1
|
Radanovic A, Jamison KW, Kang Y, Shah SA, Kuceyeski A. Longitudinal multimodal neuroimaging after traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647315. [PMID: 40235998 PMCID: PMC11996476 DOI: 10.1101/2025.04.04.647315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Traumatic brain injury is a major cause of long-term cognitive impairment, yet the mechanisms underlying recovery remain poorly understood. Neuroimaging methods such as diffusion MRI, functional MRI, and positron emission tomography (PET) provide insight into micro- and macro-scale changes post-TBI, but the relationships between regional cellular and functional alterations remain unclear. In this study, we conducted a longitudinal, multimodal neuroimaging analysis quantifying TBI-related pathologies in four biomarkers, namely flumazenil PET derived binding potential, dMRI-derived structural connectivity, and resting-state fMRI-derived functional connectivity and fractional amplitude of low-frequency fluctuations in individuals with mild-to-severe brain injury at the subacute (4-6 months post-injury) and chronic (1-year postinjury) stages. Brain injury related regional pathologies, and their changes over time, were correlated across the four biomarkers. Our results reveal complex, dynamic changes over time. We found that flumazenil-PET binding potential was significantly reduced in frontal and thalamic regions in brain injured subjects, consistent with neuronal loss, with partial recovery over time. Functional hyperconnectivity was observed in brain injured subjects initially but declined while remaining elevated compared to non-injured controls, whereas cortical structural hypoconnectivity persisted. Importantly, we observed that brain injury related alterations across MRI modalities became more strongly correlated with flumazenil-PET at the chronic stage. Regions with chronic reductions in flumazenil-PET binding also showed weaker structural node strength and lower amplitude of low frequency fluctuations, a relationship that was not found at the subacute stage. This observation could suggest a progressive convergence of structural and functional disruptions with neuronal loss over time. Additionally, regions with declining structural node strength also exhibited decreases in functional node strength, while these same regions showed increased amplitude of low frequency fluctuations over time. This pattern suggests that heightened intrinsic regional activity may serve as a compensatory mechanism in regions increasingly disconnected due to progressive axonal degradation. Altogether, these findings advance our understanding of how multimodal neuroimaging captures the evolving interplay between neuronal integrity, structural connectivity, and functional dynamics after brain injury. Clarifying these interrelationships could inform prognostic models and enhance knowledge of degenerative, compensatory, and recovery mechanisms in traumatic brain injury.
Collapse
|
2
|
Woodrow RE, Grossac J, Hong YT, Winzeck S, Geeraerts T, Shah SA, Peattie ARD, Manktelow AE, Outtrim JG, Karakatsanis NA, Schiff ND, Fryer TD, Menon DK, Coles JP, Stamatakis EA. Outcomes and Mechanisms Associated With Selective Thalamic Neuronal Loss in Chronic Traumatic Brain Injury. JAMA Netw Open 2024; 7:e2426141. [PMID: 39106064 PMCID: PMC11304117 DOI: 10.1001/jamanetworkopen.2024.26141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 08/07/2024] Open
Abstract
Importance The chronic neuronal burden of traumatic brain injury (TBI) is not fully characterized by routine imaging, limiting understanding of the role of neuronal substrates in adverse outcomes. Objective To determine whether tissues that appear healthy on routine imaging can be investigated for selective neuronal loss using [11C]flumazenil (FMZ) positron emission tomography (PET) and to examine whether this neuronal loss is associated with long-term outcomes. Design, Setting, and Participants In this cross-sectional study, data were collected prospectively from 2 centers (University of Cambridge in the UK and Weill Cornell Medicine in the US) between September 1, 2004, and May 31, 2021. Patients with TBI (>6 months postinjury) were compared with healthy control participants (all aged >18 years). Individuals with neurological disease, benzodiazepine use, or contraindication to magnetic resonance imaging were excluded. Data were retrospectively collated with nonconsecutive recruitment, owing to convenience and scanner or PET ligand availability. Data were analyzed between February 1 and September 30, 2023. Exposure Flumazenil voxelwise binding potential relative to nondisplaceable binding potential (BPND). Main Outcomes and Measures Selective neuronal loss identified with FMZ PET was compared between groups on voxelwise and regional scales, and its association with functional, cognitive, and psychological