1
|
Nodzenski M, Shi M, Umbach DM, Kidd B, Petty T, Weinberg CR. A method for finding epistatic effects of maternal and fetal variants. Front Genet 2025; 16:1420641. [PMID: 40230349 PMCID: PMC11995191 DOI: 10.3389/fgene.2025.1420641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Pregnancy involves a double genome, and genetic variants in the mother and her fetus can act together to influence risk for pregnancy complications, adverse pregnancy outcomes, and diseases in the offspring. Large search spaces have hindered the discovery of sets of single nucleotide polymorphisms (SNPs) that act epistatically. Methods Previously, we proposed a method for case-parent studies, called the Genetic Algorithm for Detecting Genetic Epistasis using Triads or Siblings (GADGETS), that can reveal autosomal epistatic SNP-sets in the child's genome. Here we incorporate maternal SNPs, thereby extending GADGETS to nominate SNP-sets containing offspring loci only, maternal loci only, or both. We use a permutation procedure to impose a preference for epistatic over outcome-related but non-epistatic SNP sets. Our maternal-fetal extension uses case-complement-sibling pairs together with mother-father pairs, exploiting Mendelian transmission and a mating-symmetry assumption. Results In simulations of 1,000 case-parents triads with 10,000 candidate SNPs, GADGETS successfully detected simulated multi-locus effects involving 3-5 SNPs but was somewhat less successful at distinguishing epistatic SNPs from sets of non-epistatic SNPs that each conferred high risk independently. Though the epistasis-mining algorithms MDR-PDT, TrioFS, and EPISFA-LD were originally designed to find epistatic offspring variants, we generalize them to include maternal SNPs and search more broadly. GADGETS outperformed those competitors and could successfully mine a much larger list of candidate SNPs. Applied to dbGaP data, GADGETS nominated several multi-SNP maternal-fetal sets as potentially-interacting risk factors for orofacial clefting. Discussion The extended version of GADGETS can mine for epistasis that involves maternal SNPs.
Collapse
Affiliation(s)
- Michael Nodzenski
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Brian Kidd
- Sciome LLC, Research Triangle Park, NC, United States
| | - Taylor Petty
- Sciome LLC, Research Triangle Park, NC, United States
| | - Clarice R. Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
2
|
De Gregorio V, Barua M, Lennon R. Collagen formation, function and role in kidney disease. Nat Rev Nephrol 2025; 21:200-215. [PMID: 39548215 DOI: 10.1038/s41581-024-00902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Highly abundant in mammals, collagens define the organization of tissues and participate in cell signalling. Most of the 28 vertebrate collagens, with the exception of collagens VI, VII, XXVI and XXVIII, can be categorized into five subgroups: fibrillar collagens, network-forming collagens, fibril-associated collagens with interrupted triple helices, membrane-associated collagens with interrupted triple helices and multiple triple-helix domains with interruptions. Collagen peptides are synthesized from the ribosome and enter the rough endoplasmic reticulum, where they undergo numerous post-translational modifications. The collagen chains form triple helices that can be secreted to form a diverse array of supramolecular structures in the extracellular matrix. Collagens are ubiquitously expressed and have been linked to a broad spectrum of disorders, including genetic disorders with kidney phenotypes. They also have an important role in kidney fibrosis and mass spectrometry-based proteomic studies have improved understanding of the composition of fibrosis in kidney disease. A wide range of therapeutics are in development for collagen and kidney disorders, including genetic approaches, chaperone therapies, protein degradation strategies and anti-fibrotic therapies. Improved understanding of collagens and their role in disease is needed to facilitate the development of more specific treatments for collagen and kidney disorders.
Collapse
Affiliation(s)
- Vanessa De Gregorio
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Moumita Barua
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada.
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK.
| |
Collapse
|
3
|
Ramdas S, Beeson D, Dong YY. Congenital myasthenic syndromes: increasingly complex. Curr Opin Neurol 2024; 37:493-501. [PMID: 39051439 PMCID: PMC11377046 DOI: 10.1097/wco.0000000000001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE OF REVIEW Congenital myasthenia syndromes (CMS) are treatable, inherited disorders affecting neuromuscular transmission. We highlight that the involvement of an increasing number of proteins is making the understanding of the disease mechanisms and potential treatments progressively more complex. RECENT FINDINGS Although early studies identified mutations of proteins directly involved in synaptic transmission at the neuromuscular junction, recently, next-generation sequencing has facilitated the identification of many novel mutations in genes that encode proteins that have a far wider expression profile, some even ubiquitously expressed, but whose defective function leads to impaired neuromuscular transmission. Unsurprisingly, mutations in these genes often causes a wider phenotypic disease spectrum where defective neuromuscular transmission forms only one component. This has implications for the management of CMS patients. SUMMARY Given the widening nonneuromuscular junction phenotypes in the newly identified forms of CMS, new therapies need to include disease-modifying approaches that address not only neuromuscular weakness but also the multisystem involvement. Whilst the current treatments for CMS are highly effective for many subtypes there remains, in a proportion of CMS patients, an unmet need for more efficacious therapies.
Collapse
Affiliation(s)
- Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford
- Department of Paediatric Neurology, John Radcliffe Hospital
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS
| | - Yin Yao Dong
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS
| |
Collapse
|
4
|
Wu J, Yu F, Di Z, Bian L, Yang J, Wang L, Jiang Q, Yin Y, Zhang L. Transcriptome analysis of adipose tissue and muscle of Laiwu and Duroc pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:134-143. [PMID: 38766520 PMCID: PMC11101945 DOI: 10.1016/j.aninu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024]
Abstract
Fat content is an important trait in pig production. Adipose tissue and muscle are important sites for fat deposition and affect production efficiency and quality. To regulate the fat content in these tissues, we need to understand the mechanisms behind fat deposition. Laiwu pigs, a Chinese indigenous breed, have significantly higher fat content in both adipose tissue and muscle than commercial breeds such as Duroc. In this study, we analyzed the transcriptomes in adipose tissue and muscle of 21-d-old Laiwu and Duroc piglets. Results showed that there were 828 and 671 differentially expressed genes (DEG) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), respectively. Functional enrichment analysis showed that these DEG were enriched in metabolic pathways, especially carbohydrate and lipid metabolism. Additionally, in the longissimus muscle (LM) and psoas muscle (PM), 312 and 335 DEG were identified, demonstrating enrichment in the cell cycle and metabolic pathways. The protein-protein interaction (PPI) networks of these DEG were analyzed and potential hub genes were identified, such as FBP1 and SCD in adipose tissues and RRM2 and GADL1 in muscles. Meanwhile, results showed that there were common DEG between adipose tissue and muscle, such as LDHB, THRSP, and DGAT2. These findings showed that there are significant differences in the transcriptomes of the adipose tissue and muscle between Laiwu and Duroc piglets (P < 0.05), especially in metabolic patterns. This insight serves to advance our comprehensive understanding of metabolic regulation in these tissues and provide targets for fat content regulation.
