1
|
Rachmadi MF, Valdés-Hernández MDC, Makin S, Wardlaw J, Skibbe H. Prediction of white matter hyperintensities evolution one-year post-stroke from a single-point brain MRI and stroke lesions information. Sci Rep 2025; 15:1208. [PMID: 39774013 PMCID: PMC11706948 DOI: 10.1038/s41598-024-83128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Predicting the evolution of white matter hyperintensities (WMH), a common feature in brain magnetic resonance imaging (MRI) scans of older adults (i.e., whether WMH will grow, remain stable, or shrink with time) is important for personalised therapeutic interventions. However, this task is difficult mainly due to the myriad of vascular risk factors and comorbidities that influence it, and the low specificity and sensitivity of the image intensities and textures alone for predicting WMH evolution. Given the predominantly vascular nature of WMH, in this study, we evaluate the impact of incorporating stroke lesion information to a probabilistic deep learning model to predict the evolution of WMH 1-year after the baseline image acquisition, taken soon after a mild stroke event, using T2-FLAIR brain MRI. The Probabilistic U-Net was chosen for this study due to its capability of simulating and quantifying the uncertainties involved in the prediction of WMH evolution. We propose to use an additional loss called volume loss to train our model, and incorporate stroke lesions information, an influential factor in WMH evolution. Our experiments showed that jointly segmenting the disease evolution map (DEM) of WMH and stroke lesions, improved the accuracy of the DEM representing WMH evolution. The combination of introducing the volume loss and joint segmentation of DEM of WMH and stroke lesions outperformed other model configurations with mean volumetric absolute error of 0.0092 ml (down from 1.7739 ml) and 0.47% improvement on average Dice similarity coefficient in shrinking, growing and stable WMH.
Collapse
Affiliation(s)
- Muhammad Febrian Rachmadi
- RIKEN Center for Brain Science, Brain Image Analysis Unit, Wako-shi, 351-0106, Japan.
- Faculty of Computer Science, Universitas Indonesia, Depok, 16424, Indonesia.
| | | | - Stephen Makin
- Centre for Rural Health, University of Aberdeen, Inverness, IV2 3JH, UK
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Henrik Skibbe
- RIKEN Center for Brain Science, Brain Image Analysis Unit, Wako-shi, 351-0106, Japan
| |
Collapse
|
2
|
Bi XA, Yang Z, Huang Y, Xing Z, Xu L, Wu Z, Liu Z, Li X, Liu T. CE-GAN: Community Evolutionary Generative Adversarial Network for Alzheimer's Disease Risk Prediction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3663-3675. [PMID: 38587958 DOI: 10.1109/tmi.2024.3385756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In the studies of neurodegenerative diseases such as Alzheimer's Disease (AD), researchers often focus on the associations among multi-omics pathogeny based on imaging genetics data. However, current studies overlook the communities in brain networks, leading to inaccurate models of disease development. This paper explores the developmental patterns of AD from the perspective of community evolution. We first establish a mathematical model to describe functional degeneration in the brain as the community evolution driven by entropy information propagation. Next, we propose an interpretable Community Evolutionary Generative Adversarial Network (CE-GAN) to predict disease risk. In the generator of CE-GAN, community evolutionary convolutions are designed to capture the evolutionary patterns of AD. The experiments are conducted using functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data. CE-GAN achieves 91.67% accuracy and 91.83% area under curve (AUC) in AD risk prediction tasks, surpassing advanced methods on the same dataset. In addition, we validated the effectiveness of CE-GAN for pathogeny extraction. The source code of this work is available at https://github.com/fmri123456/CE-GAN.
Collapse
|
3
|
Holste G, Lin M, Zhou R, Wang F, Liu L, Yan Q, Van Tassel SH, Kovacs K, Chew EY, Lu Z, Wang Z, Peng Y. Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling. NPJ Digit Med 2024; 7:216. [PMID: 39152209 PMCID: PMC11329720 DOI: 10.1038/s41746-024-01207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
Deep learning has enabled breakthroughs in automated diagnosis from medical imaging, with many successful applications in ophthalmology. However, standard medical image classification approaches only assess disease presence at the time of acquisition, neglecting the common clinical setting of longitudinal imaging. For slow, progressive eye diseases like age-related macular degeneration (AMD) and primary open-angle glaucoma (POAG), patients undergo repeated imaging over time to track disease progression and forecasting the future risk of developing a disease is critical to properly plan treatment. Our proposed Longitudinal Transformer for Survival Analysis (LTSA) enables dynamic disease prognosis from longitudinal medical imaging, modeling the time to disease from sequences of fundus photography images captured over long, irregular time periods. Using longitudinal imaging data from the Age-Related Eye Disease Study (AREDS) and Ocular Hypertension Treatment Study (OHTS), LTSA significantly outperformed a single-image baseline in 19/20 head-to-head comparisons on late AMD prognosis and 18/20 comparisons on POAG prognosis. A temporal attention analysis also suggested that, while the most recent image is typically the most influential, prior imaging still provides additional prognostic value.
Collapse
Affiliation(s)
- Gregory Holste
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Mingquan Lin
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Ruiwen Zhou
- Center for Biostatistics and Data Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Lei Liu
- Center for Biostatistics and Data Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Qi Yan
- Department of Obstetrics & Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sarah H Van Tassel
- Israel Englander Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Kyle Kovacs
- Israel Englander Department of Ophthalmology, Weill Cornell Medicine, New York, NY, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhangyang Wang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Yifan Peng
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Holste G, Lin M, Zhou R, Wang F, Liu L, Yan Q, Van Tassel SH, Kovacs K, Chew EY, Lu Z, Wang Z, Peng Y. Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling. ARXIV 2024:arXiv:2405.08780v2. [PMID: 39371086 PMCID: PMC11451643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Deep learning has enabled breakthroughs in automated diagnosis from medical imaging, with many successful applications in ophthalmology. However, standard medical image classification approaches only assess disease presence at the time of acquisition, neglecting the common clinical setting of longitudinal imaging. For slow, progressive eye diseases like age-related macular degeneration (AMD) and primary open-angle glaucoma (POAG), patients undergo repeated imaging over time to track disease progression and forecasting the future risk of developing a disease is critical to properly plan treatment. Our proposed Longitudinal Transformer for Survival Analysis (LTSA) enables dynamic disease prognosis from longitudinal medical imaging, modeling the time to disease from sequences of fundus photography images captured over long, irregular time periods. Using longitudinal imaging data from the Age-Related Eye Disease Study (AREDS) and Ocular Hypertension Treatment Study (OHTS), LTSA significantly outperformed a single-image baseline in 19/20 head-to-head comparisons on late AMD prognosis and 18/20 comparisons on POAG prognosis. A temporal attention analysis also suggested that, while the most recent image is typically the most influential, prior imaging still provides additional prognostic value.
