1
|
Yuan S, Gong Y, Zhang Y, Cao W, Wei L, Sun T, Sun J, Wang L, Zhang Q, Wang Q, Wei Y, Qian Z, Zhang P, Lai D. Brain structural alterations in young women with premature ovarian insufficiency: Implications for dementia risk. Alzheimers Dement 2025; 21:e70111. [PMID: 40145307 PMCID: PMC11947759 DOI: 10.1002/alz.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/08/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Premature ovarian insufficiency (POI), marked by ovarian function loss before age 40, is linked to a higher risk of dementia, including Alzheimer's disease (AD). However, the associated brain structural changes remain poorly understood. METHODS We analyzed T1-weighted and diffusion tensor imaging in 33 idiopathic POI women and 51 healthy controls, using voxel-based, surface-based morphometry, and network analyses to assess gray matter volume (GMV), cortical thickness, and brain connectivity. RESULTS Women with POI showed significant GMV and cortical thickness reductions in the frontal, parietal, and temporal regions (p < 0.05), alongside impaired connectivity with key regions such as the hippocampus, thalamus, and amygdala (p < 0.05). Younger POI subgroups exhibited changes in more widespread brain regions. In additionally, notable atrophy was observed in specific hippocampal and thalamic subregions in POI (p < 0.05). DISCUSSION This preliminary study suggests early neurodegenerative patterns in POI, potentially contributing to dementia risk. Further research is needed to explore the underlying mechanisms and potential interventions. HIGHLIGHTS We evaluated brain structural changes in participants with idiopathic premature ovarian insufficiency (POI). The observed brain alterations in POI participants closely resemble those seen in early dementia, including regions specifically associated with Alzheimer's disease (AD). These findings highlight the critical need for early interventions to reduce the long-term risks of cognitive impairment and dementia in women with POI.
Collapse
Affiliation(s)
- Shuang Yuan
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Yuchen Gong
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yu Zhang
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Wenjiao Cao
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Liutong Wei
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Taotao Sun
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Junyan Sun
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Lulu Wang
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Qian Wang
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Yu Wei
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Zhaoxia Qian
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Puming Zhang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| |
Collapse
|
2
|
Lohman T, Sible I, Engstrom AC, Kapoor A, Shenasa F, Head E, Sordo L, Alitin JPM, Gaubert A, Nguyen A, Rodgers KE, Bradford D, Nation DA. Beat-to-beat blood pressure variability, hippocampal atrophy, and memory impairment in older adults. GeroScience 2025; 47:993-1003. [PMID: 39098984 PMCID: PMC11872826 DOI: 10.1007/s11357-024-01303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Visit-to-visit blood pressure variability (BPV) predicts age-related hippocampal atrophy, neurodegeneration, and memory decline in older adults. Beat-to-beat BPV may represent a more reliable and efficient tool for prospective risk assessment, but it is unknown whether beat-to-beat BPV is similarly associated with hippocampal neurodegeneration, or with plasma markers of neuroaxonal/neuroglial injury. Independently living older adults without a history of dementia, stroke, or other major neurological disorders were recruited from the community (N = 104; age = 69.5 ± 6.7 (range 55-89); 63% female). Participants underwent continuous blood pressure monitoring, brain MRI, venipuncture, and cognitive testing over two visits. Hippocampal volumes, plasma neurofilament light, and glial fibrillary acidic protein levels were assessed. Beat-to-beat BPV was quantified as systolic blood pressure average real variability during 7-min of supine continuous blood pressure monitoring. The cross-sectional relationship between beat-to-beat BPV and hippocampal volumes, cognitive domain measures, and plasma biomarkers was assessed using multiple linear regression with adjustment for demographic covariates, vascular risk factors, and average systolic blood pressure. Elevated beat-to-beat BPV was associated with decreased left hippocampal volume (P = .008), increased plasma concentration of glial fibrillary acidic protein (P = .006), and decreased memory composite score (P = .02), independent of age, sex, average systolic blood pressure, total intracranial volume, and vascular risk factor burden. In summary, beat-to-beat BPV is independently associated with decreased left hippocampal volume, increased neuroglial injury, and worse memory ability. Findings are consistent with prior studies examining visit-to-visit BPV and suggest beat-to-beat BPV may be a useful marker of hemodynamic brain injury in older adults.