Collapse
Affiliation(s)
- Jie Wu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fangyuan Yu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhaoyang Di
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liwen Bian
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Lin Zhang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
5
|
Norman O, Vornanen T, Franssila H, Liinamaa J, Karvonen E, Kotkavaara T, Pohjanen VM, Ylikärppä R, Pihlajaniemi T, Hurskainen M, Heikkinen A. Expression of Collagen XIII in Tissues of the Thyroid and Orbit With Relevance to Thyroid-Associated Ophthalmopathy. Invest Ophthalmol Vis Sci 2024; 65:6. [PMID: 38564194 PMCID: PMC10996972 DOI: 10.1167/iovs.65.4.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Antibodies against collagen XIII have previously been identified in patients with active thyroid-associated ophthalmopathy (TAO). Although collagen XIII expression has been described in extraocular muscles and orbital fat, its detailed localization in extraocular and thyroid tissues and the connection to autoimmunity for collagen XIII remain unclear. Our objective was to map the potential targets for these antibodies in the tissues of the orbit and thyroid. Methods We evaluated the expression of collagen XIII in human patient and mouse orbital and thyroid tissues with immunostainings and RT-qPCR using Col13a1-/- mice as negative controls. COL13A1 expression in Graves' disease and goiter thyroid samples was compared with TGF-β1 and TNF, and these were also studied in human thyroid epithelial cells and fibroblasts. Results Collagen XIII expression was found in the neuromuscular and myotendinous junctions of extraocular muscles, blood vessels of orbital connective tissue and fat and the thyroid, and in the thyroid epithelium. Thyroid expression was also seen in germinal centers in Graves' disease and in neoplastic epithelium. The expression of COL13A1 in goiter samples correlated with levels of TGF-B1. Upregulation of COL13A1 was reproduced in thyroid epithelial cells treated with TGF-β1. Conclusions We mapped the expression of collagen XIII to various locations in the orbit, demonstrated its expression in the pathologies of the Graves' disease thyroid and confirmed the relationship between collagen XIII and TGF-β1. Altogether, these data add to our understanding of the targets of anti-collagen XIII autoantibodies in TAO.
Collapse
Affiliation(s)
- Oula Norman
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tuuli Vornanen
- Department of General Surgery, Oulu University Hospital, and Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Hanna Franssila
- Department of General Surgery, Oulu University Hospital, and Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Johanna Liinamaa
- Department of Ophthalmology, Oulu University Hospital, and Research Unit of Clinical Medicine, Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Elina Karvonen
- Department of Ophthalmology, Oulu University Hospital, and Research Unit of Clinical Medicine, Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Tommi Kotkavaara
- Department of Ophthalmology, Oulu University Hospital, and Research Unit of Clinical Medicine, Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Vesa-Matti Pohjanen
- Cancer and Translational Medicine Research Unit, Medical Research Centre Oulu, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Ritva Ylikärppä
- Department of General Surgery, Oulu University Hospital, and Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Merja Hurskainen
- Department of Ophthalmology, Oulu University Hospital, and Research Unit of Clinical Medicine, Medical Research Centre, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Anne Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Gahlawat S, Nanda V, Shreiber DI. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 2024; 21:100139. [PMID: 38186852 PMCID: PMC10765305 DOI: 10.1016/j.mbplus.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)n. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen's triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of "designer collagens," i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing in vitro studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
7
|
Sun YJ, Sahakian BJ, Langley C, Yang A, Jiang Y, Kang J, Zhao X, Li C, Cheng W, Feng J. Early-initiated childhood reading for pleasure: associations with better cognitive performance, mental well-being and brain structure in young adolescence. Psychol Med 2024; 54:359-373. [PMID: 37376848 DOI: 10.1017/s0033291723001381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND Childhood is a crucial neurodevelopmental period. We investigated whether childhood reading for pleasure (RfP) was related to young adolescent assessments of cognition, mental health, and brain structure. METHODS We conducted a cross-sectional and longitudinal study in a large-scale US national cohort (10 000 + young adolescents), using the well-established linear mixed model and structural equation methods for twin study, longitudinal and mediation analyses. A 2-sample Mendelian randomization (MR) analysis for potential causal inference was also performed. Important factors including socio-economic status were controlled. RESULTS Early-initiated long-standing childhood RfP (early RfP) was highly positively correlated with performance on cognitive tests and significantly negatively correlated with mental health problem scores of young adolescents. These participants with higher early RfP scores exhibited moderately larger total brain cortical areas and volumes, with increased regions including the temporal, frontal, insula, supramarginal; left angular, para-hippocampal; right middle-occipital, anterior-cingulate, orbital areas; and subcortical ventral-diencephalon and thalamus. These brain structures were significantly related to their cognitive and mental health scores, and displayed significant mediation effects. Early RfP was longitudinally associated with higher crystallized cognition and lower attention symptoms at follow-up. Approximately 12 h/week of youth regular RfP was cognitively optimal. We further observed a moderately significant heritability of early RfP, with considerable contribution from environments. MR analysis revealed beneficial causal associations of early RfP with adult cognitive performance and left superior temporal structure. CONCLUSIONS These findings, for the first time, revealed the important relationships of early RfP with subsequent brain and cognitive development and mental well-being.
Collapse
Affiliation(s)
- Yun-Jun Sun
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Christelle Langley
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Anyi Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xingming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| |
Collapse
|
8
|
Norman O, Koivunen J, Kaarteenaho R, Salo AM, Mäki JM, Myllyharju J, Pihlajaniemi T, Heikkinen A. Contribution of collagen XIII to lung function and development of pulmonary fibrosis. BMJ Open Respir Res 2023; 10:e001850. [PMID: 38568728 PMCID: PMC10729248 DOI: 10.1136/bmjresp-2023-001850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/30/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Collagen XIII is a transmembrane collagen associated with neuromuscular junction development, and in humans its deficiency results in congenital myasthenic syndrome type 19 (CMS19), which leads to breathing difficulties. CMS19 patients usually have restricted lung capacity and one patient developed chronic lung disease. In single-cell RNA sequencing studies, collagen XIII has been identified as a marker for pulmonary lipofibroblasts, which have been implicated in the resolution of pulmonary fibrosis. METHODS We investigated the location and function of collagen XIII in the lung to understand the origin of pulmonary symptoms in human CMS19 patients. Additionally, we performed immunostainings on idiopathic pulmonary fibrosis (IPF) samples (N=5) and both normal and fibrotic mouse lung. To study whether the lack of collagen XIII predisposes to restrictive lung disease, we exposed Col13a1-modified mice to bleomycin-induced pulmonary fibrosis. RESULTS Apparently normal alveolar septum sections of IPF patients' lungs stained faintly for collagen XIII, and its expression was pinpointed to the septal fibroblasts in the mouse lung. Lung capacity was increased in mice lacking collagen XIII by over 10%. In IPF samples, collagen XIII was expressed by basal epithelial cells, hyperplastic alveolar epithelial cells and stromal cells in fibrotic areas, but the development of pulmonary fibrosis was unaffected in collagen XIII-deficient mice. CONCLUSIONS Changes in mouse lung function appear to represent a myasthenic manifestation of collagen XIII deficiency. We suggest that respiratory muscle myasthenia is the primary cause of the breathing problems suffered by CMS19 patients in addition to skeletal deformities. Induction of collagen XIII expression in the IPF patients' lungs warrants further studies to reveal collagen XIII-dependent disease mechanisms.
