1
|
Meyer-Arndt L, Brasanac J, Gamradt S, Bellmann-Strobl J, Maurer L, Mai K, Steward T, Spranger J, Schmitz-Hübsch T, Paul F, Gold SM, Weygandt M. Body mass, neuro-hormonal stress processing, and disease activity in lean to obese people with multiple sclerosis. J Neurol 2024; 271:1584-1598. [PMID: 38010499 DOI: 10.1007/s00415-023-12100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Overweight and obesity can worsen disease activity in multiple sclerosis (MS). Although psychobiological stress processing is increasingly recognized as important obesity factor that is tightly connected to proinflammatory metabolic hormones and cytokines, its role for MS obesity remains unexplored. Consequently, we investigated the interplay between body mass index (BMI), neural stress processing (functional connectivity, FC), and immuno-hormonal stress parameters (salivary cortisol and T cell glucocorticoid [GC] sensitivity) in 57 people with MS (six obese, 19 over-, 28 normal-, and four underweight; 37 females, 46.4 ± 10.6 years) using an Arterial-Spin-Labeling MRI task comprising a rest and stress stage, along with quantitative PCR. Our findings revealed significant positive connections between BMI and MS disease activity (i.e., higher BMI was accompanied by higher relapse rate). BMI was positively linked to right supramarginal gyrus and anterior insula FC during rest and negatively to right superior parietal lobule and cerebellum FC during stress. BMI showed associations with GC functioning, with higher BMI associated with lower CD8+ FKBP4 expression and higher CD8+ FKBP5 expression on T cells. Finally, the expression of CD8+ FKBP4 positively correlated with the FC of right supramarginal gyrus and left superior parietal lobule during rest. Overall, our study provides evidence that body mass is tied to neuro-hormonal stress processing in people with MS. The observed pattern of associations between BMI, neural networks, and GC functioning suggests partial overlap between neuro-hormonal and neural-body mass networks. Ultimately, the study underscores the clinical importance of understanding multi-system crosstalk in MS obesity.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Jelena Brasanac
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| | - Stefanie Gamradt
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Lukas Maurer
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Max Rubner Center for Cardiovascular-Metabolic-Renal Research, 10117, Berlin, Germany
- Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Redmond Barry Building #817, Parkville, VIC, 3010, Australia
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Max Rubner Center for Cardiovascular-Metabolic-Renal Research, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Stefan M Gold
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203, Berlin, Germany
- Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Martin Weygandt
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany.
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Schulz MA, Hetzer S, Eitel F, Asseyer S, Meyer-Arndt L, Schmitz-Hübsch T, Bellmann-Strobl J, Cole JH, Gold SM, Paul F, Ritter K, Weygandt M. Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis. iScience 2023; 26:107679. [PMID: 37680475 PMCID: PMC10480681 DOI: 10.1016/j.isci.2023.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Clinical and neuroscientific studies suggest a link between psychological stress and reduced brain health in health and neurological disease but it is unclear whether mediating pathways are similar. Consequently, we applied an arterial-spin-labeling MRI stress task in 42 healthy persons and 56 with multiple sclerosis, and investigated regional neural stress responses, associations between functional connectivity of stress-responsive regions and the brain-age prediction error, a highly sensitive machine learning brain health biomarker, and regional brain-age constituents in both groups. Stress responsivity did not differ between groups. Although elevated brain-age prediction errors indicated worse brain health in patients, anterior insula-occipital cortex (healthy persons: occipital pole; patients: fusiform gyrus) functional connectivity correlated with brain-age prediction errors in both groups. Finally, also gray matter contributed similarly to regional brain-age across groups. These findings might suggest a common stress-brain health pathway whose impact is amplified in multiple sclerosis by disease-specific vulnerability factors.
