculture, Institute of Insect Science and Technology, Guangzhou 510642, China
| |
Collapse
|
6
|
Urbański A, Johnston P, Bittermann E, Keshavarz M, Paris V, Walkowiak-Nowicka K, Konopińska N, Marciniak P, Rolff J. Tachykinin-related peptides modulate immune-gene expression in the mealworm beetle Tenebrio molitor L. Sci Rep 2022; 12:17277. [PMID: 36241888 PMCID: PMC9568666 DOI: 10.1038/s41598-022-21605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Tachykinins (TKs) are a group of conserved neuropeptides. In insects, tachykinin-related peptides (TRPs) are important modulators of several functions such as nociception and lipid metabolism. Recently, it has become clear that TRPs also play a role in regulating the insect immune system. Here, we report a transcriptomic analysis of changes in the expression levels of immune-related genes in the storage pest Tenebrio molitor after treatment with Tenmo-TRP-7. We tested two concentrations (10-8 and 10-6 M) at two time points, 6 and 24 h post-injection. We found significant changes in the transcript levels of a wide spectrum of immune-related genes. Some changes were observed 6 h after the injection of Tenmo-TRP-7, especially in relation to its putative anti-apoptotic action. Interestingly, 24 h after the injection of 10-8 M Tenmo-TRP-7, most changes were related to the regulation of the cellular response. Applying 10-6 M Tenmo-TRP-7 resulted in the downregulation of genes associated with humoral responses. Injecting Tenmo-TRP-7 did not affect beetle survival but led to a reduction in haemolymph lysozyme-like antibacterial activity, consistent with the transcriptomic data. The results confirmed the immunomodulatory role of TRP and shed new light on the functional homology between TRPs and TKs.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland ,grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Paul Johnston
- Berlin Centre for Genomics in Biodiversity Research, Berlin, Germany ,grid.419247.d0000 0001 2108 8097Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Elisa Bittermann
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Maryam Keshavarz
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Véronique Paris
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.1008.90000 0001 2179 088XBio 21 Institute, University of Melbourne, Parkville, VIC 3052 Australia
| | - Karolina Walkowiak-Nowicka
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Natalia Konopińska
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Marciniak
- grid.5633.30000 0001 2097 3545Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Jens Rolff
- grid.14095.390000 0000 9116 4836Evolutionary Biology, Institute for Biology, Freie Universität Berlin, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
7
|
Liu XX, Chen XH, Zheng ZW, Jiang Q, Li C, Yang L, Chen X, Mao XF, Yuan HY, Feng LL, Jiang Q, Shi WX, Sasaki T, Fukunaga K, Chen Z, Han F, Lu YM. BOD1 regulates the cerebellar IV/V lobe-fastigial nucleus circuit associated with motor coordination. Signal Transduct Target Ther 2022; 7:170. [PMID: 35641478 PMCID: PMC9156688 DOI: 10.1038/s41392-022-00989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebellar ataxias are characterized by a progressive decline in motor coordination, but the specific output circuits and underlying pathological mechanism remain poorly understood. Through cell-type-specific manipulations, we discovered a novel GABAergic Purkinje cell (PC) circuit in the cerebellar IV/V lobe that projected to CaMKIIα+ neurons in the fastigial nucleus (FN), which regulated sensorimotor coordination. Furthermore, transcriptomics profiling analysis revealed various cerebellar neuronal identities, and we validated that biorientation defective 1 (BOD1) played an important role in the circuit of IV/V lobe to FN. BOD1 deficit in PCs of IV/V lobe attenuated the excitability and spine density of PCs, accompany with ataxia behaviors. Instead, BOD1 enrichment in PCs of IV/V lobe reversed the hyperexcitability of CaMKIIα+ neurons in the FN and ameliorated ataxia behaviors in L7-Cre; BOD1f/f mice. Together, these findings further suggest that specific regulation of the cerebellar IV/V lobePCs → FNCaMKIIα+ circuit might provide neuromodulatory targets for the treatment of ataxia behaviors.
Collapse
Affiliation(s)
- Xiu-Xiu Liu
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Xing-Hui Chen
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhi-Wei Zheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Qin Jiang
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Chen Li
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Lin Yang
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Xing-Feng Mao
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Hao-Yang Yuan
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Li-Li Feng
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Wei-Xing Shi
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China. .,Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, China. .,Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, 215002, Suzhou, China.
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China. .,Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, 210029, Nanjing, China.
| |
Collapse
|
8
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
9
|
MRI CNS Atrophy Pattern and the Etiologies of Progressive Ataxias. Tomography 2022; 8:423-437. [PMID: 35202200 PMCID: PMC8877967 DOI: 10.3390/tomography8010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022] Open
Abstract
MRI shows the three archetypal patterns of CNS volume loss underlying progressive ataxias in vivo, namely spinal atrophy (SA), cortical cerebellar atrophy (CCA) and olivopontocerebellar atrophy (OPCA). The MRI-based CNS atrophy pattern was reviewed in 128 progressive ataxias. A CNS atrophy pattern was identified in 91 conditions: SA in Friedreich’s ataxia, CCA in 5 acquired and 72 (24 dominant, 47 recessive,1 X-linked) inherited ataxias, OPCA in Multi-System Atrophy and 12 (9 dominant, 2 recessive,1 X-linked) inherited ataxias. The MRI-based CNS atrophy pattern may be useful for genetic assessment, identification of shared cellular targets, repurposing therapies or the enlargement of drug indications in progressive ataxias.