Collapse
Affiliation(s)
- Oula Norman
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jarkko Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Riitta Kaarteenaho
- Research Unit of Biomedicine and Internal Medicine and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Center for Internal Medicine and Respiratory Medicine, Oulu University Hospital, Oulu, Finland
| | - Antti M Salo
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Joni M Mäki
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anne Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
9
|
Poulos J, Samuels M, Palace J, Beeson D, Robb S, Ramdas S, Chan S, Munot P. Congenital myasthenic syndromes: a retrospective natural history study of respiratory outcomes in a single centre. Brain Commun 2023; 5:fcad299. [PMID: 38035366 PMCID: PMC10684295 DOI: 10.1093/braincomms/fcad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/05/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Respiratory problems are a major cause of morbidity and mortality in patients with congenital myasthenic syndromes, a rare heterogeneous group of neuromuscular disorders caused by genetic defects impacting the structure and function of the neuromuscular junction. Recurrent, life-threatening episodic apnoea in early infancy and childhood and progressive respiratory failure requiring ventilation are features of certain genotypes of congenital myasthenic syndromes. Robb et al. published empirical guidance on respiratory management of the congenital myasthenic syndromes, but other than this workshop report, there are little published longitudinal natural history data on respiratory outcomes of these disorders. We report a retrospective, single-centre study on respiratory outcomes in a cohort of 40 well characterized genetically confirmed cases of congenital myasthenic syndromes, including 10 distinct subtypes (DOK7, COLQ, RAPSN, CHAT, CHRNA1, CHRNG, COL13A1, CHRNE, CHRNE fast channel syndrome and CHRNA1 slow channel syndrome), with many followed up over 20 years in our centre. A quantitative and longitudinal analysis of key spirometry and sleep study parameters, as well as a description of historical hospital admissions for respiratory decompensation, provides a snapshot of the respiratory trajectory of congenital myasthenic syndrome patients based on genotype.
Collapse
Affiliation(s)
- Jordan Poulos
- Paediatrics, University College London Medical School, London WC1E 6BT, UK
| | - Martin Samuels
- Respiratory Medicine, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Jacqueline Palace
- University of Oxford and Department of Neurology, Oxford Radcliffe Hospitals, Oxford OX3 9DU, UK
| | - David Beeson
- Neurology, Nuffield Department of Clinical Neurosciences, Oxford OX3 7BN, UK
| | - Stephanie Robb
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Sithara Ramdas
- Neurology, MDUK Neuromuscular Centre, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Samantha Chan
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London WC1N 3JH, UK
- Neurosciences, University College London and Institute of Child Health, London WC1N 1EH, UK
| | - Pinki Munot
- Dubowitz Neuromuscular Centre, Great Ormond Street Hospital, London WC1N 3JH, UK
- Neurosciences, University College London and Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
10
|
Spendiff S, Dong Y, Maggi L, Rodríguez Cruz PM, Beeson D, Lochmüller H. 260th ENMC International Workshop: Congenital myasthenic syndromes 11-13 March 2022, Hoofddorp, The Netherlands. Neuromuscul Disord 2023; 33:111-118. [PMID: 36609117 DOI: 10.1016/j.nmd.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Yin Dong
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pedro M Rodríguez Cruz
- Centro Nacional de Análisis Genómico (CNAG-CRG), Centre for Genomic Regulation, Barcelona, Spain; Department of Human Genetics, Université Cheikh Anta Diop, Dakar, Senegal; Department of Neuromuscular Diseases, UCL Institute of Neurology, London, UK
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada; Department of Medicine, Division of Neurology, The Ottawa Hospital, Ottawa, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada; Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.
| |
Collapse
|
11
|
He Y, Wang W, Ma X, Duan Z, Wang B, Li M, Xu H. Discovery and Potential Functional Characterization of Long Noncoding RNAs Associated with Familial Acne Inversa with NCSTN Mutation. Dermatology 2023; 240:119-131. [PMID: 37490873 DOI: 10.1159/000531978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are associated with many dermatologic diseases. However, little is known about the regulatory function of lncRNAs in familial acne inversa (AI) patients with nicastrin (NCSTN) mutation. OBJECTIVES The aim of this study was to explore the regulatory function of lncRNAs in familial AI patients with NCSTN mutation. METHODS The expression profiles of lncRNAs and mRNAs in skin tissues from familial AI patients with NCSTN mutation and healthy individuals were analysed in this study via RNA sequencing (RNA-seq). RESULTS In total, 359 lncRNAs and 1,863 mRNAs were differentially expressed between the two groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the dysregulated mRNAs targeted by lncRNAs were mainly associated with the immune regulation, Staphylococcus aureus infection and B cell receptor signalling pathways. The lncRNA-miRNA-mRNA coexpression network contained 265 network pairs comprising 55 dysregulated lncRNAs, 11 miRNAs, and 74 mRNAs. Conservation analysis of the differentially expressed lncRNAs between familial AI patients with NCSTN mutation and Ncstn keratinocyte-specific knockout (NcstnΔKC) mice identified 6 lncRNAs with sequence conservation; these lncRNAs may participate in apoptosis, proliferation, and skin barrier function. CONCLUSIONS These findings provide a direction for exploring the regulatory mechanisms underlying the progression of familial AI patients with NCSTN mutation.