Collapse
Affiliation(s)
- Trevor Lohman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Fatemah Shenasa
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Aimee Gaubert
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Nguyen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kathleen E Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - David Bradford
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Marquardt J, Mohan P, Spiliopoulou M, Glanz W, Butryn M, Kuehn E, Schreiber S, Maass A, Diersch N. Identifying older adults at risk for dementia based on smartphone data obtained during a wayfinding task in the real world. PLOS DIGITAL HEALTH 2024; 3:e0000613. [PMID: 39361552 PMCID: PMC11449328 DOI: 10.1371/journal.pdig.0000613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/14/2024] [Indexed: 10/05/2024]
Abstract
Alzheimer's disease (AD), as the most common form of dementia and leading cause for disability and death in old age, represents a major burden to healthcare systems worldwide. For the development of disease-modifying interventions and treatments, the detection of cognitive changes at the earliest disease stages is crucial. Recent advancements in mobile consumer technologies provide new opportunities to collect multi-dimensional data in real-life settings to identify and monitor at-risk individuals. Based on evidence showing that deficits in spatial navigation are a common hallmark of dementia, we assessed whether a memory clinic sample of patients with subjective cognitive decline (SCD) who still scored normally on neuropsychological assessments show differences in smartphone-assisted wayfinding behavior compared with cognitively healthy older and younger adults. Guided by a mobile application, participants had to find locations along a short route on the medical campus of the Magdeburg university. We show that performance measures that were extracted from GPS and user input data distinguish between the groups. In particular, the number of orientation stops was predictive of the SCD status in older participants. Our data suggest that subtle cognitive changes in patients with SCD, whose risk to develop dementia in the future is elevated, can be inferred from smartphone data, collected during a brief wayfinding task in the real world.
Collapse
Affiliation(s)
- Jonas Marquardt
- Multimodal Neuroimaging Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Priyanka Mohan
- Faculty of Computer Science, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Myra Spiliopoulou
- Faculty of Computer Science, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michaela Butryn
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Esther Kuehn
- Hertie Institute for Clinical Brain Research (HIH), Tübingen, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Translational Imaging of Cortical Microstructure, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Maass
- Multimodal Neuroimaging Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Nadine Diersch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
4
|
Knoll C, Doehler J, Northall A, Schreiber S, Rotta J, Mattern H, Kuehn E. Age-related differences in human cortical microstructure depend on the distance to the nearest vein. Brain Commun 2024; 6:fcae321. [PMID: 39355004 PMCID: PMC11443451 DOI: 10.1093/braincomms/fcae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Age-related differences in cortical microstructure are used to understand the neuronal mechanisms that underlie human brain ageing. The cerebral vasculature contributes to cortical ageing, but its precise interaction with cortical microstructure is poorly understood. In a cross-sectional study, we combine venous imaging with vessel distance mapping to investigate the interaction between venous distances and age-related differences in the microstructural architecture of the primary somatosensory cortex, the primary motor cortex and additional areas in the frontal cortex as non-sensorimotor control regions. We scanned 18 younger adults and 17 older adults using 7 Tesla MRI to measure age-related changes in longitudinal relaxation time (T1) and quantitative susceptibility mapping (QSM) values at 0.5 mm isotropic resolution. We modelled different cortical depths using an equi-volume approach and assessed the distance of each voxel to its nearest vein using vessel distance mapping. Our data reveal a dependence of cortical quantitative T1 values and positive QSM values on venous distance. In addition, there is an interaction between venous distance and age on quantitative T1 values, driven by lower quantitative T1 values in older compared to younger adults in voxels that are closer to a vein. Together, our data show that the local venous architecture explains a significant amount of variance in standard measures of cortical microstructure and should be considered in neurobiological models of human brain organisation and cortical ageing.