outcomes was examined using Glasgow Outcome Scale (GOS) scores, measures of sustained executive attention (animal and sustained fluency), and 36-Item Short Form Health Survey (SF-36) scores. Diffusion tensor imaging was used to assess structural connectivity of regions of cortical damage, and its association with thalamic selective neuronal loss. Results In this study, 24 patients with chronic TBI (mean [SD] age, 39.2 [12.3] years; 18 men [75.0%]) and 33 healthy control participants (mean [SD] age, 47.6 [20.5] years; 23 men [69.7%]) underwent FMZ PET. Patients with TBI had a median time of 29 (range, 7-95) months from injury to scan. They displayed selective neuronal loss in thalamic nuclei, over and above gross volume loss in the left thalamus, and bilateral central, mediodorsal, ventral-lateral dorsal, anterior, and ventral anterior thalamic nuclei, across a wide range of injury severities. Neuronal loss was associated with worse functional outcome using GOS scores (left thalamus, left ventral anterior, and bilateral central, mediodorsal, and anterior nuclei), worse cognitive outcome on measures of sustained executive attention (left thalamus, bilateral central, and right mediodorsal nuclei), and worse emotional outcome using SF-36 scores (right central thalamic nucleus). Chronic thalamic neuronal loss partially mirrored the location of primary cortical contusions, which may indicate secondary injury mechanisms of transneuronal degeneration. Conclusions and Relevance The findings of this study suggest that selective thalamic vulnerability may have chronic neuronal consequences with relevance to long-term outcome, suggesting the evolving and potentially lifelong thalamic neuronal consequences of TBI. FMZ PET is a more sensitive marker of the burden of neuronal injury than routine imaging; therefore, it could inform outcome prognostication and may lead to the development of individualized precision medicine approaches.
Collapse
Affiliation(s)
- Rebecca E. Woodrow
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Julia Grossac
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Young T. Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Stefan Winzeck
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- BioMedIA Group, Department of Computing, Imperial College, London, United Kingdom
| | - Thomas Geeraerts
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Sudhin A. Shah
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Alexander R. D. Peattie
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anne E. Manktelow
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Joanne G. Outtrim
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | - Nicholas D. Schiff
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Tim D. Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David K. Menon
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jonathan P. Coles
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Emmanuel A. Stamatakis
- University Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
3
|
Thum JA, Malekmohammadi M, Toker D, Sparks H, Alijanpourotaghsara A, Choi JW, Hudson AE, Monti MM, Pouratian N. Globus pallidus externus drives increase in network-wide alpha power with propofol-induced loss-of-consciousness in humans. Cereb Cortex 2024; 34:bhae243. [PMID: 38850214 PMCID: PMC11161864 DOI: 10.1093/cercor/bhae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
States of consciousness are likely mediated by multiple parallel yet interacting cortico-subcortical recurrent networks. Although the mesocircuit model has implicated the pallidocortical circuit as one such network, this circuit has not been extensively evaluated to identify network-level electrophysiological changes related to loss of consciousness (LOC). We characterize changes in the mesocircuit in awake versus propofol-induced LOC in humans by directly simultaneously recording from sensorimotor cortices (S1/M1) and globus pallidus interna and externa (GPi/GPe) in 12 patients with Parkinson disease undergoing deep brain stimulator implantation. Propofol-induced LOC is associated with increases in local power up to 20 Hz in GPi, 35 Hz in GPe, and 100 Hz in S1/M1. LOC is likewise marked by increased pallidocortical alpha synchrony across all nodes, with increased alpha/low beta Granger causal (GC) flow from GPe to all other nodes. In contrast, LOC is associated with decreased network-wide beta coupling and beta GC from M1 to the rest of the network. Results implicate an important and possibly central role of GPe in mediating LOC-related increases in alpha power, supporting a significant role of the GPe in modulating cortico-subcortical circuits for consciousness. Simultaneous LOC-related suppression of beta synchrony highlights that distinct oscillatory frequencies act independently, conveying unique network activity.