Collapse
Affiliation(s)
- Yanyan He
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,
| | - Wenzhu Wang
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiao Ma
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Zhimin Duan
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Baoxi Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Li
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haoxiang Xu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Victor AK, Hedgecock T, Donaldson M, Johnson D, Rand CM, Weese-Mayer DE, Reiter LT. Analysis and comparisons of gene expression changes in patient- derived neurons from ROHHAD, CCHS, and PWS. Front Pediatr 2023; 11:1090084. [PMID: 37234859 PMCID: PMC10206321 DOI: 10.3389/fped.2023.1090084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Background Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome is an ultra-rare neurocristopathy with no known genetic or environmental etiology. Rapid-onset obesity over a 3-12 month period with onset between ages 1.5-7 years of age is followed by an unfolding constellation of symptoms including severe hypoventilation that can lead to cardiorespiratory arrest in previously healthy children if not identified early and intervention provided. Congenital Central Hypoventilation syndrome (CCHS) and Prader-Willi syndrome (PWS) have overlapping clinical features with ROHHAD and known genetic etiologies. Here we compare patient neurons from three pediatric syndromes (ROHHAD, CCHS, and PWS) and neurotypical control subjects to identify molecular overlap that may explain the clinical similarities. Methods Dental pulp stem cells (DPSC) from neurotypical control, ROHHAD, and CCHS subjects were differentiated into neuronal cultures for RNA sequencing (RNAseq). Differential expression analysis identified transcripts variably regulated in ROHHAD and CCHS vs. neurotypical control neurons. In addition, we used previously published PWS transcript data to compare both groups to PWS patient-derived DPSC neurons. Enrichment analysis was performed on RNAseq data and downstream protein expression analysis was performed using immunoblotting. Results We identified three transcripts differentially regulated in all three syndromes vs. neurotypical control subjects. Gene ontology analysis on the ROHHAD dataset revealed enrichments in several molecular pathways that may contribute to disease pathology. Importantly, we found 58 transcripts differentially expressed in both ROHHAD and CCHS patient neurons vs. control neurons. Finally, we validated transcript level changes in expression of ADORA2A, a gene encoding for an adenosine receptor, at the protein level in CCHS neurons and found variable, although significant, changes in ROHHAD neurons. Conclusions The molecular overlap between CCHS and ROHHAD neurons suggests that the clinical phenotypes in these syndromes likely arise from or affect similar transcriptional pathways. Further, gene ontology analysis identified enrichments in ATPase transmembrane transporters, acetylglucosaminyltransferases, and phagocytic vesicle membrane proteins that may contribute to the ROHHAD phenotype. Finally, our data imply that the rapid-onset obesity seen in both ROHHAD and PWS likely arise from different molecular mechanisms. The data presented here describes important preliminary findings that warrant further validation.
Collapse
Affiliation(s)
- A. Kaitlyn Victor
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tayler Hedgecock
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Martin Donaldson
- Department of Pediatric Dentistry and Community Oral Health, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Casey M. Rand
- Department of Pediatrics, Division of Autonomic Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago and Stanley Manne Children’s Research Institute, Chicago, IL, United States
| | - Debra E. Weese-Mayer
- Department of Pediatrics, Division of Autonomic Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago and Stanley Manne Children’s Research Institute, Chicago, IL, United States
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lawrence T. Reiter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
13
|
De Rose DU, Ronci S, Caoci S, Maddaloni C, Diodato D, Catteruccia M, Fattori F, Bosco L, Pro S, Savarese I, Bersani I, Randi F, Trozzi M, Meucci D, Calzolari F, Salvatori G, Solinas A, Dotta A, Campi F. Vocal Cord Paralysis and Feeding Difficulties as Early Diagnostic Clues of Congenital Myasthenic Syndrome with Neonatal Onset: A Case Report and Review of Literature. J Pers Med 2023; 13:jpm13050798. [PMID: 37240968 DOI: 10.3390/jpm13050798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Herein, we present a newborn female with congenital vocal cord paralysis who required a tracheostomy in the neonatal period. She also presented with feeding difficulties. She was later diagnosed with a clinical picture of congenital myasthenia, associated with three variants of the MUSK gene: the 27-month follow-up was described. In particular, the c.565C>T variant is novel and has never been described in the literature; it causes the insertion of a premature stop codon (p.Arg189Ter) likely leading to a consequent formation of a truncated nonfunctioning protein. We also systematically collected and summarized information on patients' characteristics of previous cases of congenital myasthenia with neonatal onset reported in the literature to date, and we compared them to our case. The literature reported 155 neonatal cases before our case, from 1980 to March 2022. Of 156 neonates with CMS, nine (5.8%) had vocal cord paralysis, whereas 111 (71.2%) had feeding difficulties. Ocular features were evident in 99 infants (63.5%), whereas facial-bulbar symptoms were found in 115 infants (73.7%). In one hundred sixteen infants (74.4%), limbs were involved. Respiratory problems were displayed by 97 infants (62.2%). The combination of congenital stridor, particularly in the presence of an apparently idiopathic bilateral vocal cord paralysis, and poor coordination between sucking and swallowing may indicate an underlying congenital myasthenic syndrome (CMS). Therefore, we suggest testing infants with vocal cord paralysis and feeding difficulties for MUSK and related genes to avoid a late diagnosis of CMS and improve outcomes.
Collapse
Affiliation(s)
| | - Sara Ronci
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Stefano Caoci
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Chiara Maddaloni
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Daria Diodato
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Michela Catteruccia
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Fabiana Fattori
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Luca Bosco
- Neuromuscular and Neurodegenerative Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | - Stefano Pro
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Immacolata Savarese
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Franco Randi
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Marilena Trozzi
- Airway Surgery Unit, Pediatric Surgery Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Duino Meucci
- Airway Surgery Unit, Pediatric Surgery Department, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Flaminia Calzolari
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guglielmo Salvatori
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Agostina Solinas
- Neonatal Intensive Care Unit, Sant'Anna Hospital of Ferrara, 44124 Ferrara, Italy
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Francesca Campi
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
14
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
15
|
Bullich G, Matalonga L, Pujadas M, Papakonstantinou A, Piscia D, Tonda R, Artuch R, Gallano P, Garrabou G, González JR, Grinberg D, Guitart M, Laurie S, Lázaro C, Luengo C, Martí R, Milà M, Ovelleiro D, Parra G, Pujol A, Tizzano E, Macaya A, Palau F, Ribes A, Pérez-Jurado LA, Beltran S. Systematic Collaborative Reanalysis of Genomic Data Improves Diagnostic Yield in Neurologic Rare Diseases. J Mol Diagn 2022; 24:529-542. [PMID: 35569879 DOI: 10.1016/j.jmoldx.2022.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/26/2022] Open
Abstract
Many patients experiencing a rare disease remain undiagnosed even after genomic testing. Reanalysis of existing genomic data has shown to increase diagnostic yield, although there are few systematic and comprehensive reanalysis efforts that enable collaborative interpretation and future reinterpretation. The Undiagnosed Rare Disease Program of Catalonia project collated previously inconclusive good quality genomic data (panels, exomes, and genomes) and standardized phenotypic profiles from 323 families (543 individuals) with a neurologic rare disease. The data were reanalyzed systematically to identify relatedness, runs of homozygosity, consanguinity, single-nucleotide variants, insertions and deletions, and copy number variants. Data were shared and collaboratively interpreted within the consortium through a customized Genome-Phenome Analysis Platform, which also enables future data reinterpretation. Reanalysis of existing genomic data provided a diagnosis for 20.7% of the patients, including 1.8% diagnosed after the generation of additional genomic data to identify a second pathogenic heterozygous variant. Diagnostic rate was significantly higher for family-based exome/genome reanalysis compared with singleton panels. Most new diagnoses were attributable to recent gene-disease associations (50.8%), additional or improved bioinformatic analysis (19.7%), and standardized phenotyping data integrated within the Undiagnosed Rare Disease Program of Catalonia Genome-Phenome Analysis Platform functionalities (18%).
