1
|
Senel GB, Unkun R, Karadeniz D, Schenck CH. Rapid eye movement sleep without atonia in patients with sleep-related fronto-temporal epilepsy. Neurol Sci 2025:10.1007/s10072-025-08236-1. [PMID: 40377736 DOI: 10.1007/s10072-025-08236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 05/05/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Interictal epileptiform discharges (IEDs) increase during non-rapid eye movement (NREM) sleep, and decrease or disappear in REM sleep, especially during phasic REM sleep. REM sleep without atonia (RSWA), and its possible effects on IEDs, has not yet been studied. METHODS A retrospective review of 10-year data retrieved 205 adults with fronto-temporal epilepsy, with full clinical data, 18-channel EEG and polysomnography. Tonic and phasic REM sleep periods were analyzed, and REM atonia was scored with the latest criteria. EEG recordings and IEDs were also re-evaluated in NREM sleep from the first and second halves of the night, and during phasic/tonic REM, and RSWA periods. RESULTS RSWA was detected in 31 patients (15.1%) with epilepsy. Total number of IEDs was 18.2 ± 9.5, being significantly higher in patients with treatment-resistant epilepsy (TRE) than in those without TRE (p = 0.046). The number of IEDs was significantly higher in tonic REM than in phasic REM (p = 0.001). Patients with RSWA had more IEDs in phasic (p = 0.003) and tonic (p = 0.037) REM. The number of IEDs in phasic REM periods in patients without RSWA was significantly lower in patients without TRE in compared to those with TRE (p = 0.044). IEDs in REM sleep were significantly more common in patients with RSWA, mainly in tonic REM periods, and in patients with TRE. DISCUSSION Our data demonstrate for the first time that the suppressing role of REM atonia on IEDs was diminished or lost in the presence of RSWA, including being more prominent in patients with TRE.
Collapse
Affiliation(s)
- Gulcin Benbir Senel
- Sleep and Disorders Unit, Division of Clinical Neurophysiology, Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Rumeysa Unkun
- Sleep and Disorders Unit, Division of Clinical Neurophysiology, Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Derya Karadeniz
- Sleep and Disorders Unit, Division of Clinical Neurophysiology, Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
2
|
Sheybani L, Frauscher B, Bernard C, Walker MC. Mechanistic insights into the interaction between epilepsy and sleep. Nat Rev Neurol 2025; 21:177-192. [PMID: 40065066 DOI: 10.1038/s41582-025-01064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 04/04/2025]
Abstract
Epidemiological evidence has demonstrated associations between sleep and epilepsy, but we lack a mechanistic understanding of these associations. If sleep affects the pathophysiology of epilepsy and the risk of seizures, as suggested by correlative evidence, then understanding these effects could provide crucial insight into the basic mechanisms that underlie the development of epilepsy and the generation of seizures. In this Review, we provide in-depth discussion of the associations between epilepsy and sleep at the cellular, network and system levels and consider the mechanistic underpinnings of these associations. We also discuss the clinical relevance of these associations, highlighting how they could contribute to improvements in the management of epilepsy. A better understanding of the mechanisms that govern the interactions between epilepsy and sleep could guide further research and the development of novel approaches to the management of epilepsy.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| | - Birgit Frauscher
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Christophe Bernard
- Aix Marseille Université, INSERM, INS, Institute Neurosciences des Systèmes, Marseille, France
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| |
Collapse
|
3
|
Hannan S, Ho A, Frauscher B. Clinical Utility of Sleep Recordings During Presurgical Epilepsy Evaluation With Stereo-Electroencephalography: A Systematic Review. J Clin Neurophysiol 2024; 41:430-443. [PMID: 38935657 DOI: 10.1097/wnp.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARY Although the role of sleep in modulating epileptic activity is well established, many epileptologists overlook the significance of considering sleep during presurgical epilepsy evaluations in cases of drug-resistant epilepsy. Here, we conducted a comprehensive literature review from January 2000 to May 2023 using the PubMed electronic database and compiled evidence to highlight the need to revise the current clinical approach. All articles were assessed for eligibility by two independent reviewers. Our aim was to shed light on the clinical value of incorporating sleep monitoring into presurgical evaluations with stereo-electroencephalography. We present the latest developments on the important bidirectional interactions between sleep and various forms of epileptic activity observed in stereo-electroencephalography recordings. Specifically, epileptic activity is modulated by different sleep stages, peaking in non-rapid eye movement sleep, while being suppressed in rapid eye movement sleep. However, this modulation can vary across different brain regions, underlining the need to account for sleep to accurately pinpoint the epileptogenic zone during presurgical assessments. Finally, we offer practical solutions, such as automated sleep scoring algorithms using stereo-electroencephalography data alone, to seamlessly integrate sleep monitoring into routine clinical practice. It is hoped that this review will provide clinicians with a readily accessible roadmap to the latest evidence concerning the clinical utility of sleep monitoring in the context of stereo-electroencephalography and aid the development of therapeutic and diagnostic strategies to improve patient surgical outcomes.