Collapse
Affiliation(s)
- Jasmine A Thum
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
| | - Mahsa Malekmohammadi
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
| | - Daniel Toker
- Department of Psychology, University of California, Los Angeles, 6522 Pritzker Hall, Los Angeles, CA 90095, United States
| | - Hiro Sparks
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
| | - Amirreza Alijanpourotaghsara
- Department of Neurological Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd MC8855, Dallas, TX 75390, United States
| | - Jeong Woo Choi
- Department of Neurological Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd MC8855, Dallas, TX 75390, United States
| | - Andrew E Hudson
- Department of Anesthesiology, University of California, Los Angeles, 747 Westwood Plaza, Los Angeles, CA 90095, United States
| | - Martin M Monti
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 540, Los Angeles, CA 90095, United States
- Department of Psychology, University of California, Los Angeles, 6522 Pritzker Hall, Los Angeles, CA 90095, United States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, 5323 Harry Hines Blvd MC8855, Dallas, TX 75390, United States
| |
Collapse
|
4
|
Schiff ND. Toward an interventional science of recovery after coma. Neuron 2024; 112:1595-1610. [PMID: 38754372 PMCID: PMC11827330 DOI: 10.1016/j.neuron.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Recovery of consciousness after coma remains one of the most challenging areas for accurate diagnosis and effective therapeutic engagement in the clinical neurosciences. Recovery depends on preservation of neuronal integrity and evolving changes in network function that re-establish environmental responsiveness. It typically occurs in defined steps: it begins with eye opening and unresponsiveness in a vegetative state, then limited recovery of responsiveness characterizes the minimally conscious state, and this is followed by recovery of reliable communication. This review considers several points for novel interventions, for example, in persons with cognitive motor dissociation in whom a hidden cognitive reserve is revealed. Circuit mechanisms underlying restoration of behavioral responsiveness and communication are discussed. An emerging theme is the possibility to rescue latent capacities in partially damaged human networks across time. These opportunities should be exploited for therapeutic engagement to achieve individualized solutions for restoration of communication and environmental interaction across varying levels of recovery.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Jerold B. Katz Professor of Neurology and Neuroscience, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Butler T, Schubert J, Karakatsanis NA, Hugh Wang X, Xi K, Kang Y, Chen K, Zhou L, Fung EK, Patchell A, Jaywant A, Li Y, Chiang G, Glodzik L, Rusinek H, de Leon M, Turkheimer F, Shah SA. Brain Fluid Clearance After Traumatic Brain Injury Measured Using Dynamic Positron Emission Tomography. Neurotrauma Rep 2024; 5:359-366. [PMID: 38655117 PMCID: PMC11035850 DOI: 10.1089/neur.2024.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Brain fluid clearance by pathways including the recently described paravascular glymphatic system is a critical homeostatic mechanism by which metabolic products, toxins, and other wastes are removed from the brain. Brain fluid clearance may be especially important after traumatic brain injury (TBI), when blood, neuronal debris, inflammatory cells, and other substances can be released and/or deposited. Using a non-invasive dynamic positron emission tomography (PET) method that models the rate at which an intravenously injected radiolabeled molecule (in this case 11C-flumazenil) is cleared from ventricular cerebrospinal fluid (CSF), we estimated the overall efficiency of brain fluid clearance in humans who had experienced complicated-mild or moderate TBI 3-6 months before neuroimaging (n = 7) as compared to healthy controls (n = 9). While there was no significant difference in ventricular clearance between TBI subjects and controls, there was a significant group difference in dependence of ventricular clearance upon tracer delivery/blood flow to the ventricles. Specifically, in controls, ventricular clearance was highly, linearly dependent upon blood flow to the ventricle, but this relation was disrupted in TBI subjects. When accounting for blood flow and group-specific alterations in blood flow, ventricular clearance was slightly (non-significantly) increased in TBI subjects as compared to controls. Current results contrast with past studies showing reduced glymphatic function after TBI and are consistent with possible differential effects of TBI on glymphatic versus non-glymphatic clearance mechanisms. Further study using multi-modal methods capable of assessing and disentangling blood flow and different aspects of fluid clearance is needed to clarify clearance alterations after TBI.