Collapse
Affiliation(s)
- Gregory Holste
- Department of Population Health Sciences, Weill Cornell Medicine, NY, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, TX, USA
| | - Mingquan Lin
- Department of Electrical and Computer Engineering, The University of Texas at Austin, TX, USA
| | - Ruiwen Zhou
- Center for Biostatistics and Data Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, NY, USA
| | - Lei Liu
- Center for Biostatistics and Data Science, Washington University School of Medicine, St. Louis, MO, USA
| | - Qi Yan
- Department of Obstetrics & Gynecology, Columbia University, New York, NY, USA
| | | | - Kyle Kovacs
- Department of Ophthalmology, Weill Cornell Medicine, New York, USA
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhangyang Wang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, TX, USA
| | - Yifan Peng
- Department of Population Health Sciences, Weill Cornell Medicine, NY, USA
| |
Collapse
|
5
|
Wang C, Tachimori H, Yamaguchi H, Sekiguchi A, Li Y, Yamashita Y. A multimodal deep learning approach for the prediction of cognitive decline and its effectiveness in clinical trials for Alzheimer's disease. Transl Psychiatry 2024; 14:105. [PMID: 38383536 PMCID: PMC10882004 DOI: 10.1038/s41398-024-02819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Alzheimer's disease is one of the most important health-care challenges in the world. For decades, numerous efforts have been made to develop therapeutics for Alzheimer's disease, but most clinical trials have failed to show significant treatment effects on slowing or halting cognitive decline. Among several challenges in such trials, one recently noticed but unsolved is biased allocation of fast and slow cognitive decliners to treatment and placebo groups during randomization caused by the large individual variation in the speed of cognitive decline. This allocation bias directly results in either over- or underestimation of the treatment effect from the outcome of the trial. In this study, we propose a stratified randomization method using the degree of cognitive decline predicted by an artificial intelligence model as a stratification index to suppress the allocation bias in randomization and evaluate its effectiveness by simulation using ADNI data set.
Collapse
Affiliation(s)
- Caihua Wang
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Ashigarakami-gun, Kanagawa, Japan
| | - Hisateru Tachimori
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Endowed Course for Health System Innovation, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yamaguchi
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuanzhong Li
- Bio Science & Engineering Laboratories, FUJIFILM Corporation, Ashigarakami-gun, Kanagawa, Japan.
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
6
|
Bapat R, Ma D, Duong TQ. Predicting Four-Year's Alzheimer's Disease Onset Using Longitudinal Neurocognitive Tests and MRI Data Using Explainable Deep Convolutional Neural Networks. J Alzheimers Dis 2024; 97:459-469. [PMID: 38143361 DOI: 10.3233/jad-230893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Prognosis of future risk of dementia from neuroimaging and cognitive data is important for optimizing clinical management for patients at early stage of Alzheimer's disease (AD). However, existing studies lack an efficient way to integrate longitudinal information from both modalities to improve prognosis performance. OBJECTIVE In this study, we aim to develop and evaluate an explainable deep learning-based framework to predict mild cognitive impairment (MCI) to AD conversion within four years using longitudinal whole-brain 3D MRI and neurocognitive tests. METHODS We proposed a two-stage framework that first uses a 3D convolutional neural network to extract single-timepoint MRI-based AD-related latent features, followed by multi-modal longitudinal feature concatenation and a 1D convolutional neural network to predict the risk of future dementia onset in four years. RESULTS The proposed deep learning framework showed promising to predict MCI to AD conversion within 4 years using longitudinal whole-brain 3D MRI and cognitive data without extracting regional brain volumes or cortical thickness, reaching a balanced accuracy of 0.834, significantly improved from models trained from single timepoint or single modality. The post hoc model explainability revealed heatmap indicating regions that are important for predicting future risk of AD. CONCLUSIONS The proposed framework sets the stage for future studies for using multi-modal longitudinal data to achieve optimal prediction for prognosis of AD onset, leading to better management of the diseases, thereby improving the quality of life.
Collapse
Affiliation(s)
- Rohan Bapat
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salam, NC, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
7
|
Zhang X, Dutton M, Liu R, Ali AA, Sherbeny F. Deep Learning-Based Survival Analysis for Receiving a Steatotic Donor Liver Versus Waiting for a Standard Liver. Transplant Proc 2023; 55:2436-2443. [PMID: 37872066 DOI: 10.1016/j.transproceed.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/12/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND An emerging strategy to expand the donor pool is the use of a steatotic donor liver (SDLs; ≥ 30% macrosteatosis on biopsy). With the obesity epidemic and prevalence of nonalcoholic fatty liver disease, SDLs have been reported in 59% of all deceased donors. Many potential candidates need to decide whether to accept an SDL offer or remain on the waitlist for a nonsteatotic donor liver (non-SDL). The objective of this study was to compare the survival of accepting an SDL vs using a non-SDL after waiting various times. METHODS Using data from the United States' organ procurement and transplantation network, deep survival learning predictive models were built to compare post-decision survival after accepting an SDL vs waiting for a non-SDL. The comparison subjects contain simulated 20,000 different scenarios of a candidate either accepting an SDL immediately or receiving a non-SDL after waiting various times. The research variables were selected using the LASSO-Cox and Random Survival Forest (RSF) models. The Cox proportional hazards and RSF models were also comparatively included for survival prediction. In addition, personalized survival curves for randomly selected candidates were generated. RESULT Deep survival learning outperformed Cox proportional hazards and RSF in predicting the survival of liver transplants. Among the simulations, 25% to 30% of scenarios demonstrated a higher 3-year survival post-decision for candidates accepting an SDL than waiting and receiving a non-SDL. The difference was only 1.43% in 3-year survival post-decision between accepting an SDL and waiting 260 days (mean waitlist time) for a non-SDL. As the number of days on the waitlist increases, the difference in survival between accepting SDLs and waiting for non-SDLs decreases. CONCLUSIONS Appropriately used SDLs could expand the donor pool and relieve the candidates' unmet need for donor livers, which presents long-term survival benefits for recipients.