Collapse
Affiliation(s)
- Sana Hannan
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Alyssa Ho
- Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Department of Neurology, Duke University Medical Center, Durham, North Carolina, U.S.A.; and
| |
Collapse
|
4
|
Frauscher B, Mansilla D, Abdallah C, Astner-Rohracher A, Beniczky S, Brazdil M, Gnatkovsky V, Jacobs J, Kalamangalam G, Perucca P, Ryvlin P, Schuele S, Tao J, Wang Y, Zijlmans M, McGonigal A. Learn how to interpret and use intracranial EEG findings. Epileptic Disord 2024; 26:1-59. [PMID: 38116690 DOI: 10.1002/epd2.20190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Epilepsy surgery is the therapy of choice for many patients with drug-resistant focal epilepsy. Recognizing and describing ictal and interictal patterns with intracranial electroencephalography (EEG) recordings is important in order to most efficiently leverage advantages of this technique to accurately delineate the seizure-onset zone before undergoing surgery. In this seminar in epileptology, we address learning objective "1.4.11 Recognize and describe ictal and interictal patterns with intracranial recordings" of the International League against Epilepsy curriculum for epileptologists. We will review principal considerations of the implantation planning, summarize the literature for the most relevant ictal and interictal EEG patterns within and beyond the Berger frequency spectrum, review invasive stimulation for seizure and functional mapping, discuss caveats in the interpretation of intracranial EEG findings, provide an overview on special considerations in children and in subdural grids/strips, and review available quantitative/signal analysis approaches. To be as practically oriented as possible, we will provide a mini atlas of the most frequent EEG patterns, highlight pearls for its not infrequently challenging interpretation, and conclude with two illustrative case examples. This article shall serve as a useful learning resource for trainees in clinical neurophysiology/epileptology by providing a basic understanding on the concepts of invasive intracranial EEG.
Collapse
Affiliation(s)
- B Frauscher
- Department of Neurology, Duke University Medical Center and Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - D Mansilla
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
- Neurophysiology Unit, Institute of Neurosurgery Dr. Asenjo, Santiago, Chile
| | - C Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Québec, Canada
| | - A Astner-Rohracher
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - S Beniczky
- Danish Epilepsy Centre, Dianalund, Denmark
- Aarhus University, Aarhus, Denmark
| | - M Brazdil
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Member of the ERN-EpiCARE, Brno, Czechia
- Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - V Gnatkovsky
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - J Jacobs
- Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Kalamangalam
- Department of Neurology, University of Florida, Gainesville, Florida, USA
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - P Perucca
- Epilepsy Research Centre, Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - P Ryvlin
- Department of Clinical Neurosciences, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - S Schuele
- Department of Neurology, Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - J Tao
- Department of Neurology, The University of Chicago, Chicago, Illinois, USA
| | - Y Wang
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Wilder Center for Epilepsy Research, University of Florida, Gainesville, Florida, USA
| | - M Zijlmans
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - A McGonigal
- Department of Neurosciences, Mater Misericordiae Hospital, Brisbane, Queensland, Australia
- Mater Research Institute, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Avigdor T, Abdallah C, Afnan J, Cai Z, Rammal S, Grova C, Frauscher B. Consistency of electrical source imaging in presurgical evaluation of epilepsy across different vigilance states. Ann Clin Transl Neurol 2024; 11:389-403. [PMID: 38217279 PMCID: PMC10863930 DOI: 10.1002/acn3.51959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/24/2023] [Accepted: 11/18/2023] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE The use of electrical source imaging (ESI) in assessing the source of interictal epileptic discharges (IEDs) is gaining increasing popularity in presurgical work-up of patients with drug-resistant focal epilepsy. While vigilance affects the ability to locate IEDs and identify the epileptogenic zone, we know little about its impact on ESI. METHODS We studied overnight high-density electroencephalography recordings in focal drug-resistant epilepsy. IEDs were marked visually in each vigilance state, and examined in the sensor and source space. ESIs were calculated and compared between all vigilance states and the clinical ground truth. Two conditions were considered within each vigilance state, an unequalized and an equalized number of IEDs. RESULTS The number, amplitude, and duration of IEDs were affected by the vigilance state, with N3 sleep presenting the highest number, amplitude, and duration for both conditions (P < 0.001), while signal-to-noise ratio only differed in the unequalized condition (P < 0.001). The vigilance state did not affect channel involvement (P > 0.05). ESI maps showed no differences in distance, quality, extent, or maxima distances compared to the clinical ground truth for both conditions (P > 0.05). Only when an absolute reference (wakefulness) was used, the channel involvement (P < 0.05) and ESI source extent (P < 0.01) were impacted during rapid-eye-movement (REM) sleep. Clustering of amplitude-sensitive and -insensitive ESI maps pointed to amplitude rather than the spatial profile as the driver (P < 0.05). INTERPRETATION IED ESI results are stable across vigilance states, including REM sleep, if controlled for amplitude and IED number. ESI is thus stable and invariant to the vigilance state.