Collapse
Affiliation(s)
- Gemma Bullich
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Leslie Matalonga
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Montserrat Pujadas
- Genetics Unit, University Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anastasios Papakonstantinou
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Davide Piscia
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Raúl Tonda
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Pia Gallano
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Genetics Department, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Glòria Garrabou
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Muscle Research and Mitochondrial Function Laboratory, CELLEX-Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Internal Medicine Department, Hospital Clinic of Barcelona, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Grinberg
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona, Spain
| | - Míriam Guitart
- Genetics Laboratory, Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Steven Laurie
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Conxi Lázaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Catalan Institute of Oncology, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Cristina Luengo
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramon Martí
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Milà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Institut d'Investigació Biomèdica August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - David Ovelleiro
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Genís Parra
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Aurora Pujol
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-Hospital Duran i Reynals, Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Eduardo Tizzano
- Department of Clinical and Molecular Genetics, Medicine Genetics Group Vall d'Hebron Institut de Recerca (VHIR), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability ERN-ITHACA, Universitat Autònoma de Barcelona, Hospital Vall d´Hebron, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Palau
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Department of Genetic and Molecular Medicine, Pediatric Institute of Rare Diseases (IPER), Hospital Sant Joan de Déu, Clinic Institute of Medicine and Dermatology, Hospital Clínic de Barcelona and Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Antònia Ribes
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Secció d'Errors Congènits del Metabolisme-Institute of Clinical Biochemistry (IBC), Servei de Bioquímica i Genètìca Molecular, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luis A Pérez-Jurado
- Genetics Unit, University Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Women's and Children's Hospital, South Australian Health and Medical Research Institute and The University of Adelaide, Adelaide, South Australia, Australia
| | - Sergi Beltran
- Centro Nacional Análisis Genómico (CNAG)-Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
16
|
Kemppainen AV, Finnilä MA, Heikkinen A, Härönen H, Izzi V, Kauppinen S, Saarakkala S, Pihlajaniemi T, Koivunen J. The CMS19 disease model specifies a pivotal role for collagen XIII in bone homeostasis. Sci Rep 2022; 12:5866. [PMID: 35393492 PMCID: PMC8990013 DOI: 10.1038/s41598-022-09653-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in the COL13A1 gene result in congenital myasthenic syndrome type 19 (CMS19), a disease of neuromuscular synapses and including various skeletal manifestations, particularly facial dysmorphisms. The phenotypic consequences in Col13a1 null mice (Col13a1−/−) recapitulate the muscle findings of the CMS19 patients. Collagen XIII (ColXIII) is exists as two forms, a transmembrane protein and a soluble molecule. While the Col13a1−/− mice have poorly formed neuromuscular junctions, the prevention of shedding of the ColXIII ectodomain in the Col13a1tm/tm mice results in acetylcholine receptor clusters of increased size and complexity. In view of the bone abnormalities in CMS19, we here studied the tubular and calvarial bone morphology of the Col13a1−/− mice. We discovered several craniofacial malformations, albeit less pronounced ones than in the human disease, and a reduction of cortical bone mass in aged mice. In the Col13a1tm/tm mice, where ColXIII is synthesized but the ectodomain shedding is prevented due to a mutation in a protease recognition sequence, the cortical bone mass decreased as well with age and the cephalometric analyses revealed significant craniofacial abnormalities but no clear phenotypical pattern. To conclude, our data indicates an intrinsic role for ColXIII, particularly the soluble form, in the upkeep of bone with aging and suggests the possibility of previously undiscovered bone pathologies in patients with CMS19.
Collapse
Affiliation(s)
- A V Kemppainen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - M A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - A Heikkinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - H Härönen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - V Izzi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.,Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Foundation for the Finnish Cancer Institute, Tukholmankatu 8, 00130, Helsinki, Finland
| | - S Kauppinen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - T Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland
| | - J Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014, Oulu, Finland.
| |
Collapse
|
17
|
Kediha MI, Tazir M, Sternberg D, Eymard B, Alipacha L. Moderate phenotype of a congenital myasthenic syndrome type 19 caused by mutation of the COL13A1 gene: a case report. J Med Case Rep 2022; 16:134. [PMID: 35337379 PMCID: PMC8957144 DOI: 10.1186/s13256-022-03268-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background Congenital myasthenic syndromes caused by mutations in the COL13A1 gene are very rare and have a phenotype described as severe. We present the first case of congenital myasthenic syndrome described in Algeria and the Maghreb with a new mutation of this gene. Case presentation We present an 8-year-old Algerian female patient, who presented with a moderate phenotype with bilateral ptosis that fluctuates during the day and has occurred since birth. During the investigation, and despite the very probable congenital origin, we ruled out other diagnoses that could induce pathology of the neuromuscular junction. The genetic study confirmed our diagnosis suspicion by highlighting a new mutation in the COL13A1 gene. Conclusion We report a case with a mutation of the Col13A1 gene, reported in the Maghreb (North Africa), and whose phenotype is moderate compared with the majority of cases found in the literature.