Collapse
Affiliation(s)
- Xiao Zhang
- Economic, Social and Administrative Pharmacy, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida.
| | - Matthew Dutton
- Economic, Social and Administrative Pharmacy, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida
| | - Rongjie Liu
- Department of Statistics, Florida State University, Tallahassee, Florida
| | - Askal A Ali
- Economic, Social and Administrative Pharmacy, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida
| | - Fatimah Sherbeny
- Economic, Social and Administrative Pharmacy, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida
| |
Collapse
|
8
|
Sarica A, Aracri F, Bianco MG, Arcuri F, Quattrone A, Quattrone A. Explainability of random survival forests in predicting conversion risk from mild cognitive impairment to Alzheimer's disease. Brain Inform 2023; 10:31. [PMID: 37979033 PMCID: PMC10657350 DOI: 10.1186/s40708-023-00211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Random Survival Forests (RSF) has recently showed better performance than statistical survival methods as Cox proportional hazard (CPH) in predicting conversion risk from mild cognitive impairment (MCI) to Alzheimer's disease (AD). However, RSF application in real-world clinical setting is still limited due to its black-box nature.For this reason, we aimed at providing a comprehensive study of RSF explainability with SHapley Additive exPlanations (SHAP) on biomarkers of stable and progressive patients (sMCI and pMCI) from Alzheimer's Disease Neuroimaging Initiative. We evaluated three global explanations-RSF feature importance, permutation importance and SHAP importance-and we quantitatively compared them with Rank-Biased Overlap (RBO). Moreover, we assessed whether multicollinearity among variables may perturb SHAP outcome. Lastly, we stratified pMCI test patients in high, medium and low risk grade, to investigate individual SHAP explanation of one pMCI patient per risk group.We confirmed that RSF had higher accuracy (0.890) than CPH (0.819), and its stability and robustness was demonstrated by high overlap (RBO > 90%) between feature rankings within first eight features. SHAP local explanations with and without correlated variables had no substantial difference, showing that multicollinearity did not alter the model. FDG, ABETA42 and HCI were the first important features in global explanations, with the highest contribution also in local explanation. FAQ, mPACCdigit, mPACCtrailsB and RAVLT immediate had the highest influence among all clinical and neuropsychological assessments in increasing progression risk, as particularly evident in pMCI patients' individual explanation. In conclusion, our findings suggest that RSF represents a useful tool to support clinicians in estimating conversion-to-AD risk and that SHAP explainer boosts its clinical utility with intelligible and interpretable individual outcomes that highlights key features associated with AD prognosis.
Collapse
Affiliation(s)
- Alessia Sarica
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, viale Europa, loc. Germaneto, 88100, Catanzaro, Italy.
| | - Federica Aracri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, viale Europa, loc. Germaneto, 88100, Catanzaro, Italy
| | - Maria Giovanna Bianco
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, viale Europa, loc. Germaneto, 88100, Catanzaro, Italy
| | - Fulvia Arcuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, viale Europa, loc. Germaneto, 88100, Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, viale Europa, loc. Germaneto, 88100, Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, viale Europa, loc. Germaneto, 88100, Catanzaro, Italy
| |
Collapse
|
9
|
Liu S, Zheng Y, Li H, Pan M, Fang Z, Liu M, Qiao Y, Pan N, Jia W, Ge X. Improving Alzheimer Diagnoses With An Interpretable Deep Learning Framework: Including Neuropsychiatric Symptoms. Neuroscience 2023; 531:86-98. [PMID: 37709003 DOI: 10.1016/j.neuroscience.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by the progressive cognitive decline. Among the various clinical symptoms, neuropsychiatric symptoms (NPS) commonly occur during the course of AD. Previous researches have demonstrated a strong association between NPS and severity of AD, while the research methods are not sufficiently intuitive. Here, we report a hybrid deep learning framework for AD diagnosis using multimodal inputs such as structural MRI, behavioral scores, age, and gender information. The framework uses a 3D convolutional neural network to automatically extract features from MRI. The imaging features are passed to the Principal Component Analysis for dimensionality reduction, which fuse with non-imaging information to improve the diagnosis of AD. According to the experimental results, our model achieves an accuracy of 0.91 and an area under the curve of 0.97 in the task of classifying AD and cognitively normal individuals. SHapley Additive exPlanations are used to visually exhibit the contribution of specific NPS in the proposed model. Among all behavioral symptoms, apathy plays a particularly important role in the diagnosis of AD, which can be considered a valuable factor in further studies, as well as clinical trials.
Collapse
Affiliation(s)
- Shujuan Liu
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Hongzhuang Li
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Minmin Pan
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Zhicong Fang
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Mengting Liu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China
| | - Yuchuan Qiao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ningning Pan
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Weikuan Jia
- School of Information Science and Engineering, Shandong Normal University, Shandong, China
| | - Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, Shandong, China.
| |
Collapse
|
10
|
Yi F, Zhang Y, Yuan J, Liu Z, Zhai F, Hao A, Wu F, Somekh J, Peleg M, Zhu YC, Huang Z. Identifying underlying patterns in Alzheimer's disease trajectory: a deep learning approach and Mendelian randomization analysis. EClinicalMedicine 2023; 64:102247. [PMID: 37811490 PMCID: PMC10556591 DOI: 10.1016/j.eclinm.2023.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Background Alzheimer's disease (AD) is a heterogeneously progressive neurodegeneration disorder with varied rates of deterioration, either between subjects or within different stages of a certain subject. Estimating the course of AD at early stages has treatment implications. We aimed to analyze disease progression to identify distinct patterns in AD trajectory. Methods We proposed a deep learning model to identify underlying patterns in the trajectory from cognitively normal (CN) to a state of mild cognitive impairment (MCI) to AD dementia, by jointly predicting time-to-conversion and clustering out distinct subgroups characterized by comprehensive features as well as varied progression rates. We designed and validated our model on the ADNI dataset (1370 participants). Prediction of time-to-conversion in AD trajectory was used to validate the expression of the identified patterns. Causality between patterns and time-to-conversion was further inferred using Mendelian randomization (MR) analysis. External validation was performed on the AIBL dataset (233 participants). Findings The proposed model clustered out patterns characterized by significantly different biomarkers and varied progression rates. The discovered patterns also showed a strong prediction ability, as indicated by hazard ratio (CN→MCI, HR = 3.51, p < 0.001; MCI→AD, HR = 8.11, p < 0.001), C-Index (CN→MCI, 0.618; MCI→AD, 0.718), and AUC (CN→MCI, 3 years 0.802, 5 years 0.876; MCI→AD, 3 years 0.914, 5 years 0.957). In the external validation cohort, our model demonstrated competitive performance on conversion time prediction (CN→MCI, C-Index = 0.693; MCI→AD, C-Index = 0.752). Moreover, suggestive associations between CN→MCI/MCI→AD patterns with four/three SNPs were mediated and MR analysis indicated a causal link between MCI→AD patterns and time-to-conversion in the first three years. Interpretation Our proposed model identifies biologically and clinically meaningful patterns from real-world data and provides promising performance on time-to-conversion prediction in AD trajectory, which could promote the understanding of disease progression, facilitate clinical trial design, and provide potential for decision-making. Funding The National Key Research and Development Program of China, the Key R&D Program of Zhejiang, and the National Nature Science Foundation of China.