Collapse
Affiliation(s)
- Tamir Avigdor
- Analytical Neurophysiology LabMontreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
| | - Chifaou Abdallah
- Analytical Neurophysiology LabMontreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
| | - Jawata Afnan
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
| | - Zhengchen Cai
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
| | - Saba Rammal
- Analytical Neurophysiology LabMontreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontrealCanada
- Multimodal Functional Imaging Lab, PERFORM Centre, Department of PhysicsConcordia UniversityMontrealQuebecCanada
| | - Birgit Frauscher
- Analytical Neurophysiology LabMontreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
- Department of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke Pratt School of EngineeringDurhamNorth CarolinaUSA
| |
Collapse
|
6
|
Ho A, Hannan S, Thomas J, Avigdor T, Abdallah C, Dubeau F, Gotman J, Frauscher B. Rapid eye movement sleep affects interictal epileptic activity differently in mesiotemporal and neocortical areas. Epilepsia 2023; 64:3036-3048. [PMID: 37714213 DOI: 10.1111/epi.17763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
OBJECTIVE Rapid eye movement (REM) sleep reduces the rate and extent of interictal epileptiform discharges (IEDs). Breakthrough epileptic activity during REM sleep is therefore thought to best localize the seizure onset zone (SOZ). We utilized polysomnography combined with direct cortical recordings to investigate the influences of anatomical locations and the time of night on the suppressive effect of REM sleep on IEDs. METHODS Forty consecutive patients with drug-resistant focal epilepsy underwent combined polysomnography and stereo-electroencephalography during presurgical evaluation. Ten-minute interictal epochs were selected 2 h prior to sleep onset (wakefulness), and from the first and second half of the night during non-REM (NREM) sleep and REM sleep. IEDs were detected automatically across all channels. Anatomic localization, time of night, and channel type (within or outside the SOZ) were tested as modulating factors. RESULTS Relative to wakefulness, there was a suppression of IEDs by REM sleep in neocortical regions (median = -27.6%), whereas mesiotemporal regions showed an increase in IEDs (19.1%, p = .01, d = .39). This effect was reversed when comparing the regional suppression of IEDs by REM sleep relative to NREM sleep (-35.1% in neocortical, -58.7% in mesiotemporal, p < .001, d = .39). Across all patients, no clinically relevant novel IED regions were observed in REM sleep versus NREM or wakefulness based on our predetermined thresholds (4 IEDs/min in REM, 0 IEDs/min in NREM and wakefulness). Finally, there was a reduction in IEDs in late (NREM: 1.08/min, REM: .61/min) compared to early sleep (NREM: 1.22/min, REM: .69/min) for both NREM (p < .001, d = .21) and REM (p = .04, d = .14). SIGNIFICANCE Our results demonstrate a spatiotemporal effect of IED suppression by REM sleep relative to wakefulness in neocortical but not mesiotemporal regions, and in late versus early sleep. This suggests the importance of considering sleep stage interactions and the potential influences of anatomical locations when using IEDs to define the epileptic focus.
Collapse
Affiliation(s)
- Alyssa Ho
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sana Hannan
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - John Thomas
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Tamir Avigdor
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Chifaou Abdallah
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - François Dubeau
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
| |
Collapse
|