Collapse
|
10
|
Hu D, Guo Y, Wu M, Ma Y, Jing W. Manuscript Title: GDAP2 overexpression affects the development of neurons and dysregulates neuronal excitatory synaptic transmission. Neuroscience 2022; 488:32-43. [DOI: 10.1016/j.neuroscience.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
|
11
|
Dragašević-Mišković N, Stanković I, Milovanović A, Kostić VS. Autosomal recessive adult onset ataxia. J Neurol 2021; 269:504-533. [PMID: 34499204 DOI: 10.1007/s00415-021-10763-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Autosomal recessive ataxias (ARCA) represent a complex group of diseases ranging from primary ataxias to rare and complex metabolic disorders in which ataxia is a part of the clinical picture. Small number of ARCA manifest exclusively in adulthood, while majority of typical childhood onset ARCA may also start later with atypical clinical presentation. We have systematically searched the literature for ARCA with adult onset, both in the group of primary ataxias including those that are less frequently described in isolated or in a small number of families, and also in the group of complex and metabolic diseases in which ataxia is only part of the clinical picture. We propose an algorithm that could be used when encountering a patient with adult onset sporadic or recessive ataxia in whom the acquired causes are excluded. ARCA are frequently neglected in the differential diagnosis of adult-onset ataxias. Rising awareness of their clinical significance is important, not only because some of these disorders may be potentially treatable, but also for prognostic implications and inclusion of patients to future clinical trials with disease modifying agents.
Collapse
Affiliation(s)
- Nataša Dragašević-Mišković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia.
| | - Iva Stanković
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Andona Milovanović
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| | - Vladimir S Kostić
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Dr Subotića 6, 11000, Belgrade, Serbia
| |
Collapse
|
12
|
Rebelo AP, Eidhof I, Cintra VP, Guillot-Noel L, Pereira CV, Timmann D, Traschütz A, Schöls L, Coarelli G, Durr A, Anheim M, Tranchant C, van de Warrenburg B, Guissart C, Koenig M, Howell J, Moraes CT, Schenck A, Stevanin G, Züchner S, Synofzik M. Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia. Brain 2021; 144:1467-1481. [PMID: 33889951 DOI: 10.1093/brain/awab071] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Peroxiredoxin 3 (PRDX3) belongs to a superfamily of peroxidases that function as protective antioxidant enzymes. Among the six isoforms (PRDX1-PRDX6), PRDX3 is the only protein exclusively localized to the mitochondria, which are the main source of reactive oxygen species. Excessive levels of reactive oxygen species are harmful to cells, inducing mitochondrial dysfunction, DNA damage, lipid and protein oxidation and ultimately apoptosis. Neuronal cell damage induced by oxidative stress has been associated with numerous neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Leveraging the large aggregation of genomic ataxia datasets from the PREPARE (Preparing for Therapies in Autosomal Recessive Ataxias) network, we identified recessive mutations in PRDX3 as the genetic cause of cerebellar ataxia in five unrelated families, providing further evidence for oxidative stress in the pathogenesis of neurodegeneration. The clinical presentation of individuals with PRDX3 mutations consists of mild-to-moderate progressive cerebellar ataxia with concomitant hyper- and hypokinetic movement disorders, severe early-onset cerebellar atrophy, and in part olivary and brainstem degeneration. Patient fibroblasts showed a lack of PRDX3 protein, resulting in decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. Moreover, PRDX3 knockdown in cerebellar medulloblastoma cells resulted in significantly decreased cell viability, increased H2O2 levels and increased susceptibility to apoptosis triggered by reactive oxygen species. Pan-neuronal and pan-glial in vivo models of Drosophila revealed aberrant locomotor phenotypes and reduced survival times upon exposure to oxidative stress. Our findings reveal a central role for mitochondria and the implication of oxidative stress in PRDX3 disease pathogenesis and cerebellar vulnerability and suggest targets for future therapeutic approaches.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Vivian P Cintra
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Léna Guillot-Noel
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France.,Neurogenetics Team, EPHE, PSL University, Paris, France
| | - Claudia V Pereira
- Departments of Neurology and Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Traschütz
- Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Giulia Coarelli
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France.,Department of genetics, Hôpital de La Pitié-Salpétrière, Paris, France
| | - Mathieu Anheim
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch, France
| | - Christine Tranchant
- Département de Neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology, INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch, France
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Claire Guissart
- EA7402 Institut Universitaire de Recherche Clinique and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | - Jack Howell
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Carlos T Moraes
- Departments of Neurology and Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Giovanni Stevanin
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France.,Neurogenetics Team, EPHE, PSL University, Paris, France
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA
| | - Matthis Synofzik
- Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
13
|