Collapse
Affiliation(s)
- Fan Yi
- College of Computer Science and Technology, Zhejiang University, China
| | | | - Jing Yuan
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ziyue Liu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Feifei Zhai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ankai Hao
- College of Computer Science and Technology, Zhejiang University, China
| | - Fei Wu
- College of Computer Science and Technology, Zhejiang University, China
| | - Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Mor Peleg
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Yi-Cheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhengxing Huang
- College of Computer Science and Technology, Zhejiang University, China
| |
Collapse
|
11
|
Romano MF, Zhou X, Balachandra AR, Jadick MF, Qiu S, Nijhawan DA, Joshi PS, Mohammad S, Lee PH, Smith MJ, Paul AB, Mian AZ, Small JE, Chin SP, Au R, Kolachalama VB. Deep learning for risk-based stratification of cognitively impaired individuals. iScience 2023; 26:107522. [PMID: 37646016 PMCID: PMC10460987 DOI: 10.1016/j.isci.2023.107522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Quantifying the risk of progression to Alzheimer's disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer's Coordinating Center (NACC, n = 508, validation cohort), subdividing individuals with mild cognitive impairment (MCI) into risk groups based on cerebrospinal fluid amyloid-β levels and identifying differential gray matter patterns. We then created models that fused neural networks with survival analysis, trained using non-parcellated T1-weighted brain MRIs from ADNI data, to predict the trajectories of MCI to AD conversion within the NACC cohort (integrated Brier score: 0.192 [discovery], and 0.108 [validation]). Using modern interpretability techniques, we verified that regions important for model prediction are classically associated with AD. We confirmed AD diagnosis labels using postmortem data. We conclude that our framework provides a strategy for risk-based stratification of individuals with MCI and for identifying regions key for disease prognosis.
Collapse
Affiliation(s)
- Michael F. Romano
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Xiao Zhou
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Computer Science, Boston University, Boston, MA, USA
| | - Akshara R. Balachandra
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michalina F. Jadick
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shangran Qiu
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Diya A. Nijhawan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Prajakta S. Joshi
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of General Dentistry, Boston University School of Dental Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shariq Mohammad
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Peter H. Lee
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Maximilian J. Smith
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Aaron B. Paul
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Asim Z. Mian
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Juan E. Small
- Department of Radiology, Lahey Hospital & Medical Center, Burlington, MA, USA
| | - Sang P. Chin
- Department of Computer Science, Boston University, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center of Mathematical Sciences & Applications, Harvard University, Cambridge, MA, USA
| | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer’s Disease Research Center, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Vijaya B. Kolachalama
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Computer Science, Boston University, Boston, MA, USA
- Boston University Alzheimer’s Disease Research Center, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Sun T, Ding Y. Neural network on interval-censored data with application to the prediction of Alzheimer's disease. Biometrics 2023; 79:2677-2690. [PMID: 35960189 PMCID: PMC10177011 DOI: 10.1111/biom.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) is a progressive and polygenic disorder that affects millions of individuals each year. Given that there have been few effective treatments yet for AD, it is highly desirable to develop an accurate model to predict the full disease progression profile based on an individual's genetic characteristics for early prevention and clinical management. This work uses data composed of all four phases of the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, including 1740 individuals with 8 million genetic variants. We tackle several challenges in this data, characterized by large-scale genetic data, interval-censored outcome due to intermittent assessments, and left truncation in one study phase (ADNIGO). Specifically, we first develop a semiparametric transformation model on interval-censored and left-truncated data and estimate parameters through a sieve approach. Then we propose a computationally efficient generalized score test to identify variants associated with AD progression. Next, we implement a novel neural network on interval-censored data (NN-IC) to construct a prediction model using top variants identified from the genome-wide test. Comprehensive simulation studies show that the NN-IC outperforms several existing methods in terms of prediction accuracy. Finally, we apply the NN-IC to the full ADNI data and successfully identify subgroups with differential progression risk profiles. Data used in the preparation of this article were obtained from the ADNI database.
Collapse
Affiliation(s)
- Tao Sun
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing, China
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ying Ding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Ho NH, Jeong YH, Kim J. Multimodal multitask learning for predicting MCI to AD conversion using stacked polynomial attention network and adaptive exponential decay. Sci Rep 2023; 13:11243. [PMID: 37433809 PMCID: PMC10336016 DOI: 10.1038/s41598-023-37500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Early identification and treatment of moderate cognitive impairment (MCI) can halt or postpone Alzheimer's disease (AD) and preserve brain function. For prompt diagnosis and AD reversal, precise prediction in the early and late phases of MCI is essential. This research investigates multimodal framework-based multitask learning in the following situations: (1) Differentiating early mild cognitive impairment (eMCI) from late MCI and (2) predicting when an MCI patient would acquire AD. Clinical data and two radiomics features on three brain areas deduced from magnetic resonance imaging were investigated (MRI). We proposed an attention-based module, Stack Polynomial Attention Network (SPAN), to firmly encode clinical and radiomics data input characteristics for successful representation from a small dataset. To improve multimodal data learning, we computed a potent factor using adaptive exponential decay (AED). We used experiments from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort study, which included 249 eMCI and 427 lMCI participants at baseline visits. The proposed multimodal strategy yielded the best c-index score in time prediction of MCI to AD conversion (0.85) and the best accuracy in MCI-stage categorization ([Formula: see text]). Moreover, our performance was equivalent to that of contemporary research.