Collapse
Affiliation(s)
- Christoph Knoll
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Juliane Doehler
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Alicia Northall
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg 39106, Germany
- Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg 39120, Germany
| | - Johanna Rotta
- Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg 39120, Germany
- Department of Neurology, Katharinenhospital, Klinikum Stuttgart, Stuttgart 70174, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg 39106, Germany
- Department Biomedical Magnetic Resonance (BMMR), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Esther Kuehn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- Hertie Institute for Clinical Brain Research (HIH), Tübingen 72076, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen 72076, Germany
| |
Collapse
|
5
|
Hase Y, Jobson D, Cheong J, Gotama K, Maffei L, Hase M, Hamdan A, Ding R, Polivkoski T, Horsburgh K, Kalaria RN. Hippocampal capillary pericytes in post-stroke and vascular dementias and Alzheimer's disease and experimental chronic cerebral hypoperfusion. Acta Neuropathol Commun 2024; 12:29. [PMID: 38360798 PMCID: PMC10870440 DOI: 10.1186/s40478-024-01737-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Neurovascular unit mural cells called 'pericytes' maintain the blood-brain barrier and local cerebral blood flow. Pathological changes in the hippocampus predispose to cognitive impairment and dementia. The role of hippocampal pericytes in dementia is largely unknown. We investigated hippocampal pericytes in 90 post-mortem brains from post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer's disease (AD), and AD-VaD (Mixed) subjects, and post-stroke non-demented survivors as well as similar age controls. We used collagen IV immunohistochemistry to determine pericyte densities and a mouse model of VaD to validate the effects of chronic cerebral hypoperfusion. Despite increased trends in hippocampal microvascular densities across all dementias, mean pericyte densities were reduced by ~25-40% in PSD, VaD and AD subjects compared to those in controls, which calculated to 14.1 ± 0.7 per mm capillary length, specifically in the cornu ammonis (CA) 1 region (P = 0.01). In mice with chronic bilateral carotid artery occlusion, hippocampal pericyte loss was ~60% relative to controls (P < 0.001). Pericyte densities were correlated with CA1 volumes (r = 0.54, P = 0.006) but not in any other sub-region. However, mice subjected to the full-time environmental enrichment (EE) paradigm showed remarkable attenuation of hippocampal CA1 pericyte loss in tandem with CA1 atrophy. Our results suggest loss of hippocampal microvascular pericytes across common dementias is explained by a vascular aetiology, whilst the EE paradigm offers significant protection.
Collapse
Affiliation(s)
- Yoshiki Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Dan Jobson
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Jeremy Cheong
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Kelvin Gotama
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Luciana Maffei
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Mai Hase
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Alhafidz Hamdan
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Ren Ding
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Tuomo Polivkoski
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK
| | - Karen Horsburgh
- Centre for Neuroregeneration, University of Edinburgh, Little France Crescent, Edinburgh, UK
| | - Raj N Kalaria
- Neurovascular Research Group, Translational and Clinical Research Institute, Campus for Ageing & Vitality, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Kapasi A, Capuano AW, Lamar M, Leurgans SE, Evia AM, Bennett DA, Arfanakis K, Schneider JA. Atherosclerosis and Hippocampal Volumes in Older Adults: The Role of Age and Blood Pressure. J Am Heart Assoc 2024; 13:e031551. [PMID: 38240240 PMCID: PMC11056126 DOI: 10.1161/jaha.123.031551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Lower hippocampal volume is associated with late-life cognitive decline and is an important, but nonspecific marker for clinical Alzheimer's dementia. Cerebrovascular disease may also be associated with hippocampal volume. Here we study the role of intracranial large vessel disease (atherosclerosis) in association with hippocampal volume and the potential role of age, average