Collapse
Affiliation(s)
- Mohamed Islam Kediha
- Neurology Department, Mustapha Bacha University Hospital, Benyoucef Benkhedda University, Algiers, Algeria. .,Neurology Department, Pitié Salpetriére University Hospital, Paris, France.
| | - Meriem Tazir
- Neurology Department, Mustapha Bacha University Hospital, Benyoucef Benkhedda University, Algiers, Algeria.,Neurology Department, Pitié Salpetriére University Hospital, Paris, France
| | - Damien Sternberg
- Myogenetics Laboratory, Pitié Salpetriére University Hospital, Paris, France.,Neurology Department, Pitié Salpetriére University Hospital, Paris, France
| | - Bruno Eymard
- Myogenetics Laboratory, Pitié Salpetriére University Hospital, Paris, France.,Neurology Department, Pitié Salpetriére University Hospital, Paris, France
| | - Lamia Alipacha
- Neurology Department, Mustapha Bacha University Hospital, Benyoucef Benkhedda University, Algiers, Algeria.,Neurology Department, Pitié Salpetriére University Hospital, Paris, France
| |
Collapse
|
18
|
Estephan EP, Zambon AA, Thompson R, Polavarapu K, Jomaa D, Töpf A, Helito PVP, Heise CO, Moreno CAM, Silva AMS, Kouyoumdjian JA, Morita MDP, Reed UC, Lochmüller H, Zanoteli E. Congenital myasthenic syndrome: Correlation between clinical features and molecular diagnosis. Eur J Neurol 2021; 29:833-842. [PMID: 34749429 DOI: 10.1111/ene.15173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To present phenotype features of a large cohort of congenital myasthenic syndromes (CMS) and correlate them with their molecular diagnosis. METHODS Suspected CMS patients were divided into three groups: group A (limb, bulbar or axial weakness, with or without ocular impairment, and all the following: clinical fatigability, electrophysiology compatible with neuromuscular junction involvement and anticholinesterase agents response), group B (limb, bulbar or axial weakness, with or without ocular impairment, and at least one of additional characteristics noted in group A) and group C (pure ocular syndrome). Individual clinical findings and the clinical groups were compared between the group with a confirmed molecular diagnosis of CMS and the group without molecular diagnosis or with a non-CMS molecular diagnosis. RESULTS Seventy-nine patients (68 families) were included in the cohort: 48 in group A, 23 in group B and 8 in group C. Fifty-one were considered confirmed CMS (30 CHRNE, 5 RAPSN, 4 COL13A1, 3 DOK7, 3 COLQ, 2 GFPT1, 1 CHAT, 1 SCN4A, 1 GMPPB, 1 CHRNA1), 7 probable CMS, 5 non-CMS and 16 unsolved. The chance of a confirmed molecular diagnosis of CMS was significantly higher for group A and lower for group C. Some individual clinical features, alterations on biopsy and electrophysiology enhanced specificity for CMS. Muscle imaging showed at least mild alterations in the majority of confirmed cases, with preferential involvement of soleus, especially in CHRNE CMS. CONCLUSIONS Stricter clinical criteria increase the chance of confirming a CMS diagnosis, but may lose sensitivity, especially for some specific genes.
Collapse
Affiliation(s)
- Eduardo P Estephan
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil.,Department of Neurology, Hospital Santa Marcelina, Sao Paulo, Brazil.,Department of Medical Clinic, Faculdade de Medicina Santa Marcelina (FASM), Sao Paulo, Brazil
| | - Antonio A Zambon
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Danny Jomaa
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Queen's University School of Medicine, Kingston, ON, Canada
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Paulo V P Helito
- Department of Radiology, Hospital das Clínicas (HCFMUSP), Instituto de Ortopedia (IOT), Sao Paulo, Brazil
| | - Carlos O Heise
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Cristiane A M Moreno
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil.,Department of Neurology, Hospital Santa Marcelina, Sao Paulo, Brazil.,Department of Medical Clinic, Faculdade de Medicina Santa Marcelina (FASM), Sao Paulo, Brazil
| | - André M S Silva
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Joao A Kouyoumdjian
- Faculdade Estadual de Medicina de Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, Brazil
| | - Maria da Penha Morita
- Faculdade Estadual de Medicina de Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, Brazil
| | - Umbertina C Reed
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, Ottawa Research Institute, Ottawa, ON, Canada.,Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| |
Collapse
|
19
|
Ramdas S, Beeson D. Congenital myasthenic syndromes: where do we go from here? Neuromuscul Disord 2021; 31:943-954. [PMID: 34736634 DOI: 10.1016/j.nmd.2021.07.400] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022]
Abstract
Congenital myasthenia syndromes are rare but often treatable conditions affecting neuromuscular transmission. They result from loss or impaired function of one of a number of proteins secondary to a genetic defect. An estimate of the prevalence in the UK gave 9.2 cases per million, however, this is likely an underestimate since the adoption of next generation sequencing for diagnosis away from specialist centres is enhancing the 'pick up' rate. Next generation sequencing has helped identify a series of novel genes that harbour mutations causative for congenital myasthenic syndrome that include not only genes that encode proteins specifically expressed at the neuromuscular junction but also those that are ubiquitously expressed. The list of genes harbouring disease-causing mutations for congenital myasthenic syndrome continues to expand and is now over 30, but with many of the newly identified genes it is increasingly being recognised that abnormal neuromuscular transmission is only one component of a multifaceted phenotype in which muscle, the central nervous system, and other organs may also be affected. Treatment can be tailored to the underlying molecular mechanism for impaired neuromuscular transmission but treating the more complex multifaceted disorders and will require development of new therapies.
Collapse
Affiliation(s)
- Sithara Ramdas
- MDUK Neuromuscular centre, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK.
| |
Collapse
|
20
|
Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 2021; 11:65. [PMID: 33789727 PMCID: PMC8011170 DOI: 10.1186/s13578-021-00579-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmission of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physiological function, and application of ECM in skeletal muscle tissue.
Collapse
|
21
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
22
|
Koivunen J, Tu H, Kemppainen A, Anbazhagan P, Finnilä MA, Saarakkala S, Käpylä J, Lu N, Heikkinen A, Juffer AH, Heino J, Gullberg D, Pihlajaniemi T. Integrin α11β1 is a receptor for collagen XIII. Cell Tissue Res 2021; 383:1135-1153. [PMID: 33306155 PMCID: PMC7960628 DOI: 10.1007/s00441-020-03300-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
Abstract
Collagen XIII is a conserved transmembrane collagen mainly expressed in mesenchymal tissues. Previously, we have shown that collagen XIII modulates tissue development and homeostasis. Integrins are a family of receptors that mediate signals from the environment into the cells and vice versa. Integrin α11β1 is a collagen receptor known to recognize the GFOGER (O=hydroxyproline) sequence in collagens. Interestingly, collagen XIII and integrin α11β1 both have a role in the regulation of bone homeostasis. To study whether α11β1 is a receptor for collagen XIII, we utilized C2C12 cells transfected to express α11β1 as their only collagen receptor. The interaction between collagen XIII and integrin α11β1 was also confirmed by surface plasmon resonance and pull-down assays. We discovered that integrin α11β1 mediates cell adhesion to two collagenous motifs, namely GPKGER and GF(S)QGEK, that were shown to act as the recognition sites for the integrin α11-I domain. Furthermore, we studied the in vivo significance of the α11β1-collagen XIII interaction by crossbreeding α11 null mice (Itga11-/-) with mice overexpressing Col13a1 (Col13a1oe). When we evaluated the bone morphology by microcomputed tomography, Col13a1oe mice had a drastic bone overgrowth followed by severe osteoporosis, whereas the double mutant mouse line showed a much milder bone phenotype. To conclude, our data identifies integrin α11β1 as a new collagen XIII receptor and demonstrates that this ligand-receptor pair has a role in the maintenance of bone homeostasis.