Collapse
Affiliation(s)
- Ngoc-Huynh Ho
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, South Korea
| | - Yang-Hyung Jeong
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, South Korea.
| | - Jahae Kim
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju, 61186, South Korea
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, 61469, South Korea
| |
Collapse
|
14
|
Bayesian inference for survival prediction of childhood Leukemia. Comput Biol Med 2023; 156:106713. [PMID: 36863191 DOI: 10.1016/j.compbiomed.2023.106713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Childhood Leukemia is the most common type of cancer among children. Nearly 39% of cancer-induced childhood deaths are attributable to Leukemia. Nevertheless, early intervention has long been underdeveloped. Moreover, there are still a group of children succumbing to their cancer due to the cancer care resource disparity. Therefore, it calls for an accurate predictive approach to improve childhood Leukemia survival and mitigate these disparities. Existing survival predictions rely on a single best model, which fails to consider model uncertainties in predictions. Prediction from a single model is brittle, with model uncertainty neglected, and inaccurate prediction could lead to serious ethical and economic consequences. METHODS To address these challenges, we develop a Bayesian survival model to predict patient-specific survivals by taking model uncertainty into account. Specifically, we first develop a survival model predict time-varying survival probabilities. Second, we place different prior distributions over various model parameters and estimate their posterior distribution with full Bayesian inference. Third, we predict the patient-specific survival probabilities changing with respect to time by considering model uncertainty induced by posterior distribution. RESULTS Concordance index of the proposed model is 0.93. Moreover, the standardized survival probability of the censored group is higher than that of the deceased group. CONCLUSIONS Experimental results indicate that the proposed model is robust and accurate in predicting patient-specific survivals. It can also help clinicians track the contribution of multiple clinical attributes, thereby enabling well-informed intervention and timely medical care for childhood Leukemia.
Collapse
|
15
|
Song S, Asken B, Armstrong MJ, Yang Y, Li Z. Predicting Progression to Clinical Alzheimer's Disease Dementia Using the Random Survival Forest. J Alzheimers Dis 2023; 95:535-548. [PMID: 37545237 PMCID: PMC10529100 DOI: 10.3233/jad-230208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Assessing the risk of developing clinical Alzheimer's disease (AD) dementia, by machine learning survival analysis approaches, among participants registered in Alzheimer's Disease Centers is important for AD dementia management. OBJECTIVE To construct a prediction model for the onset time of clinical AD dementia using the National Alzheimer Coordinating Center (NACC) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) registered cohorts. METHODS A model was constructed using the Random Survival Forest (RSF) approach and internally and externally validated on the NACC cohort and the ADNI cohort. An R package and a Shiny app were provided for accessing the model. RESULTS We built a predictive model having the six predictors: delayed logical memory score (story recall), CDR® Dementia Staging Instrument - Sum of Boxes, general orientation in CDR®, ability to remember dates and ability to pay bills in the Functional Activities Questionnaire, and patient age. The C indices of the model were 90.82% (SE = 0.71%) and 86.51% (SE = 0.75%) in NACC and ADNI respectively. The time-dependent AUC and accuracy at 48 months were 92.48% (SE = 1.12%) and 88.66% (SE = 1.00%) respectively in NACC, and 90.16% (SE = 1.12%) and 85.00% (SE = 1.14%) respectively in ADNI. CONCLUSION The model showed good prediction performance and the six predictors were easy to obtain, cost-effective, and non-invasive. The model could be used to inform clinicians and patients on the probability of developing clinical AD dementia in 4 years with high accuracy.
Collapse
Affiliation(s)
- Shangchen Song
- Department of Biostatistics, University of Florida College of Public Health & Health Professions and College of Medicine, Gainesville, Florida, 32611, USA
| | - Breton Asken
- Department of Clinical and Health Psychology, University of Florida College of Public Health & Health Professions, Gainesville, FL, 32611, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA
- University of Florida Center for Cognitive Aging and Memory, McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Melissa J. Armstrong
- Departments of Neurology and Health Outcomes & Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, 32611, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA
| | - Yang Yang
- Department of Statistics, University of Georgia Franklin College of Arts and Sciences, Athens, GA, 30602, USA
| | - Zhigang Li
- Department of Biostatistics, University of Florida College of Public Health & Health Professions and College of Medicine, Gainesville, Florida, 32611, USA
| | | |
Collapse
|
16
|
Mirabnahrazam G, Ma D, Beaulac C, Lee S, Popuri K, Lee H, Cao J, Galvin JE, Wang L, Beg MF. Predicting time-to-conversion for dementia of Alzheimer's type using multi-modal deep survival analysis. Neurobiol Aging 2023; 121:139-156. [PMID: 36442416 PMCID: PMC10535369 DOI: 10.1016/j.neurobiolaging.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
Abstract
Dementia of Alzheimer's Type (DAT) is a complex disorder influenced by numerous factors, and it is difficult to predict individual progression trajectory from normal or mildly impaired cognition to DAT. An in-depth examination of multiple modalities of data may yield an accurate estimate of time-to-conversion to DAT for preclinical subjects at various stages of disease development. We used a deep-learning model designed for survival analyses to predict subjects' time-to-conversion to DAT using the baseline data of 401 subjects with 63 features from MRI, genetic, and CDC (Cognitive tests, Demographic, and CSF) data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our study demonstrated that CDC data outperform genetic or MRI data in predicting DAT time-to-conversion for subjects with Mild Cognitive Impairment (MCI). On the other hand, genetic data provided the most predictive power for subjects with Normal Cognition (NC) at the time of the visit. Furthermore, combining MRI and genetic features improved the time-to-event prediction over using either modality alone. Finally, adding CDC to any combination of features only worked as well as using only the CDC features.
Collapse
Affiliation(s)
- Ghazal Mirabnahrazam
- School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Da Ma
- School of Medicine, Wake Forest University, Winston-Salem, NC, USA; School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Cédric Beaulac
- Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada; School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sieun Lee
- Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK; School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Karteek Popuri
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, Canada; School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Hyunwoo Lee
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiguo Cao
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - James E Galvin
- Comprehensive Center for Brain Health, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lei Wang
- Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mirza Faisal Beg
- School of Engineering, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
17
|
Wu X, Peng C, Nelson PT, Cheng Q. Deep learning algorithm reveals probabilities of stage-specific time to conversion in individuals with neurodegenerative disease LATE. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12363. [PMID: 36348767 PMCID: PMC9632667 DOI: 10.1002/trc2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Introduction Limbic-predominant age-related TAR DNA-binding protein 43 (TDP-43) encephalopathy (LATE) is a recently defined neurodegenerative disease. Currently, there is no effective way to make a prognosis of time to stage-specific future conversions at an individual level. Methods After using the Kaplan-Meier estimation and log-rank test to confirm the heterogeneity of LATE progression, we developed a deep learning-based approach to assess the stage-specific probabilities of time to LATE conversions for different subjects. Results Our approach could accurately estimate the disease incidence and transition to next stages: the concordance index was at least 82% and the integrated Brier score was less than 0.14. Moreover, we identified the top 10 important predictors for each disease conversion scenario to help explain the estimation results, which were clinicopathologically meaningful and most were also statistically significant. Discussion Our study has the potential to provide individualized assessment for future time courses of LATE conversions years before their actual occurrence.