late-life blood pressure across all visits, and other factors (sex, apolipoprotein ε4 [APOE ε4], and diabetes). METHODS AND RESULTS Data came from 765 community-based older people (91 years old on average at death; 72% women), from 2 ongoing clinical-pathologic cohort studies. Participants completed baseline assessment, annual standardized blood pressure measurements, vascular risk assessment for diabetes, and blood draws to determine APOE genotype, and at death, brains were removed and underwent ex vivo magnetic resonance imaging and neuropathologic evaluation for atherosclerosis pathology and other cerebrovascular and neurodegenerative pathologies. Linear regression models examined the association of atherosclerosis and hippocampal to hemisphere volume ratio and whether age at death, blood pressure, and other factors modified associations. In linear regression models adjusted for demographics and neurodegenerative and other cerebrovascular pathologies, atherosclerosis severity was associated with a lower hippocampal to hemisphere volume ratio. In separate models, we found the effect of atherosclerosis on the ratio of hippocampal to hemisphere volume was attenuated among advanced age at death or having higher systolic blood pressure (interaction terms P≤0.03). We did not find confounding or interactions with sex, diabetes, or APOE ε4. CONCLUSIONS Atherosclerosis severity is associated with lower hippocampal volume, independent of neurodegenerative and other cerebrovascular pathologies. Higher systolic blood pressures and advanced age attenuate associations.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Pathology (Neuropathology)Rush University Medical CenterChicagoIL
| | - Ana W. Capuano
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Melissa Lamar
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Psychiatry and Behavioral SciencesRush University Medical CenterChicagoIL
| | - Sue E. Leurgans
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Arnold M. Evia
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
| | - David A. Bennett
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIL
- Department of Diagnostic RadiologyRush University Medical CenterChicagoIL
| | - Julie A. Schneider
- Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoIL
- Department of Pathology (Neuropathology)Rush University Medical CenterChicagoIL
- Department of Neurological SciencesRush University Medical CenterChicagoIL
| |
Collapse
|
7
|
Garcia-Garcia B, Mattern H, Vockert N, Yakupov R, Schreiber F, Spallazzi M, Perosa V, Haghikia A, Speck O, Düzel E, Maass A, Schreiber S. Vessel Distance Mapping: A novel methodology for assessing vascular-induced cognitive resilience. Neuroimage 2023; 274:120094. [PMID: 37028734 DOI: 10.1016/j.neuroimage.2023.120094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
The association between cerebral blood supply and cognition has been widely discussed in the recent literature. One focus of this discussion has been the anatomical variability of the circle of Willis, with morphological differences being present in more than half of the general population. While previous studies have attempted to classify these differences and explore their contribution to hippocampal blood supply and cognition, results have been controversial. To disentangle these previously inconsistent findings, we introduce Vessel Distance Mapping (VDM) as a novel methodology for evaluating blood supply, which allows for obtaining vessel pattern metrics with respect to the surrounding structures, extending the previously established binary classification into a continuous spectrum. To accomplish this, we manually segmented hippocampal vessels obtained from high-resolution 7T time-of-flight MR angiographic imaging in older adults with and without cerebral small vessel disease, generating vessel distance maps by computing the distances of each voxel to its nearest vessel. Greater values of VDM-metrics, which reflected higher vessel distances, were associated with poorer cognitive outcomes in subjects affected by vascular pathology, while this relation was not observed in healthy controls. Therefore, a mixed contribution of vessel pattern and vessel density is proposed to confer cognitive resilience, consistent with previous research findings. In conclusion, VDM provides a novel platform, based on a statistically robust and quantitative method of vascular mapping, for addressing a variety of clinical research questions.