Collapse
Affiliation(s)
- Marc-Andre Schulz
- Charité – Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Psychiatry and Psychotherapy, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen University, Aachen, Germany
| | - Stefan Hetzer
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - Fabian Eitel
- Charité – Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Psychiatry and Psychotherapy, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Susanna Asseyer
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lil Meyer-Arndt
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - James H. Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Stefan M. Gold
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department, Section Psychosomatic Medicine, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kerstin Ritter
- Charité – Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health), Department of Psychiatry and Psychotherapy, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Martin Weygandt
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
T Cell Energy Metabolism Is a Target of Glucocorticoids in Mice, Healthy Humans, and MS Patients. Cells 2023; 12:cells12030450. [PMID: 36766792 PMCID: PMC9914408 DOI: 10.3390/cells12030450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Glucocorticoids (GCs) are used to treat inflammatory disorders such as multiple sclerosis (MS) by exerting prominent activities in T cells including apoptosis induction and suppression of cytokine production. However, little is known about their impact on energy metabolism, although it is widely accepted that this process is a critical rheostat of T cell activity. We thus tested the hypothesis that GCs control genes and processes involved in nutrient transport and glycolysis. Our experiments revealed that escalating doses of dexamethasone (Dex) repressed energy metabolism in murine and human primary T cells. This effect was mediated by the GC receptor and unrelated to both apoptosis induction and Stat1 activity. In contrast, treatment of human T cells with rapamycin abolished the repression of metabolic gene expression by Dex, unveiling mTOR as a critical target of GC action. A similar phenomenon was observed in MS patients after intravenous methylprednisolon (IVMP) pulse therapy. The expression of metabolic genes was reduced in the peripheral blood T cells of most patients 24 h after GC treatment, an effect that correlated with disease activity. Collectively, our results establish the regulation of T cell energy metabolism by GCs as a new immunomodulatory principle.
Collapse
|
4
|
Meyer-Arndt L, Kuchling J, Brasanac J, Hermann A, Asseyer S, Bellmann-Strobl J, Paul F, Gold SM, Weygandt M. Prefrontal-amygdala emotion regulation and depression in multiple sclerosis. Brain Commun 2022; 4:fcac152. [PMID: 35770132 PMCID: PMC9218780 DOI: 10.1093/braincomms/fcac152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/04/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is among the most common comorbidities in multiple sclerosis and has severe psychosocial consequences. Alterations in neural emotion regulation in amygdala and prefrontal cortex have been recognized as key mechanism of depression but never been investigated in multiple sclerosis depression. In this cross-sectional observational study, we employed a functional MRI task investigating neural emotion regulation by contrasting regulated versus unregulated negative stimulus perception in 16 persons with multiple sclerosis and depression (47.9 ± 11.8 years; 14 female) and 26 persons with multiple sclerosis but without depression (47.3 ± 11.7 years; 14 female). We tested the impact of depression and its interaction with lesions in amygdala-prefrontal fibre tracts on brain activity reflecting emotion regulation. A potential impact of sex, age, information processing speed, disease duration, overall lesion load, grey matter fraction, and treatment was taken into account in these analyses. Patients with depression were less able (i) to downregulate negative emotions than those without (t = −2.25, P = 0.012, β = −0.33) on a behavioural level according to self-report data and (ii) to downregulate activity in a left amygdala coordinate (t = 3.03, PFamily-wise error [FWE]-corrected = 0.017, β = 0.39). Moreover, (iii) an interdependent effect of depression and lesions in amygdala-prefrontal tracts on activity was found in two left amygdala coordinates (t = 3.53, pFWE = 0.007, β = 0.48; t = 3.21, pFWE = 0.0158, β = 0.49) and one right amygdala coordinate (t = 3.41, pFWE = 0.009, β = 0.51). Compatible with key elements of the cognitive depression theory formulated for idiopathic depression, our study demonstrates that depression in multiple sclerosis is characterized by impaired neurobehavioural emotion regulation. Complementing these findings, it shows that the relation between neural emotion regulation and depression is affected by lesion load, a key pathological feature of multiple sclerosis, located in amygdala-prefrontal tracts.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin , Berlin , Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center , Lindenberger Weg 80, 13125 Berlin , Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology , 10117 Berlin , Germany
| | - Joseph Kuchling
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology , 10117 Berlin , Germany
| | - Jelena Brasanac
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
| | - Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University Giessen , Germany
- Bender Institute of Neuroimaging, Justus Liebig University Giessen , Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen , Germany
| | - Susanna Asseyer
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin , Berlin , Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center , Lindenberger Weg 80, 13125 Berlin , Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin , Berlin , Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center , Lindenberger Weg 80, 13125 Berlin , Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology , 10117 Berlin , Germany
| | - Stefan M Gold
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department - Section of Psychosomatic Medicine , Campus Benjamin Franklin, 12203 Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, 12203 Berlin , Germany
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology Hamburg, Universitätsklinikum Hamburg-Eppendorf , 20251 Hamburg , Germany
| | - Martin Weygandt
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin , Berlin , Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center , Lindenberger Weg 80, 13125 Berlin , Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) , Berlin , Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center , 10117 Berlin , Germany
| |
Collapse
|