Collapse
Affiliation(s)
- Xinxing Wu
- Institute for Biomedical InformaticsUniversity of KentuckyLexingtonKentuckyUSA
| | - Chong Peng
- Department of Computer Science and EngineeringQingdao UniversityShandongChina
| | - Peter T. Nelson
- Sanders‐Brown Aging Center and Department of PathologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Qiang Cheng
- Institute for Biomedical InformaticsUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
18
|
Sharma S, Gupta S, Gupta D, Juneja S, Mahmoud A, El–Sappagh S, Kwak KS. Transfer learning-based modified inception model for the diagnosis of Alzheimer's disease. Front Comput Neurosci 2022; 16:1000435. [PMID: 36387304 PMCID: PMC9664223 DOI: 10.3389/fncom.2022.1000435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative ailment, which gradually deteriorates memory and weakens the cognitive functions and capacities of the body, such as recall and logic. To diagnose this disease, CT, MRI, PET, etc. are used. However, these methods are time-consuming and sometimes yield inaccurate results. Thus, deep learning models are utilized, which are less time-consuming and yield results with better accuracy, and could be used with ease. This article proposes a transfer learning-based modified inception model with pre-processing methods of normalization and data addition. The proposed model achieved an accuracy of 94.92 and a sensitivity of 94.94. It is concluded from the results that the proposed model performs better than other state-of-the-art models. For training purposes, a Kaggle dataset was used comprising 6,200 images, with 896 mild demented (M.D) images, 64 moderate demented (Mod.D) images, and 3,200 non-demented (N.D) images, and 1,966 veritably mild demented (V.M.D) images. These models could be employed for developing clinically useful results that are suitable to descry announcements in MRI images.
Collapse
Affiliation(s)
- Sarang Sharma
- Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology, Chandigarh, Punjab, India
| | - Sheifali Gupta
- Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology, Chandigarh, Punjab, India
| | - Deepali Gupta
- Department of Computer Science and Engineering, Chitkara University Institute of Engineering and Technology, Chandigarh, Punjab, India
| | - Sapna Juneja
- Department of Computer Science, KIET Group of Institutions, Ghaziabad, India
| | - Amena Mahmoud
- Department of Computer Science, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Shaker El–Sappagh
- Faculty of Computer Science and Engineering, Galala University, Suez, Egypt
- Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha, Egypt
| | - Kyung-Sup Kwak
- Department of Information and Communication Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
19
|
Sharma S, Gupta S, Gupta D, Altameem A, Saudagar AKJ, Poonia RC, Nayak SR. HTLML: Hybrid AI Based Model for Detection of Alzheimer’s Disease. Diagnostics (Basel) 2022; 12:diagnostics12081833. [PMID: 36010183 PMCID: PMC9406825 DOI: 10.3390/diagnostics12081833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a degenerative condition of the brain that affects the memory and reasoning abilities of patients. Memory is steadily wiped out by this condition, which gradually affects the brain’s ability to think, recall, and form intentions. In order to properly identify this disease, a variety of manual imaging modalities including CT, MRI, PET, etc. are being used. These methods, however, are time-consuming and troublesome in the context of early diagnostics. This is why deep learning models have been devised that are less time-intensive, require less high-tech hardware or human interaction, continue to improve in performance, and are useful for the prediction of AD, which can also be verified by experimental results obtained by doctors in medical institutions or health care facilities. In this paper, we propose a hybrid-based AI-based model that includes the combination of both transfer learning (TL) and permutation-based machine learning (ML) voting classifier in terms of two basic phases. In the first phase of implementation, it comprises two TL-based models: namely, DenseNet-121 and Densenet-201 for features extraction, whereas in the second phase of implementation, it carries out three different ML classifiers like SVM, Naïve base and XGBoost for classification purposes. The final classifier outcomes are evaluated by means of permutations of the voting mechanism. The proposed model achieved accuracy of 91.75%, specificity of 96.5%, and an F1-score of 90.25. The dataset used for training was obtained from Kaggle and contains 6200 photos, including 896 images classified as mildly demented, 64 images classified as moderately demented, 3200 images classified as non-demented, and 1966 images classified as extremely mildly demented. The results show that the suggested model outperforms current state-of-the-art models. These models could be used to generate therapeutically viable methods for detecting AD in MRI images based on these results for clinical prospective.
Collapse
Affiliation(s)
- Sarang Sharma
- Chitkara Institute of Engineering and Technology, Chitkara University, Punjab 140401, India; (S.S.); (S.G.); (D.G.)
| | - Sheifali Gupta
- Chitkara Institute of Engineering and Technology, Chitkara University, Punjab 140401, India; (S.S.); (S.G.); (D.G.)
| | - Deepali Gupta
- Chitkara Institute of Engineering and Technology, Chitkara University, Punjab 140401, India; (S.S.); (S.G.); (D.G.)
| | - Ayman Altameem
- Department of Computer Science and Engineering, College of Applied Studies and Community Services, King Saud University, Riyadh 11533, Saudi Arabia;
| | - Abdul Khader Jilani Saudagar
- Information Systems Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
- Correspondence:
| | - Ramesh Chandra Poonia
- Department of Computer Science, CHRIST (Deemed to be University), Bangalore 560029, India;
| | - Soumya Ranjan Nayak
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida 201301, India;
| |
Collapse
|
20
|
Sarasua I, Pölsterl S, Wachinger C. Hippocampal representations for deep learning on Alzheimer's disease. Sci Rep 2022; 12:8619. [PMID: 35597814 PMCID: PMC9124220 DOI: 10.1038/s41598-022-12533-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/12/2022] [Indexed: 01/18/2023] Open
Abstract
Deep learning offers a powerful approach for analyzing hippocampal changes in Alzheimer's disease (AD) without relying on handcrafted features. Nevertheless, an input format needs to be selected to pass the image information to the neural network, which has wide ramifications for the analysis, but has not been evaluated yet. We compare five hippocampal representations (and their respective tailored network architectures) that span from raw images to geometric representations like meshes and point clouds. We performed a thorough evaluation for the prediction of AD diagnosis and time-to-dementia prediction with experiments on an independent test dataset. In addition, we evaluated the ease of interpretability for each representation-network pair. Our results show that choosing an appropriate representation of the hippocampus for predicting Alzheimer's disease with deep learning is crucial, since it impacts performance and ease of interpretation.
Collapse
Affiliation(s)
- Ignacio Sarasua
- Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-Universität, Waltherstr. 23, 80337, Munich, Germany.
- Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Sebastian Pölsterl
- Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-Universität, Waltherstr. 23, 80337, Munich, Germany
| | - Christian Wachinger
- Artificial Intelligence in Medical Imaging (AI-Med), Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-Universität, Waltherstr. 23, 80337, Munich, Germany
- Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
21
|
Wang C, Li Y, Tsuboshita Y, Sakurai T, Goto T, Yamaguchi H, Yamashita Y, Sekiguchi A, Tachimori H. A high-generalizability machine learning framework for predicting the progression of Alzheimer's disease using limited data. NPJ Digit Med 2022; 5:43. [PMID: 35414651 PMCID: PMC9005545 DOI: 10.1038/s41746-022-00577-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disease that imposes a substantial financial burden on society. A number of machine learning studies have been conducted to predict the speed of its progression, which varies widely among different individuals, for recruiting fast progressors in future clinical trials. However, because the data in this field are very limited, two problems have yet to be solved: the first is that models built on limited data tend to induce overfitting and have low generalizability, and the second is that no cross-cohort evaluations have been done. Here, to suppress the overfitting caused by limited data, we propose a hybrid machine learning framework consisting of multiple convolutional neural networks that automatically extract image features from the point of view of brain segments, which are relevant to cognitive decline according to clinical findings, and a linear support vector classifier that uses extracted image features together with non-image information to make robust final predictions. The experimental results indicate that our model achieves superior performance (accuracy: 0.88, area under the curve [AUC]: 0.95) compared with other state-of-the-art methods. Moreover, our framework demonstrates high generalizability as a result of evaluations using a completely different cohort dataset (accuracy: 0.84, AUC: 0.91) collected from a different population than that used for training.
Collapse
Affiliation(s)
- Caihua Wang
- Imaging Technology Center, FUJIFILM Corporation, Kanagawa, Japan.
| | - Yuanzhong Li
- Imaging Technology Center, FUJIFILM Corporation, Kanagawa, Japan.
| | | | - Takuya Sakurai
- Imaging Technology Center, FUJIFILM Corporation, Kanagawa, Japan
| | - Tsubasa Goto
- Imaging Technology Center, FUJIFILM Corporation, Kanagawa, Japan
| | - Hiroyuki Yamaguchi
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yuichi Yamashita
- Department of Information Medicine, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hisateru Tachimori
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Endowed Course for Health System Innovation, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
22
|
Wei X, Du X, Xie Y, Suo X, He X, Ding H, Zhang Y, Ji Y, Chai C, Liang M, Yu C, Liu Y, Qin W. Mapping cerebral atrophic trajectory from amnestic mild cognitive impairment to Alzheimer's disease. Cereb Cortex 2022; 33:1310-1327. [PMID: 35368064 PMCID: PMC9930625 DOI: 10.1093/cercor/bhac137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/13/2022] [Accepted: 03/13/2022] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) patients suffer progressive cerebral atrophy before dementia onset. However, the region-specific atrophic processes and the influences of age and apolipoprotein E (APOE) on atrophic trajectory are still unclear. By mapping the region-specific nonlinear atrophic trajectory of whole cerebrum from amnestic mild cognitive impairment (aMCI) to AD based on longitudinal structural magnetic resonance imaging data from Alzheimer's disease Neuroimaging Initiative (ADNI) database, we unraveled a quadratic accelerated atrophic trajectory of 68 cerebral regions from aMCI to AD, especially in the superior temporal pole, caudate, and hippocampus. Besides, interaction analyses demonstrated that APOE ε4 carriers had faster atrophic rates than noncarriers in 8 regions, including the caudate, hippocampus, insula, etc.; younger patients progressed faster than older patients in 32 regions, especially for the superior temporal pole, hippocampus, and superior temporal gyrus; and 15 regions demonstrated complex interaction among age, APOE, and disease progression, including the caudate, hippocampus, etc. (P < 0.05/68, Bonferroni correction). Finally, Cox proportional hazards regression model based on the identified region-specific biomarkers could effectively predict the time to AD conversion within 10 years. In summary, cerebral atrophic trajectory mapping could help a comprehensive understanding of AD development and offer potential biomarkers for predicting AD conversion.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoxi He
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Ding
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China,School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Yu Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Ji
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Chai
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Meng Liang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China,School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China,Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China,School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Yong Liu
- Corresponding author: Wen Qin, Department of Radiology, and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Anshan Road No 154, Heping District, Tianjin 300052, China. ; Yong Liu, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Wen Qin
- Corresponding author: Wen Qin, Department of Radiology, and Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Anshan Road No 154, Heping District, Tianjin 300052, China. ; Yong Liu, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | | |
Collapse
|
23
|
Poloni KM, Ferrari RJ. Automated detection, selection and classification of hippocampal landmark points for the diagnosis of Alzheimer's disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 214:106581. [PMID: 34923325 DOI: 10.1016/j.cmpb.2021.106581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 11/12/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease (AD) is a neurodegenerative, progressive, and irreversible disease that accounts for up to 80% of all dementia cases. AD predominantly affects older adults, and its clinical diagnosis is a challenging evaluation process, with imprecision rates between 12 and 23%. Structural magnetic resonance (MR) imaging has been widely used in studies related to AD because this technique provides images with excellent anatomical details and information about structural changes induced by the disease in the brain. Current studies are focused on detecting AD in its initial stage, i.e., mild cognitive impairment (MCI), since treatments for preventing or delaying the onset of symptoms is more effective when administered at the early stages of the disease. This study proposes a new technique to perform MR image classification in AD diagnosis using discriminative hippocampal point landmarks among the cognitively normal (CN), MCI, and AD populations. METHODS Our approach, based on a two-level classification, first detects and selects discriminative landmark points from two diagnosis populations based on their matching distance compared to a probabilistic atlas of 3-D labeled landmark points. The points are classified using attributes computed in a spherical support region around each point using information from brain probability image tissues of gray matter, white matter, and cerebrospinal fluid as sources of information. Next, at the second level, the images are classified based on a quantitative evaluation obtained from the first-level classifier outputs. RESULTS For the CN×MCI experiment, we achieved an AUC of 0.83, an accuracy of 75.58%, with 72.9% of sensitivity and 77.81% of specificity. For the MCI×AD experiment, we achieved an AUC value of 0.73, an accuracy of 69.8%, a sensitivity of 74.09% and specificity of 64.57%. Finally, for the CN×AD, we achieved an AUC of 0.95, an accuracy of 89.24%, with 85.58% of sensitivity and 92.71% of specificity. CONCLUSIONS The obtained classification results are similar to (or even higher than) other studies that classify AD compared to CN individuals and comparable to those classified patients with MCI.