Collapse
Affiliation(s)
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Niklas Vockert
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Frank Schreiber
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, Azienda Ospedalierouniversitaria, 43126 Parma, Italy
| | - Valentina Perosa
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany; J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aiden Haghikia
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39120 Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London WCIN 3AZ, UK
| | - Anne Maass
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany; Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| |
Collapse
|
8
|
Schreiber S, Bernal J, Arndt P, Schreiber F, Müller P, Morton L, Braun-Dullaeus RC, Valdés-Hernández MDC, Duarte R, Wardlaw JM, Meuth SG, Mietzner G, Vielhaber S, Dunay IR, Dityatev A, Jandke S, Mattern H. Brain Vascular Health in ALS Is Mediated through Motor Cortex Microvascular Integrity. Cells 2023; 12:957. [PMID: 36980297 PMCID: PMC10047140 DOI: 10.3390/cells12060957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Brain vascular health appears to be critical for preventing the development of amyotrophic lateral sclerosis (ALS) and slowing its progression. ALS patients often demonstrate cardiovascular risk factors and commonly suffer from cerebrovascular disease, with evidence of pathological alterations in their small cerebral blood vessels. Impaired vascular brain health has detrimental effects on motor neurons: vascular endothelial growth factor levels are lowered in ALS, which can compromise endothelial cell formation and the integrity of the blood-brain barrier. Increased turnover of neurovascular unit cells precedes their senescence, which, together with pericyte alterations, further fosters the failure of toxic metabolite removal. We here provide a comprehensive overview of the pathogenesis of impaired brain vascular health in ALS and how novel magnetic resonance imaging techniques can aid its detection. In particular, we discuss vascular patterns of blood supply to the motor cortex with the number of branches from the anterior and middle cerebral arteries acting as a novel marker of resistance and resilience against downstream effects of vascular risk and events in ALS. We outline how certain interventions adapted to patient needs and capabilities have the potential to mechanistically target the brain microvasculature towards favorable motor cortex blood supply patterns. Through this strategy, we aim to guide novel approaches to ALS management and a better understanding of ALS pathophysiology.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Jose Bernal
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Philipp Arndt
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Frank Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Patrick Müller
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Department of Internal Medicine/Cardiology and Angiology, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | | | | - Roberto Duarte
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK Dementia Research Institute Centre, Edinburgh EH16 4UX, UK
| | - Joanna Marguerite Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK Dementia Research Institute Centre, Edinburgh EH16 4UX, UK
| | - Sven Günther Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Grazia Mietzner
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Solveig Jandke
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
9
|
Dumais F, Caceres MP, Janelle F, Seifeldine K, Arès-Bruneau N, Gutierrez J, Bocti C, Whittingstall K. eICAB: A novel deep learning pipeline for Circle of Willis multiclass segmentation and analysis. Neuroimage 2022; 260:119425. [PMID: 35809887 DOI: 10.1016/j.neuroimage.2022.119425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/22/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The accurate segmentation, labeling and quantification of cerebral blood vessels on MR imaging is important for basic and clinical research, yet results are not generalizable, and often require user intervention. New methods are needed to automate this process. PURPOSE To automatically segment, label and quantify Circle of Willis (CW) arteries on Magnetic Resonance Angiography images using deep convolutional neural networks. MATERIALS AND METHODS MRA images were pooled from three public and private databases. A total of 116 subjects (mean age 56 years ± 21 [standard deviation]; 72 women) were used to make up the training set (N=101) and the testing set (N=15). In each image, fourteen arterial segments making up or surrounding the CW were manually annotated and validated by a clinical expert. Convolutional neural network (CNN) models were trained on a training set to be finally combined in an ensemble to develop eICAB. Model performances were evaluated using (1) quantitative analysis (dice score on test set) and (2) qualitative analysis (external datasets, N=121). The reliability was assessed using multiple MRAs of healthy participants (ICC of vessel diameters and volumes on test-retest). RESULTS Qualitative analysis showed that eICAB correctly predicted the large, medium and small arteries in 99±0.4%, 97±1% and 88±7% of all images, respectively. For quantitative assessment, the average dice score coefficients for the large (ICAs, BA), medium (ACAs, MCAs, PCAs-P2), and small (AComm, PComm, PCAs-P1) vessels were 0.76±0.07, 0.76±0.08 and 0.41±0.27, respectively. These results were similar and, in some cases, statistically better (p<0.05) than inter-expert annotation variability and robust to image SNR. Finally, test-retest analysis showed that the model yielded high diameter and volume reliability (ICC=0.99). CONCLUSION We have developed a quick and reliable open-source CNN-based method capable of accurately segmenting and labeling the CW in MRA images. This method is largely independent of image quality. In the future, we foresee this approach as a critical step towards fully automated analysis of MRA databases in basic and clinical research.