Collapse
Affiliation(s)
- Jarkko Koivunen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014, Oulu, Finland
| | - Hongmin Tu
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Antti Kemppainen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014, Oulu, Finland
| | - Padmanabhan Anbazhagan
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Mikko A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Jarmo Käpylä
- Department of Biochemistry and MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Ning Lu
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014, Oulu, Finland
| | - André H Juffer
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Jyrki Heino
- Department of Biochemistry and MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Donald Gullberg
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014, Oulu, Finland.
| |
Collapse
|
23
|
Wakabayashi T. Transmembrane Collagens in Neuromuscular Development and Disorders. Front Mol Neurosci 2021; 13:635375. [PMID: 33536873 PMCID: PMC7848082 DOI: 10.3389/fnmol.2020.635375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular development is a multistep process and involves interactions among various extracellular and transmembrane molecules that facilitate the precise targeting of motor axons to synaptogenic regions of the target muscle. Collagenous proteins with transmembrane domains have recently emerged as molecules that play essential roles in multiple aspects of neuromuscular formation. Membrane-associated collagens with interrupted triple helices (MACITs) are classified as an unconventional subtype of the collagen superfamily and have been implicated in cell adhesion in a variety of tissues, including the neuromuscular system. Collagen XXV, the latest member of the MACITs, plays an essential role in motor axon growth within the developing muscle. In humans, loss-of-function mutations of collagen XXV result in developmental ocular motor disorders. In contrast, collagen XIII contributes to the formation and maintenance of neuromuscular junctions (NMJs), and disruption of its function leads to the congenital myasthenic syndrome. Transmembrane collagens are conserved not only in mammals but also in organisms such as C. elegans, where a single MACIT, COL-99, has been documented to function in motor innervation. Furthermore, in C. elegans, a collagen-like transmembrane protein, UNC-122, is implicated in the structural and functional integrity of the NMJ. This review article summarizes recent advances in understanding the roles of transmembrane collagens and underlying molecular mechanisms in multiple aspects of neuromuscular development and disorders.
Collapse
Affiliation(s)
- Tomoko Wakabayashi
- Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Ojala KS, Ginebaugh SP, Wu M, Miller EW, Ortiz G, Covarrubias M, Meriney SD. A high-affinity, partial antagonist effect of 3,4-diaminopyridine mediates action potential broadening and enhancement of transmitter release at NMJs. J Biol Chem 2021; 296:100302. [PMID: 33465376 PMCID: PMC7949096 DOI: 10.1016/j.jbc.2021.100302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
3,4-Diaminopyridine (3,4-DAP) increases transmitter release from neuromuscular junctions (NMJs), and low doses of 3,4-DAP (estimated to reach ∼1 μM in serum) are the Food and Drug Administration (FDA)-approved treatment for neuromuscular weakness caused by Lambert–Eaton myasthenic syndrome. Canonically, 3,4-DAP is thought to block voltage-gated potassium (Kv) channels, resulting in prolongation of the presynaptic action potential (AP). However, recent reports have shown that low millimolar concentrations of 3,4-DAP have an off-target agonist effect on the Cav1 subtype (“L-type”) of voltage-gated calcium (Cav) channels and have speculated that this agonist effect might contribute to 3,4-DAP effects on transmitter release at the NMJ. To address 3,4-DAP’s mechanism(s) of action, we first used the patch-clamp electrophysiology to characterize the concentration-dependent block of 3,4-DAP on the predominant presynaptic Kv channel subtypes found at the mammalian NMJ (Kv3.3 and Kv3.4). We identified a previously unreported high-affinity (1–10 μM) partial antagonist effect of 3,4-DAP in addition to the well-known low-affinity (0.1–1 mM) antagonist activity. We also showed that 1.5-μM DAP had no effects on Cav1.2 or Cav2.1 current. Next, we used voltage imaging to show that 1.5- or 100-μM 3,4-DAP broadened the AP waveform in a dose-dependent manner, independent of Cav1 calcium channels. Finally, we demonstrated that 1.5- or 100-μM 3,4-DAP augmented transmitter release in a dose-dependent manner and this effect was also independent of Cav1 channels. From these results, we conclude that low micromolar concentrations of 3,4-DAP act solely on Kv channels to mediate AP broadening and enhance transmitter release at the NMJ.
Collapse
Affiliation(s)
- Kristine S Ojala
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott P Ginebaugh
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Man Wu
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan W Miller
- Departments of Chemistry and Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Gloria Ortiz
- Departments of Chemistry and Molecular & Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Manuel Covarrubias
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
25
|
Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 2020; 13:610964. [PMID: 33343299 PMCID: PMC7744297 DOI: 10.3389/fnmol.2020.610964] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
The neuromuscular junction (NMJ) is a highly specialized synapse between a motor neuron nerve terminal and its muscle fiber that are responsible for converting electrical impulses generated by the motor neuron into electrical activity in the muscle fibers. On arrival of the motor nerve action potential, calcium enters the presynaptic terminal, which leads to the release of the neurotransmitter acetylcholine (ACh). ACh crosses the synaptic gap and binds to ACh receptors (AChRs) tightly clustered on the surface of the muscle fiber; this leads to the endplate potential which initiates the muscle action potential that results in muscle contraction. This is a simplified version of the events in neuromuscular transmission that take place within milliseconds, and are dependent on a tiny but highly structured NMJ. Much of this review is devoted to describing in more detail the development, maturation, maintenance and regeneration of the NMJ, but first we describe briefly the most important molecules involved and the conditions that affect their numbers and function. Most important clinically worldwide, are myasthenia gravis (MG), the Lambert-Eaton myasthenic syndrome (LEMS) and congenital myasthenic syndromes (CMS), each of which causes specific molecular defects. In addition, we mention the neurotoxins from bacteria, snakes and many other species that interfere with neuromuscular transmission and cause potentially fatal diseases, but have also provided useful probes for investigating neuromuscular transmission. There are also changes in NMJ structure and function in motor neuron disease, spinal muscle atrophy and sarcopenia that are likely to be secondary but might provide treatment targets. The NMJ is one of the best studied and most disease-prone synapses in the nervous system and it is amenable to in vivo and ex vivo investigation and to systemic therapies that can help restore normal function.