Collapse
Affiliation(s)
- Katia M Poloni
- Department of Computing, Federal University of São Carlos, Rod. Washington Luis, Km 235, São Carlos, 13565-905, SP, Brazil
| | - Ricardo J Ferrari
- Department of Computing, Federal University of São Carlos, Rod. Washington Luis, Km 235, São Carlos, 13565-905, SP, Brazil.
| |
Collapse
|
24
|
Lu P, Colliot O. Multilevel Survival Modeling with Structured Penalties for Disease Prediction from Imaging Genetics data. IEEE J Biomed Health Inform 2021; 26:798-808. [PMID: 34329174 DOI: 10.1109/jbhi.2021.3100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper introduces a framework for disease prediction from multimodal genetic and imaging data. We propose a multilevel survival model which allows predicting the time of occurrence of a future disease state in patients initially exhibiting mild symptoms. This new multilevel setting allows modeling the interactions between genetic and imaging variables. This is in contrast with classical additive models which treat all modalities in the same manner and can result in undesirable elimination of specific modalities when their contributions are unbalanced. Moreover, the use of a survival model allows overcoming the limitations of previous approaches based on classification which consider a fixed time frame. Furthermore, we introduce specific penalties taking into account the structure of the different types of data, such as a group lasso penalty over the genetic modality and a L2-penalty over the imaging modality. Finally, we propose a fast optimization algorithm, based on a proximal gradient method. The approach was applied to the prediction of Alzheimer's disease (AD) among patients with mild cognitive impairment (MCI) based on genetic (single nucleotide polymorphisms - SNP) and imaging (anatomical MRI measures) data from the ADNI database. The experiments demonstrate the effectiveness of the method for predicting the time of conversion to AD. It revealed how genetic variants and brain imaging alterations interact in the prediction of future disease status. The approach is generic and could potentially be useful for the prediction of other diseases.
Collapse
|
25
|
Ocasio E, Duong TQ. Deep learning prediction of mild cognitive impairment conversion to Alzheimer's disease at 3 years after diagnosis using longitudinal and whole-brain 3D MRI. PeerJ Comput Sci 2021; 7:e560. [PMID: 34141888 PMCID: PMC8176545 DOI: 10.7717/peerj-cs.560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND While there is no cure for Alzheimer's disease (AD), early diagnosis and accurate prognosis of AD may enable or encourage lifestyle changes, neurocognitive enrichment, and interventions to slow the rate of cognitive decline. The goal of our study was to develop and evaluate a novel deep learning algorithm to predict mild cognitive impairment (MCI) to AD conversion at three years after diagnosis using longitudinal and whole-brain 3D MRI. METHODS This retrospective study consisted of 320 normal cognition (NC), 554 MCI, and 237 AD patients. Longitudinal data include T1-weighted 3D MRI obtained at initial presentation with diagnosis of MCI and at 12-month follow up. Whole-brain 3D MRI volumes were used without a priori segmentation of regional structural volumes or cortical thicknesses. MRIs of the AD and NC cohort were used to train a deep learning classification model to obtain weights to be applied via transfer learning for prediction of MCI patient conversion to AD at three years post-diagnosis. Two (zero-shot and fine tuning) transfer learning methods were evaluated. Three different convolutional neural network (CNN) architectures (sequential, residual bottleneck, and wide residual) were compared. Data were split into 75% and 25% for training and testing, respectively, with 4-fold cross validation. Prediction accuracy was evaluated using balanced accuracy. Heatmaps were generated. RESULTS The sequential convolutional approach yielded slightly better performance than the residual-based architecture, the zero-shot transfer learning approach yielded better performance than fine tuning, and CNN using longitudinal data performed better than CNN using a single timepoint MRI in predicting MCI conversion to AD. The best CNN model for predicting MCI conversion to AD at three years after diagnosis yielded a balanced accuracy of 0.793. Heatmaps of the prediction model showed regions most relevant to the network including the lateral ventricles, periventricular white matter and cortical gray matter. CONCLUSIONS This is the first convolutional neural network model using longitudinal and whole-brain 3D MRIs without extracting regional brain volumes or cortical thicknesses to predict future MCI to AD conversion at 3 years after diagnosis. This approach could lead to early prediction of patients who are likely to progress to AD and thus may lead to better management of the disease.
Collapse
Affiliation(s)
- Ethan Ocasio
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Tim Q. Duong
- Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States of America
| |
Collapse
|
26
|
Spooner A, Chen E, Sowmya A, Sachdev P, Kochan NA, Trollor J, Brodaty H. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci Rep 2020; 10:20410. [PMID: 33230128 PMCID: PMC7683682 DOI: 10.1038/s41598-020-77220-w] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Data collected from clinical trials and cohort studies, such as dementia studies, are often high-dimensional, censored, heterogeneous and contain missing information, presenting challenges to traditional statistical analysis. There is an urgent need for methods that can overcome these challenges to model this complex data. At present there is no cure for dementia and no treatment that can successfully change the course of the disease. Machine learning models that can predict the time until a patient develops dementia are important tools in helping understand dementia risks and can give more accurate results than traditional statistical methods when modelling high-dimensional, heterogeneous, clinical data. This work compares the performance and stability of ten machine learning algorithms, combined with eight feature selection methods, capable of performing survival analysis of high-dimensional, heterogeneous, clinical data. We developed models that predict survival to dementia using baseline data from two different studies. The Sydney Memory and Ageing Study (MAS) is a longitudinal cohort study of 1037 participants, aged 70-90 years, that aims to determine the effects of ageing on cognition. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal study aimed at identifying biomarkers for the early detection and tracking of Alzheimer's disease. Using the concordance index as a measure of performance, our models achieve maximum performance values of 0.82 for MAS and 0.93 For ADNI.
Collapse
Affiliation(s)
- Annette Spooner
- School of Computer Science and Engineering, UNSW Sydney, Sydney, Australia.
| | - Emily Chen
- School of Computer Science and Engineering, UNSW Sydney, Sydney, Australia
| | - Arcot Sowmya
- School of Computer Science and Engineering, UNSW Sydney, Sydney, Australia
| | - Perminder Sachdev
- School of Psychiatry, UNSW Sydney, Sydney, Australia
- Centre for Healthy Brain Ageing (CHeBA), UNSW Sydney, Sydney, Australia
| | - Nicole A Kochan
- Centre for Healthy Brain Ageing (CHeBA), UNSW Sydney, Sydney, Australia
| | - Julian Trollor
- School of Psychiatry, UNSW Sydney, Sydney, Australia
- Centre for Healthy Brain Ageing (CHeBA), UNSW Sydney, Sydney, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Sydney, Sydney, Australia
| | - Henry Brodaty
- School of Psychiatry, UNSW Sydney, Sydney, Australia
- Centre for Healthy Brain Ageing (CHeBA), UNSW Sydney, Sydney, Australia
| |
Collapse
|