Collapse
Affiliation(s)
- Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Julia Schubert
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | | | - Xiuyuan Hugh Wang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ke Xi
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington, DC, USA
| | - Kewei Chen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Liangdong Zhou
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Edward K. Fung
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Abigail Patchell
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Yi Li
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Gloria Chiang
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Henry Rusinek
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Mony de Leon
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, King's College London, London, United Kingdom
| | - Sudhin A. Shah
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
6
|
Witkin JM, Shafique H, Cerne R, Smith JL, Marini AM, Lipsky RH, Delery E. Mechanistic and therapeutic relationships of traumatic brain injury and γ-amino-butyric acid (GABA). Pharmacol Ther 2024; 256:108609. [PMID: 38369062 DOI: 10.1016/j.pharmthera.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Traumatic brain injury (TBI) is a highly prevalent medical condition for which no medications specific for the prophylaxis or treatment of the condition as a whole exist. The spectrum of symptoms includes coma, headache, seizures, cognitive impairment, depression, and anxiety. Although it has been known for years that the inhibitory neurotransmitter γ-amino-butyric acid (GABA) is involved in TBI, no novel therapeutics based upon this mechanism have been introduced into clinical practice. We review the neuroanatomical, neurophysiological, neurochemical, and neuropharmacological relationships of GABA neurotransmission to TBI with a view toward new potential GABA-based medicines. The long-standing idea that excitatory and inhibitory (GABA and others) balances are disrupted by TBI is supported by the experimental data but has failed to invent novel methods of restoring this balance. The slow progress in advancing new treatments is due to the complexity of the disorder that encompasses multiple dynamically interacting biological processes including hemodynamic and metabolic systems, neurodegeneration and neurogenesis, major disruptions in neural networks and axons, frank brain lesions, and a multitude of symptoms that have differential neuronal and neurohormonal regulatory mechanisms. Although the current and ongoing clinical studies include GABAergic drugs, no novel GABA compounds are being explored. It is suggested that filling the gap in understanding the roles played by specific GABAA receptor configurations within specific neuronal circuits could help define new therapeutic approaches. Further research into the temporal and spatial delivery of GABA modulators should also be useful. Along with GABA modulation, research into the sequencing of GABA and non-GABA treatments will be needed.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Ann M Marini
- Department of Neurology, Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert H Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elizabeth Delery
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Schiff ND, Giacino JT, Butson CR, Choi EY, Baker JL, O'Sullivan KP, Janson AP, Bergin M, Bronte-Stewart HM, Chua J, DeGeorge L, Dikmen S, Fogarty A, Gerber LM, Krel M, Maldonado J, Radovan M, Shah SA, Su J, Temkin N, Tourdias T, Victor JD, Waters A, Kolakowsky-Hayner SA, Fins JJ, Machado AG, Rutt BK, Henderson JM. Thalamic deep brain stimulation in traumatic brain injury: a phase 1, randomized feasibility study. Nat Med 2023; 29:3162-3174. [PMID: 38049620 PMCID: PMC11087147 DOI: 10.1038/s41591-023-02638-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 12/06/2023]
Abstract
Converging evidence indicates that impairments in executive function and information-processing speed limit quality of life and social reentry after moderate-to-severe traumatic brain injury (msTBI). These deficits reflect dysfunction of frontostriatal networks for which the central lateral (CL) nucleus of the thalamus is a critical node. The primary objective of this feasibility study was to test the safety and efficacy of deep brain stimulation within the CL and the associated medial dorsal tegmental (CL/DTTm) tract.Six participants with msTBI, who were between 3 and 18 years post-injury, underwent surgery with electrode placement guided by imaging and subject-specific biophysical modeling to predict activation of the CL/DTTm tract. The primary efficacy measure was improvement in executive control indexed by processing speed on part B of the trail-making test.All six participants were safely implanted. Five participants completed the study and one was withdrawn for protocol non-compliance. Processing speed on part B of the trail-making test improved 15% to 52% from baseline, exceeding the 10% benchmark for improvement in all five cases.CL/DTTm deep brain stimulation can be safely applied and may improve executive control in patients with msTBI who are in the chronic phase of recovery.ClinicalTrials.gov identifier: NCT02881151 .
Collapse
Affiliation(s)
- Nicholas D Schiff
- Feil Family Brain Mind Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA.