Collapse
Affiliation(s)
- Pedro M. Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Judith Cossins
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
26
|
Nyström A, Kiritsi D. Transmembrane collagens-Unexplored mediators of epidermal-dermal communication and tissue homeostasis. Exp Dermatol 2020; 30:10-16. [PMID: 32869371 DOI: 10.1111/exd.14180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Tissue homeostasis is maintained through constant, dynamic and heterogeneous communication between cells and their microenvironment. Proteins that are at the same time active at the intracellular, cell periphery and deeper extracellular levels possess the ability to, on the individual molecular level, influence the cells and their microenvironment in a bidirectional manner. The transmembrane collagens are a family of such proteins, which are of notable interest for tissue development and homeostasis. In skin, expression of all transmembrane collagens has been reported and deficiency of transmembrane collagen XVII manifests with distinct skin phenotypes. Nevertheless, transmembrane collagens in skin remain understudied despite the association of them with epidermal wound healing and dermal fibrotic processes. Here, we present an overview of transmembrane collagens and put a spotlight on them as regulators of epidermal-dermal communication and as potential players in fibrinogenesis.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Collagens at the vertebrate neuromuscular junction, from structure to pathologies. Neurosci Lett 2020; 735:135155. [PMID: 32534096 DOI: 10.1016/j.neulet.2020.135155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
The extracellular matrix at the neuromuscular junction is built upon components secreted by the motoneuron, the muscle cell and terminal Schwann cells, the cells constituting this specific synapse. This compartment contains glycoproteins, proteoglycans and collagens that form a dense and specialized layer, the synaptic basal lamina. A number of these molecules are known to play a crucial role in anterograde and retrograde signalings that are active in neuromuscular junction formation, maintenance and function. Here, we focus on the isoforms of collagens which are enriched at the synapse. We summarize what we know of their structure, their function and their interactions with transmembrane receptors and other components of the synaptic basal lamina. A number of neuromuscular diseases, congenital myastenic syndromes and myasthenia gravis are caused by human mutations and autoantibodies against these proteins. Analysis of these diseases and of the specific collagen knock-out mice highlights the roles of some of these collagens in promoting a functional synapse.
Collapse
|
28
|
Takamori M. Myasthenia Gravis: From the Viewpoint of Pathogenicity Focusing on Acetylcholine Receptor Clustering, Trans-Synaptic Homeostasis and Synaptic Stability. Front Mol Neurosci 2020; 13:86. [PMID: 32547365 PMCID: PMC7272578 DOI: 10.3389/fnmol.2020.00086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Myasthenia gravis (MG) is a disease of the postsynaptic neuromuscular junction (NMJ) where nicotinic acetylcholine (ACh) receptors (AChRs) are targeted by autoantibodies. Search for other pathogenic antigens has detected the antibodies against muscle-specific tyrosine kinase (MuSK) and low-density lipoprotein-related protein 4 (Lrp4), both causing pre- and post-synaptic impairments. Agrin is also suspected as a fourth pathogen. In a complex NMJ organization centering on MuSK: (1) the Wnt non-canonical pathway through the Wnt-Lrp4-MuSK cysteine-rich domain (CRD)-Dishevelled (Dvl, scaffold protein) signaling acts to form AChR prepatterning with axonal guidance; (2) the neural agrin-Lrp4-MuSK (Ig1/2 domains) signaling acts to form rapsyn-anchored AChR clusters at the innervated stage of muscle; (3) adaptor protein Dok-7 acts on MuSK activation for AChR clustering from “inside” and also on cytoskeleton to stabilize AChR clusters by the downstream effector Sorbs1/2; (4) the trans-synaptic retrograde signaling contributes to the presynaptic organization via: (i) Wnt-MuSK CRD-Dvl-β catenin-Slit 2 pathway; (ii) Lrp4; and (iii) laminins. The presynaptic Ca2+ homeostasis conditioning ACh release is modified by autoreceptors such as M1-type muscarinic AChR and A2A adenosine receptors. The post-synaptic structure is stabilized by: (i) laminin-network including the muscle-derived agrin; (ii) the extracellular matrix proteins (including collagen Q/perlecan and biglycan which link to MuSK Ig1 domain and CRD); and (iii) the dystrophin-associated glycoprotein complex. The study on MuSK ectodomains (Ig1/2 domains and CRD) recognized by antibodies suggested that the MuSK antibodies were pathologically heterogeneous due to their binding to multiple functional domains. Focussing one of the matrix proteins, biglycan which functions in the manner similar to collagen Q, our antibody assay showed the negative result in MG patients. However, the synaptic stability may be impaired by antibodies against MuSK ectodomains because of the linkage of biglycan with MuSK Ig1 domain and CRD. The pathogenic diversity of MG is discussed based on NMJ signaling molecules.
Collapse
|
29
|
The congenital myasthenic syndromes: expanding genetic and phenotypic spectrums and refining treatment strategies. Curr Opin Neurol 2020; 32:696-703. [PMID: 31361628 PMCID: PMC6735524 DOI: 10.1097/wco.0000000000000736] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Congenital myasthenic syndromes (CMS) are a group of heterogeneous inherited disorders caused by mutations in genes encoding proteins whose function is essential for the integrity of neuromuscular transmission. This review updates the reader on the expanding phenotypic spectrum and suggested improved treatment strategies.
Collapse
|
30
|
Nicolau S, Kao JC, Liewluck T. Trouble at the junction: When myopathy and myasthenia overlap. Muscle Nerve 2019; 60:648-657. [PMID: 31449669 DOI: 10.1002/mus.26676] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Although myopathies and neuromuscular junction disorders are typically distinct, their coexistence has been reported in several inherited and acquired conditions. Affected individuals have variable clinical phenotypes but typically display both a decrement on repetitive nerve stimulation and myopathic findings on muscle biopsy. Inherited causes include myopathies related to mutations in BIN1, DES, DNM2, GMPPB, MTM1, or PLEC and congenital myasthenic syndromes due to mutations in ALG2, ALG14, COL13A1, DOK7, DPAGT1, or GFPT1. Additionally, a decrement due to muscle fiber inexcitability is observed in certain myotonic disorders. The identification of a defect of neuromuscular transmission in an inherited myopathy may assist in establishing a molecular diagnosis and in selecting patients who would benefit from pharmacological correction of this defect. Acquired cases meanwhile stem from the co-occurrence of myasthenia gravis or Lambert-Eaton myasthenic syndrome with an immune-mediated myopathy, which may be due to paraneoplastic disorders or exposure to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Justin C Kao
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | | |
Collapse
|
31
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|