Collapse
Affiliation(s)
- Félix Dumais
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada.
| | - Marco Perez Caceres
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada
| | - Félix Janelle
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada
| | - Kassem Seifeldine
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada
| | - Noémie Arès-Bruneau
- Department of Medecine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jose Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christian Bocti
- Department of Medecine, Université de Sherbrooke, Sherbrooke, Québec, Canada; Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada; Department of Neurology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kevin Whittingstall
- Department of Radiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
10
|
Neumann K, Günther M, Düzel E, Schreiber S. Microvascular Impairment in Patients With Cerebral Small Vessel Disease Assessed With Arterial Spin Labeling Magnetic Resonance Imaging: A Pilot Study. Front Aging Neurosci 2022; 14:871612. [PMID: 35663571 PMCID: PMC9161030 DOI: 10.3389/fnagi.2022.871612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this pilot study, we investigated microvascular impairment in patients with cerebral small vessel disease (CSVD) using non-invasive arterial spin labeling (ASL) magnetic resonance imaging (MRI). This method enabled us to measure the perfusion parameters, cerebral blood flow (CBF), and arterial transit time (ATT), and the effective T1-relaxation time (T1eff) to research a novel approach of assessing perivascular clearance. CSVD severity was characterized using the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE) and included a rating of white matter hyperintensities (WMHs), lacunes, enlarged perivascular spaces (EPVSs), and cerebral microbleeds (CMBs). Here, we found that CBF decreases and ATT increases with increasing CSVD severity in patients, most prominent for a white matter (WM) region-of-interest, whereas this relation was almost equally driven by WMHs, lacunes, EPVSs, and CMBs. Additionally, we observed a longer mean T1eff of gray matter and WM in patients with CSVD compared to elderly controls, providing an indication of impaired clearance in patients. Mainly T1eff of WM was associated with CSVD burden, whereas lobar lacunes and CMBs contributed primary to this relation compared to EPVSs of the centrum semiovale. Our results complement previous findings of CSVD-related hypoperfusion by the observation of retarded arterial blood arrival times in brain tissue and by an increased T1eff as potential indication of impaired clearance rates using ASL.
Collapse
Affiliation(s)
- Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Katja Neumann
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
- mediri GmbH, Heidelberg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
11
|
Buch S, Chen Y, Jella P, Ge Y, Haacke EM. Vascular mapping of the human hippocampus using Ferumoxytol-enhanced MRI. Neuroimage 2022; 250:118957. [PMID: 35122968 PMCID: PMC9484293 DOI: 10.1016/j.neuroimage.2022.118957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/09/2021] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
The hippocampus is a small but complex grey matter structure that plays an important role in spatial and episodic memory and can be affected by a wide range of pathologies including vascular abnormalities. In this work, we introduce the use of Ferumoxytol, an ultra-small superparamagnetic iron oxide (USPIO) agent, to induce susceptibility in the arteries (as well as increase the susceptibility in the veins) to map the hippocampal micro-vasculature and to evaluate the quantitative change in tissue fractional vascular density (FVD), in each of its subfields. A total of 39 healthy subjects (aged 35.4 ± 14.2 years, from 18 to 81 years old) were scanned with a high-resolution (0.22×0.44×1 mm3) dual-echo SWI sequence acquired at four time points during a gradual increase in Ferumoxytol dose (final dose = 4 mg/kg). The volumes of each subfield were obtained automatically from the pre-contrast T1-weighted data. The dynamically acquired SWI data were co-registered and adaptively combined to reduce the blooming artifacts from large vessels, preserving the contrast from smaller vessels. The resultant SWI data were used to segment the hippocampal vasculature and to measure the FVD ((volume occupied by vessels)/(total volume)) for each subfield. The hippocampal fissure, along with the fimbria, granular cell layer of the dentate gyrus and cornu ammonis layers (except for CA1), showed higher micro-vascular FVD than the other parts of hippocampus. The CA1 region exhibited a significant correlation with age (R = -0.37, p < 0.05). demonstrating an overall loss of hippocampal vascularity in the normal aging process. Moreover, the vascular density reduction was more prominent than the age correlation with the volume reduction (R = -0.1, p > 0.05) of the CA1 subfield, which would suggest that vascular degeneration may precede tissue atrophy.
Collapse
Affiliation(s)
- Sagar Buch
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Pavan Jella
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|