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Christopher R Butson
- Scientific Computing and Imaging Institute Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Norman Fixel Institute for Neurological Diseases Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Eun Young Choi
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jonathan L Baker
- Feil Family Brain Mind Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kyle P O'Sullivan
- Scientific Computing and Imaging Institute Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Andrew P Janson
- Scientific Computing and Imaging Institute Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Michael Bergin
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | | | - Jason Chua
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Laurel DeGeorge
- Feil Family Brain Mind Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sureyya Dikmen
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Adam Fogarty
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Linda M Gerber
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Mark Krel
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jose Maldonado
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - Matthew Radovan
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sudhin A Shah
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Jason Su
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Nancy Temkin
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Thomas Tourdias
- Department of Neuroimaging, University of Bordeaux, Nouvelle-Aquitaine, France
| | - Jonathan D Victor
- Feil Family Brain Mind Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Abigail Waters
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | | | - Joseph J Fins
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andre G Machado
- Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian K Rutt
- Department of Radiology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Program, Stanford University, Stanford, CA, USA
| | - Jaimie M Henderson
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Bio-X Program, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Annen J, Frasso G, van der Lande GJM, Bonin EAC, Vitello MM, Panda R, Sala A, Cavaliere C, Raimondo F, Bahri MA, Schiff ND, Gosseries O, Thibaut A, Laureys S. Cerebral electrometabolic coupling in disordered and normal states of consciousness. Cell Rep 2023; 42:112854. [PMID: 37498745 DOI: 10.1016/j.celrep.2023.112854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
We assess cerebral integrity with cortical and subcortical FDG-PET and cortical electroencephalography (EEG) within the mesocircuit model framework in patients with disorders of consciousness (DoCs). The mesocircuit hypothesis proposes that subcortical activation facilitates cortical function. We find that the metabolic balance of subcortical mesocircuit areas is informative for diagnosis and is associated with four EEG-based power spectral density patterns, cortical metabolism, and α power in healthy controls and patients with a DoC. Last, regional electrometabolic coupling at the cortical level can be identified in the θ and α ranges, showing positive and negative relations with glucose uptake, respectively. This relation is inverted in patients with a DoC, potentially related to altered orchestration of neural activity, and may underlie suboptimal excitability states in patients with a DoC. By understanding the neurobiological basis of the pathophysiology underlying DoCs, we foresee translational value for diagnosis and treatment of patients with a DoC.
Collapse
Affiliation(s)
- Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium.
| | | | - Glenn J M van der Lande
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Estelle A C Bonin
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Arianna Sala
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | | | - Federico Raimondo
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University Laval, Quebec City, QC, Canada
| |
Collapse
|
9
|
Makale MT, Nybo C, Keifer J, Blum K, Dennen CA, Baron D, Sunder K, Elman I, Makale MR, Thanos PK, Murphy KT. Preliminary Observations of Personalized Repetitive Magnetic Stimulation (PrTMS) Guided by EEG Spectra for Concussion. Brain Sci 2023; 13:1179. [PMID: 37626535 PMCID: PMC10452199 DOI: 10.3390/brainsci13081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
There are no FDA-approved treatments for the chronic sequelae of concussion. Repetitive magnetic transcranial stimulation (rTMS) has been explored as a therapy but outcomes have been inconsistent. To address this we developed a personalized rTMS (PrTMS) protocol involving continual rTMS stimulus frequency adjustment and progressive activation of multiple cortical sites, guided by spectral electroencephalogram (EEG)-based analyses and psychological questionnaires. We acquired pilot clinical data for 185 symptomatic brain concussion patients who underwent the PrTMS protocol over an approximate 6 week period. The PrTMS protocol used a proprietary EEG spectral frequency algorithm to define an initial stimulation frequency based on an anteriorly graded projection of the measured occipital alpha center peak, which was then used to interpolate and adjust regional stimulation frequency according to weekly EEG spectral acquisitions. PrTMS improved concussion indices and normalized the cortical alpha band center frequency and peak EEG amplitude. This potentially reflected changed neurotransmitter, cognitive, and perceptual status. PrTMS may be a promising treatment choice for patients with persistent concussion symptoms. This clinical observational study was limited in that there was no control group and a number of variables were not recorded, such as time since injury and levels of depression. While the present observations are indeed preliminary and cursory, they may suggest further prospective research on PrTMS in concussion, and exploration of the spectral EEG as a concussion biomarker, with the ultimate goals of confirmation and determining optimal PrTMS treatment parameters.