Dong HL, Cheng HL, Bai G, Shen Y, Wu ZY. Novel GDAP2 pathogenic variants cause autosomal recessive spinocerebellar ataxia-27 (SCAR27) in a Chinese family. Brain 2020; 143:e50. [PMID: 32437512 DOI: 10.1093/brain/awaa121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao-Ling Cheng
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ge Bai
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Shen
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Breza M, Bourinaris T, Efthymiou S, Maroofian R, Athanasiou-Fragkouli A, Tzartos J, Velonakis G, Karavasilis E, Angelopoulou G, Kasselimis D, Potagas C, Stefanis L, Karadima G, Koutsis G, Houlden H. A homozygous GDAP2 loss-of-function variant in a patient with adult-onset cerebellar ataxia. Brain 2020; 143:e49. [PMID: 32428220 PMCID: PMC7296852 DOI: 10.1093/brain/awaa120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marianthi Breza
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas Bourinaris
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - John Tzartos
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Tzartos Neurodiagnostics, Athens, Greece
| | - Georgios Velonakis
- 2nd Department of Radiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstratios Karavasilis
- 2nd Department of Radiology, Medical School, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Angelopoulou
- Neuropsychology and Speech Pathology Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kasselimis
- Neuropsychology and Speech Pathology Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Division of Psychiatry and Behavioral Sciences, School of Medicine, University of Crete, Crete, Greece
| | - Constantin Potagas
- Neuropsychology and Speech Pathology Unit, 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Karadima
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Koutsis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Henry Houlden
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
15
|
Eidhof I, Baets J, Kamsteeg EJ, Schenck A, van de Warrenburg BP. Reply: A homozygous GDAP2 loss-of-function variant in a patient with adult-onset cerebellar ataxia; and Novel GDAP2 pathogenic variants cause autosomal recessive spinocerebellar ataxia-27 (SCAR27) in a Chinese family. Brain 2020; 143:e51. [PMID: 32428197 PMCID: PMC7571496 DOI: 10.1093/brain/awaa122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Jonathan Baets
- Center for Molecular Neurology, University of Antwerp, 2610 Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, 2610 Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, 6520 Antwerp, Belgium
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Centre, 6525 GC Nijmegen, The Netherlands
| |
Collapse
|
16
|
Muha V, Fenckova M, Ferenbach AT, Catinozzi M, Eidhof I, Storkebaum E, Schenck A, van Aalten DMF. O-GlcNAcase contributes to cognitive function in Drosophila. J Biol Chem 2020; 295:8636-8646. [PMID: 32094227 PMCID: PMC7324509 DOI: 10.1074/jbc.ra119.010312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
O-GlcNAcylation is an abundant post-translational modification in neurons. In mice, an increase in O-GlcNAcylation leads to defects in hippocampal synaptic plasticity and learning. O-GlcNAcylation is established by two opposing enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). To investigate the role of OGA in elementary learning, we generated catalytically inactive and precise knockout Oga alleles (OgaD133N and OgaKO , respectively) in Drosophila melanogaster Adult OgaD133N and OgaKO flies lacking O-GlcNAcase activity showed locomotor phenotypes. Importantly, both Oga lines exhibited deficits in habituation, an evolutionarily conserved form of learning, highlighting that the requirement for O-GlcNAcase activity for cognitive function is preserved across species. Loss of O-GlcNAcase affected a number of synaptic boutons at the axon terminals of larval neuromuscular junction. Taken together, we report behavioral and neurodevelopmental phenotypes associated with Oga alleles and show that Oga contributes to cognition and synaptic morphology in Drosophila.
Collapse
Affiliation(s)
- Villo Muha
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom
| | - Michaela Fenckova
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Andrew T Ferenbach
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and the Faculty of Science, Radboud University, 6525XZ Nijmegen, The Netherlands
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and the Faculty of Science, Radboud University, 6525XZ Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands
| | - Daan M F van Aalten
- Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kindom.
| |
Collapse
|
17
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
18
|
Palazzo L, Mikolčević P, Mikoč A, Ahel I. ADP-ribosylation signalling and human disease. Open Biol 2019; 9:190041. [PMID: 30991935 PMCID: PMC6501648 DOI: 10.1098/rsob.190041] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
ADP-ribosylation (ADPr) is a reversible post-translational modification of proteins, which controls major cellular and biological processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress and immune responses. In order to maintain the cellular homeostasis, diverse ADP-ribosyl transferases and hydrolases are involved in the fine-tuning of ADPr systems. The control of ADPr network is vital, and dysregulation of enzymes involved in the regulation of ADPr signalling has been linked to a number of inherited and acquired human diseases, such as several neurological disorders and in cancer. Conversely, the therapeutic manipulation of ADPr has been shown to ameliorate several disorders in both human and animal models. These include cardiovascular, inflammatory, autoimmune and neurological disorders. Herein, we summarize the recent findings in the field of ADPr, which support the impact of this modification in human pathophysiology and highlight the curative potential of targeting ADPr for translational and molecular medicine.
Collapse
Affiliation(s)
- Luca Palazzo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| |
Collapse
|