Collapse
Affiliation(s)
- Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Chad Nybo
- CrossTx Inc., Bozeman, MT 59715, USA
| | | | - Kenneth Blum
- Department of Clinical Psychology and Addiction, Institute of Psychology, Faculty of Education and Psychology, Eötvös Loránd University, 1075 Budapest, Hungary
- Department of Psychiatry, Wright University, Boonshoft School of Medicine, Dayton, OH 45324, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health NE, Philadelphia, PA 19107, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise & Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
| | - Keerthy Sunder
- School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02143, USA
| | - Miles R. Makale
- Department of Psychology, University of California San Diego, La Jolla, CA 92093, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | | |
Collapse
|
10
|
Kim N, Jamison K, Jaywant A, Garetti J, Blunt E, RoyChoudhury A, Butler T, Dams-O'Connor K, Khedr S, Chen CC, Shetty T, Winchell R, Hill NJ, Schiff ND, Kuceyeski A, Shah SA. Comparisons of electrophysiological markers of impaired executive attention after traumatic brain injury and in healthy aging. Neuroimage 2023; 274:120126. [PMID: 37191655 PMCID: PMC10286242 DOI: 10.1016/j.neuroimage.2023.120126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Executive attention impairments are a persistent and debilitating consequence of traumatic brain injury (TBI). To make headway towards treating and predicting outcomes following heterogeneous TBI, cognitive impairment specific pathophysiology first needs to be characterized. In a prospective observational study, we measured EEG during the attention network test aimed at detecting alerting, orienting, executive attention and processing speed. The sample (N = 110) of subjects aged 18-86 included those with and without traumatic brain injury: n = 27, complicated mild TBI; n = 5, moderate TBI; n = 10, severe TBI; n = 63, non-brain-injured controls. Subjects with TBI had impairments in processing speed and executive attention. Electrophysiological markers of executive attention processing in the midline frontal regions reveal that, as a group, those with TBI and elderly non-brain-injured controls have reduced responses. We also note that those with TBI and elderly controls have responses that are similar for both low and high-demand trials. In subjects with moderate-severe TBI, reductions in frontal cortical activation and performance profiles are both similar to that of controls who are ∼4 to 7 years older. Our specific observations of frontal response reductions in subjects with TBI and in older adults is consistent with the suggested role of the anterior forebrain mesocircuit as underlying cognitive impairments. Our results provide novel correlative data linking specific pathophysiological mechanisms underlying domain-specific cognitive deficits following TBI and with normal aging. Collectively, our findings provide biomarkers that may serve to track therapeutic interventions and guide development of targeted therapeutics following brain injuries.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, United States; Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY 10065, United States; NewYork-Presbyterian Hospital, New York, NY 10065, United States
| | - Jacob Garetti
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Emily Blunt
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Arindam RoyChoudhury
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| | - Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Shahenda Khedr
- Department of Surgery, NewYork-Presbyterian Queens Hospital, Queens, NY 11355, United States
| | - Chun-Cheng Chen
- Department of Surgery, NewYork-Presbyterian Queens Hospital, Queens, NY 11355, United States; Department of Surgery, Weill Cornell Medicine, New York, NY 10065, United States
| | - Teena Shetty
- Department of Neurology, Hospital for Special Surgery, New York, NY, 10021 United States
| | - Robert Winchell
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, United States
| | - N Jeremy Hill
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY 12208, United States; Electrical & Computer Engineering Department, State University of New York at Albany, NY 12226, United States
| | - Nicholas D Schiff
- Department of BMRI & Neurology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Sudhin A Shah
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States; Department of BMRI & Neurology, Weill Cornell Medicine, New York, NY 10065, United States.
| |
Collapse
|
11
|
Schiff ND. Mesocircuit mechanisms in the diagnosis and treatment of disorders of consciousness. Presse Med 2023; 52:104161. [PMID: 36563999 DOI: 10.1016/j.lpm.2022.104161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The 'mesocircuit hypothesis' proposes mechanisms underlying the recovery of consciousness following severe brain injuries. The model builds up from a single premise that multifocal brain injuries resulting in coma and subsequent disorders of consciousness produce widespread neuronal death and dysfunction. Considering the general properties of cortical, thalamic, and striatal neurons, a lawful and specific circuit-level mechanism is constructed based on these known anatomical and physiological specializations of neuronal subtypes. The mesocircuit model generates many testable predictions at the mesocircuit, local circuit, and cellular level across multiple cerebral structures to correlate diagnostic measurements and interpret therapeutic interventions. The anterior forebrain mesocircuit is integrally related to the frontal-parietal network, another network demonstrated to show strong correlation with levels of recovery in disorders of consciousness. A further extension known as the "ABCD" model has been used to examine interaction of these models in recovery of consciousness using electrophysiological data types. Many studies have examined predictions of the mesocircuit model; here we first present the model and review the accumulated evidence for several predictions of model across multiple stages of recovery function in human subjects. Recent studies linking the mesocircuit model, the ABCD model, and interactions with the frontoparietal network are reviewed. Finally, theoretical implications of the mesocircuit model at the neuronal level are considered to interpret recent studies of deep brain stimulation in the central lateral thalamus in patients recovering from coma and in new experimental models in the context of emerging understanding of neuronal and local circuit mechanisms underlying conscious brain states.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Jerold B. Katz Professor of Neurology and Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, United States.
| |
Collapse
|
12
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|